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The definition of effective strategies for graph partitioning is a major challenge in dis-
tributed environments since an effective graph partitioning allows to considerably im-
prove the performance of large graph data analytics computations.

In this paper, we propose a multi-objective and scalable Balanced GRAph Parti-
tioning (B-GRAP) algorithm, based on Label Propagation (LP) approach, to produce
balanced graph partitions. B-GRAP defines a new efficient initialization procedure and
different objective functions to deal with either vertex or edge balance constraints while
considering edge direction in graphs. B-GRAP is implemented of top of the open source
distributed graph processing system Giraph.

The experiments are performed on various graphs with different structures and sizes
(going up to 50.6M vertices and 1.9B edges) while varying the number of partitions.
We evaluate B-GRAP using several quality measures and the computation time. The
results show that B-GRAP (i) provides a good balance while reducing the cuts between
the different computed partitions (ii) reduces the global computation time, compared to
LP-based algorithms.

Keywords: graph partitioning, label propagation, vertex balance, edge balance, vertex-
centric parallel computing, Giraph.
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1. Introduction

In recent years, large-scale graph analytics and mining have been widely used in various
domains such as communication network, urban transportation, biological data, and social
networks. In this context the efficient processing of large graphs becomes a new challeng-
ing task. Many research works focused on graph-based parallel computation algorithms in
distributed systems [1, 2, 3]. The distribution of the workloads on several machines helps to
reduce the overhead computation time. However, this distribution requires multiple exchanges
of messages between the machines with a typically high cost.
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Graph Partitioning (GP) algorithms have taken a lot of attention in recent decade as a key
prerequisite for an efficient processing and many works focused on this problem [4, 5, 6, 7]. An
efficient partitioning algorithm allows to minimize the total computation cost while a good
balanced load makes better leverage of the entire system. The GP problem aims to divide the
graph into a given number of partitions while minimizing the number of their inter-connecting
edges (called cuts) and balancing their sizes w.r.t. the number of vertices or the number of
edges. An edge-balanced GP divides the edges of the graph into nearly equal sized partitions.
In contrast, a vertex-balanced GP divides the vertices of the graph into equisized partitions.
Each objective has its own advantage. For a graph analysis task where the vertices exchange
messages frequently, balancing the number of edges has more advantage. On the contrary,
for tasks that need a few communications between vertices, the vertex-balanced GP is more
beneficial.

Different GP partitioning approaches have been studied in the literature. Multilevel
GP approach, called METIS [8] defined a well vertex-balanced partitioning algorithm which
showed high quality in terms of cuts. But, it requires high resource usage and computation
time, therefore it does not scale with large graphs. Streaming GP methods [9, 10] used an
online graph partitioning, by considering vertex-balance or edge-balance constraints which re-
duces the overhead computation comparing to multilevel approaches. However, the results
of such methods are of less quality and depend on the order of vertex or edge processing.
Moreover the partitioning doesn’t deal with the graph’s changes. Recent works have taken
advantage of the lightweight mechanism of Label Propagation (LP) approach to improve the
partitioning process [11, 12, 13]. In [12, 14], the authors used LP to coarsen the graph in
a multilevel partitioning approach while balancing the vertices. In [11] LP algorithm is ex-
tended to compute the entire partitioning basing on Giraph [1] programming model, while
considering only edge-balance constraint. However, these approaches didn’t pay attention to
the initialization phase of LP which, as we will show, has a direct impact on the convergence
and the performance of the partitioning.

This research work extends the article presented in [15]. In this paper we propose a new
multi-objective and scalable Balanced GRAph Partitioning algorithm (B-GRAP), based on
LP, to produce balanced graph partitions. B-GRAP provides the following main contribu-
tions:

• An efficient partitioning initialization that helps to improve the propagation of labels
and to reduce the computational overhead comparing to similar approaches.
• Two New scalable and parallel partitioning algorithms B-GRAPVB and B-GRAPEB that

respectively address the vertex balance and the edge balance problems on both directed
and undirected graphs.
• A full implementation of B-GRAP developed on top Giraph, a distributed open source

graph processing system Giraph [1]. This allows us to take advantage from its parallel
processing capabilities in order to effectively parallelize B-GRAP.
• The evaluation of B-GRAP, using different criteria (quality measures and execution

time) on large heterogeneously structured real-worlds and synthetic graphs (going up to
50.6M vertices and 1.9B edges), shows good performance while scaling with the number
of partitions and size of a graph.

This paper is structured as follows. In Section 2, we present a survey of some approaches
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related to graph partitioning problem. In Section 3, we present LP approach and B-GRAP
main notations. In Section 4, we define B-GRAP, its initialization and the propagation
objective functions for vertex or edge balance, then the measures we use to evaluate the
quality of the partitioning are presented in Section 5. In Section 6, we highlight highlight the
implementation of B-GRAP on top of Giraph. In Section 7, we detail the experimental study
we conducted in order to evaluate B-GRAP. Finally, in Section 8, we draw our conclusions
and future perspectives.

2. Related Work

During the last decade, research communities working on graph datasets have given a lot of
interest to the definition of new strategies for large graph parallel computing and analytics in
a distributed environment. This context opened up new challenges to define efficient graph
partitioning algorithms [4, 7, 12, 16, 17]. One of the main challenges consists in defining
methods that allow to balance the workload among the nodes of a distributed computing
environment and to reduce, at the same time, the communication load over the network. In
this section we discuss works on graph partitioning approaches classifying them in different
categories taking into account the main characteristics of the algorithms they propose.

Spectral partitioning approaches Spectral approaches are based on the principles de-
fined in [18] and rely on properties of the entire graph to compute the partition [19, 20]. The
algorithms derive the partitions from the vector computation of the adjacency matrix of the
graph. They have been widely applied in image segmentation context [21] where they show
great performances and results thanks to the characteristics of input data [22].

Machine learning approaches During the last years graph data and graph data analysis
have been widely considered together with machine learning techniques [23]. In the context
of graph partitioning the literature focuses both on the selection of the best already-defined
strategy for a specific input graph [24], and on the development of new partitioning ap-
proaches [25]. In this context we can cite GAP [26] framework that applied a deep learning
approach to graph partitioning or Revolver [27] that applies reinforcement learning and label
propagation to adaptively partition a graph.

Multilevel partitioning approaches Another common strategy in large graph partition-
ing is to use multilevel approaches [4]. The idea behind these works is to generate a first
partition on the basis of a reduced view of the graph in which a vertex represents many ver-
tices of the original graph. For example a triangle of three vertices can be reduced to one.
The algorithms then expands the graph taking into account the whole initial graph. This
family of approaches alternates three main phases: (i) coarsen the graph by collapsing adja-
cent vertices satisfying some matching criteria, (ii) partition the coarsened graph using any
partitioning algorithm, (iii) the un-coarsening or refinement, which means generalizing the
partition from last phase by mapping back the results to the original graph. METIS [8] is one
of the multilevel graph partitioning algorithm family. This algorithm uses the Kernighan-Lin
(KL) algorithm [28]. Starting with a random partition of two blocks (a random bisection), is
known for its ability to produce partitioning with high quality w.r.t. the number of cuts, but
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with the disadvantage of the high computation time to obtain several intermediate results.
Another widely well known multilevel graph partitionner is Scotch [29] which deals with the
graph changes and does not require to start the partitioning from scratch, in contrast to
METIS. The parallel version of both algorithms, ParMETIS [30] and Pt-Scotch [31], show
good cuts quality but their performance scales poorly with respect to the number of processors
as shown in [12].

Stream partitioning During the last years stream graph partitioning has been proposed
in order to reduce the complexity [10] of multilevel approaches, since they take into account
the entire input graph during the whole computation. These algorithms assign edges and
vertices to various partitions by running a single pass through the whole graph. The goal,
of the most part of these algorithms, is to guarantee the edge balance [10, 32] and to find a
partitioning that reduces the usage of the resources and the computation overhead. These
methods are faster than multilevel algorithms but they build partitioning with lower quality,
in term of cuts, due to the sensitivity to the stream order. Moreover, it’s generally difficult
to parallelize streaming algorithms.

Hybrid partitioning approaches Some works have tried to use mixed strategies in order
to take advantage of multiple of the described approaches. The authors of [33] proposed a
new algorithm that uses both multilevel and LP. The coarsening phase is done by using the
LP by combining the vertices having the same label iteratively; the partition phase is done
by applying METIS [30] or KL [28]. Their results showed that for large graphs the use of LP
is more efficient than matching criteria in the coarsening phase. However, their algorithm has
to restart partitioning from scratch if any change to the graph occurs.

The authors of [12] proposed ParHIP, a distributed memory parallel partitioning algo-
rithm, that takes advantage of both multilevel and LP approaches. The authors adapted and
parallelized LP technique for both coarsening and refinement step, using the Message Passing
Interface (MPI), while considering the vertex-balance constraint. Their experimental results
demonstrated that ParHIP is more scalable and achieves higher quality than existing state of
the art methods like ParMETIS and PT-Scotch.

Label propagation partitioning approaches Other works have used the label propa-
gation approach (LP) [34] to partition large graphs. LP was mainly used for community
detection in social networks [35, 36]. Making use of LP for the graph partitioning prob-
lem was motivated by the lightweight mechanism that uses the network structure to guide
its progress. LP partitioning methods generate less intermediary results than multilevel ap-
proaches, which need to store many intermediate results such as the coarser graph, and run
with a lower complexity. Furthermore, LP method is semantic-aware, given the existence
of local closely connected substructures, a label tends to propagate within such structures.
Finally, in [11] the authors defined a distributed partitioning algorithm called Spinner that
considers only edge balance. Spinner is based on LP approach and runs on the top of Giraph
API [1]. Compared to the previous work, Spinner supports the parallelism and can adapt
an existing partitioning to consider graph updates by adding or removing vertices and edges
and changing the number of partitions. The algorithm divides N vertices across K parti-
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tions, while trying to keep similar the number of edges in each partition. In the same context
other approaches have been proposed to take advantage from distributed computation and
Map-Reduce programming paradigms. In [37] the authors embedded the nodes onto a line,
and then processed them in a distributed manner guided by a linear embedding order. Their
focus was on balanced-partitioning and on minimizing the total cut size.

In many applications contexts graphs show a structure that changes continuously over the
time. Some research works have focused their interest in how to deal with such characteristic
and introduced dynamic partitioning techniques. In [38] the authors proposed a dynamic
graph partitioning algorithm that simultaneously incorporates replication of the data. The
algorithm focuses in maintaining quality partitioning as the graph structure changes over
time taking into consideration only local parts of the graph when reassigning vertices to
partitions. Exploring the opportunities offered by the techniques developed in streaming-
data analysis [39] proposed a graph partitioning in streaming setting and [40] introduced
a stratified graph partitioning technique where approximately the same graph is routinely
streamed and analyzed. Thanks to this last approach it is possible to balance simultaneously
each set of node attribute in the strata.

In this paper we present a new algorithm for balanced graph partitioning based on LP
approach and using Giraph programming model. Compared to the literature, our algorithm
B-GRAP deals with edge-based or vertex-based balanced partitioning while decreasing the
number of cuts and computation time. Moreover, B-GRAP defines an initialization heuristic
which allows to improve the propagation of labels across the graph and to accelerate the
convergence of the algorithm on large graphs.

3. Preliminaries

The label propagation algorithm was defined in the context of community detection in social
networks [35, 36]. This approach re-used in graph partitioning research context thanks to
its lightweight and intuitive mechanism. Comparing with multilevel approaches LP methods
generate less intermediary results and run with a lower complexity. Given the number of de-
sired partitions of the graph, the naive LP algorithm simply works as follows: (i) At first, each
vertex is assigned to a partition randomly; (ii) Then, the label of each vertex is propagated
and updated iteratively to its neighborhood, where each vertex takes the most frequent label
among its neighborhood as its own label. The process ends when labels no longer change. In
the following we describe formally the LP algorithm.

Problem Formulation and Notations Given a number of partitions K, a directed graph
G = 〈V,E, ω〉, where V is a set of vertices and E a set of weighted edges with ω : E → R+.
Let L = {l}Kl=1 be a set of partition labels defined by a labeling function φ : V → L such that
φ(v) = l means that v belongs to the partition with label l. The naïve LP algorithm proceeds
as follows. Initially, a unique label lv is assigned to each vertex v. Then, the label of each v ∈ V
is propagated and updated iteratively to its neighborhood N(v) = {u ∈ V |(v, u)∨ (u, v) ∈ E}
and is updated until a given convergence criteria is reached. The label updating is done by
taking into account the most frequent label among N(v) labels. More formally, let FLP(v, l)
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be the frequency of a label l in the neighborhood of v, defined by:

FLP(v, l) =
∑

u∈N(v)

ω(v, u)δ
(
φ(u), l

)
(1)

where φ(u) gives the current label of u and δ is the Kronecker delta function, which is equal
1 if φ(u) = l, and 0 otherwise. The label of vertex v is replaced by the label that maximizes
the frequency function:

lv = argmax
l

FLP(v, l) (2)

If many maximal labels exist and do not include the current label of v, one of them is
randomly chosen. LP algorithm stops if

∑
v∈V

∑
l∈L FLP(v, l) converges according to a given

threshold ε.
We note that naïve LP algorithm does not take into account the directions of edges. To

consider directed graphs, virtual edges are added such that: ∀(v, u) ∈ E,ω(v, u) = 2 and if
(u, v) /∈ E, (u, v) is added with ω(u, v) = 1 which we call virtual edge. Note that the Giraph
data model is a distributed directed graph, where every vertex is aware of its outgoing edges
only, but not of the incoming ones. Adding virtual edges in this case, allows to a vertex to
discover its entire neighborhood N(v), while the weight allows to consider the direction as
well as to distinguish these virtual edges added.

4. B-GRAP algorithm

Our goal is to define a K-balanced and LP-based partitioning algorithm that decreases the
total cuts while considering the vertex balance or the edge balance constraints in directed
graphs.

v2

v1
v5 v7

v6

v10

v9

v8

v4

v3

best cut

Fig. 1. Vertex-balanced and edge-balanced 2-partitioning graph example.

To illustrate our objectives we consider the example provided in Figure 1. This example
presents a small graph of 10 vertices and 16 directed edges. We would divide the graph
into two balanced partitions, using either a vertex-balanced partitioning or the edge-balanced
partitioning. First, we note that the best 2-partitioning that minimizes the edge cuts is
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P1 = {v1, v2, v3, v4} and P2 = {v5, v6, v7, v8, v9, v10}, where the cuts (v4, v5), (v4, v10), (v10, v4).
To achieve a vertex-balanced partitioning, a vertex from P2 should be moved to P1, while
caring about the cuts. In this case, moving v10 to P1 is the most advantageous because it
introduces less edge cuts. For the edge-balanced partitioning, no change is needed. Indeed,
both partitions holds |E|/2 directed edges and the number of edge cuts is minimized. Note
that if the directness of edges is ignored, this partitioning remains unbalanced. In fact, in an
undirected graph, each edge is considered to be bidirectional, as a result the number of edges
in P1 is 12 and 16 in P2.

In the following, we present in detail B-GRAP algorithm. First, we present the initial-
ization strategy, then we define the update functions F to build vertex (or edge) balanced
partitions, and finally we present the measures used for the evaluation of partitioning quality.

4.1. B-GRAP initialization

To improve the performance of propagation approach in our algorithm, we define an initial-
ization strategy, called B-GRAPinit, which considers only hub vertices having a high outgoing
degree d+(.). The intuition behind this choice is that the higher d+(v), the more φ(v) will be
propagated and considered as frequent label. This differs from LP approach that considers
all the vertices. As a result, the candidates to be considered as frequent labels (i.e. the labels
with high probability to be the most frequent) are propagated faster at the first partial prop-
agation iteration. The initialization we defined should guarantee a faster label propagation
and smaller number of exchanges between vertices, given the fact that the nodes having the
higher probability to be selected to propagate their label have been already initialized.

B-GRAP is described in Algorithm 1. Let τ be a given minimum out degree threshold
to consider that a vertex v as a hub vertex. The algorithm proceeds as follows. First, we
initialize the set of labels L (Line 1). Then, each v ∈ V , such d+(v) > τ is assigned a random
label ∈ L and those labels are propagated to neighbors (Line 2). Then, the label of these
neighbors are updated and propagated iteratively using an update function (Lines 4-7). The
vertices are then checked and those not reached by the update/propagation step are initialized
randomly, to ensure that all vertices are assigned a label (Line 9). The algorithm repeats the
update/propagate step until convergence (Line 10).

4.2. B-GRAP objective functions

In the basic LP partitioning, the label update is done without caring about the size of the
partitions. Consequently, this can lead to an unbalanced partitioning. Moreover the update
function of LP Eq. (1) has a trivial optimal solution that consists of assigning all vertices to
a single label, i.e. to a single partition. A standard resolution approach to deal with such a
problem is to integrate the balance constraints to the update function via a penalty function.
The LP update function becomes:

F = FLP + λP (3)

where P represents penalty terms and λ is a weight parameter. In B-GRAP algorithm,
we define two update functions FVB and FEB which respectively deal with vertex and edge
balance constraints.
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Algorithm 1 B-GRAP
input G = 〈V,E,w〉, K, τ , ε
output a partitioned graph G = 〈V,E,w, L〉
1: Initialize the set of labels L = {l}Kl=1

2: for
(
v ∈ V, d+(v) > τ

)
initialize φ(v) randomly from L and propagate to N(v)

3: repeat
4: {Search frequent labels}
5: for (v ∈ V, l ∈ L) get the set of frequent labels w.r.t an update function
6: {Update and propagate}
7: Update and propagate φ(v) to N(v)
8: {Check unassigned vertices}
9: for

(
v ∈ V, φ(v) = ∅

)
initialize φ(v) randomly from L and propagate to N(v)

10: until ∆
(
FLP(G,L)

)
≤ ε

11: return G = 〈V,E,w, L = {φ(v)}v∈V 〉

4.2.1. Vertex balance

Given a directed graph G = 〈V,E, ω〉, a vertex-balanced partitioning divides the vertices into
disjoint partitions of nearly equal size, while minimizing the number of edge cuts between
partitions. Let size(V, l) be the number of vertices having l as label, size(V, l) = |{v ∈
V | φ(v) = l}|.

In a perfect balanced partitioning, the size of each partition should be equal to |V |/K.
In other words, the distribution of vertices in the partitions should be close to a uniform
distribution U = 〈1/K, . . . , 1/K〉, where 1/K is called the balance factor. To handle the
balance between the partitions, we define vertex-balance PVB penalty function that penalizes
F when trying to assign a vertex to a partition violating the balance constraints as follows:

PVB(l) =
1

K
− size(V, l)

|V |
(4)

This function measures the difference between the balance factor 1/K and the ratio of vertices
assigned to l label. The larger the ratio of vertices with label l is, the higher the penalty to
update the vertex label with l is.

At this stage, the number of edge cuts between the partitions is not considered. Thus, a
vertex could move to a partition that increases the edge cuts. Given a vertex v and label l,
we define a second penalty function as follows:

PEC(v, l) =
|cut(v, l)|
d+(v)

(5)

where cut(v, l) = {(v, u) ∈ E | φ(u) = l} is the set of edges outgoing from v to vertices
in a partition with label l. This function measures the ratio of cuts which penalizes a vertex
v to move to a partition with l label if the number of its outgoing edges to this partition
is low (normalized to the out degree of v). Thus, when a vertex has more connections to a
partition than to the others, the penalty gives more advantage to move to this partition and
vice versa. By considering the penalty functions defined in Eq. (4) and Eq. (5), the vertex
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balance update function is defined in the following equation:

FVB(v, l) = nFLP + λ
(
κPEC(v, l) + (1− κ)PVB(v, l)

)
(6)

where n is a normalization constant equal to 1∑
u∈N(v) ω(v,u)

. The balance factor 1
K could be

omitted as it is constant, in this case PVB variate ∈ [0 . . . 1]. The parameter κ is a weight
ranging between 0 and 1 which gives more or less importance to balance penalty against the
edge cuts penalty. We set κ to 0.5 by default.

4.2.2. Edge balance

An edge-balanced partitioning divides the graph into disjoint partitions holding nearly
equal number of edges, while minimizing the number of edge cuts between partition. Let
size(E, l) be the number of outgoing edges from a partition with label l, size(E, l) =∑
v∈V,φ(v)=l |d+(v)|. Similarly to the vertex-balance partitioning, we define the following

edge-balance penalty function:

PEB(l) =
1

K
− size(E, l)

|E|
(7)

This function discourages a vertex to move to a partition with l label, when the ratio
of edges in the partition l is closer or larger than the balance factor. Comparing to vertex
balance, edge balance maximizes the edge locality in each partition, which contributes to
minimizing the edge cuts. Thus, there is no need to add additional penalty to the update
function as defined in Eq. (6). The edge-balance update function is formulated as follows:

FEB(v, l) = nFLP + λPEB(l) (8)

We note that Spinner algorithm [11] (see Section 2) uses the normalized unbalance as
penalty function. Comparing to Eq. (7), the edge-size of a partition is normalized by the
size of a perfect balanced partition, i.e. |E|K . Moreover, their penalty function that measures
the edge balance for each partition, considers both virtual and real edges. The function we
defined in Eq. (8) considers only real edges.

5. Partitioning Evaluation Measures

To evaluate the quality of the partitioning produced by B-GRAP, we use two standard mea-
sures: the ratio of edge cuts EC and the Jensen Shannon divergence (JSD) [41].

The edge cuts ratio is the ratio of edges connecting each two vertices in two different
partitions w.r.t the total number of edges.

EC =

∑
v∈V

∑K
l=1 |cut(v, l)|
|E|

(9)

The Jensen Shannon divergence (JSD) is the symmetric version of the Kull-
back–Leibler divergence known as a standard measure to compute the divergence between two
distributions. This is a symmetric measure varying in the interval [0 . . . 1], where a value close
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to 0 indicates that the distributions are similar. Let P = 〈p1, . . . , pK〉 and Q = 〈q1, . . . , qK〉
two distributions with the same size. The JSD divergence is computed as follows:

JSD(P||Q) =
1

2

(
DKL(P‖M) +DKL(Q‖M)

)
with DKL(P‖Q) =

K∑
l=1

pl log(
pl
ql

) and M =
1

2

(
P + Q

)
(10)

In our case, P represents the distribution of vertices (or edges) on the partitions, where
pl is the ratio of vertices (or edges) in the partition with label l, and Q equals to the uniform
distribution U. The JSD considers the balance of the whole partitioning, comparing to other
measures such the maximum normalized unbalance metric (MNU) [11]. This last is used to
measure unbalance and represents the percentage-wise difference of only the largest partition
from a perfectly balanced partition.

MNUVB =
max(|Vl|)
|V |/K

,

MNUEB =
max(|El|)
|E|/K

, with l ∈ L. (11)

Finally, it is important to notice that for EC, JSD, and MNU we consider the directed
edges in the original input graph. The virtual edges added for neighborhood discovery (see
Section 3) are not taken into account.

6. Giraph parallel processing system

Processing large graphs introduces specific challenges that are not tackled by traditional
tools for data analytics. Giraph [1] is a framework designed to easily parallelize and execute
iterative algorithms on massive graph datasets, using Apache Hadoop’s MapReduce. Giraph
was inspired by Pregel parallel computation model, proposed by Google a previously published
article [2]. Pregel defines a graph parallel processing system with a vertex-centric paradigm.
In this paradigm, a computation function is executed in parallel by each vertex during each
iteration (called superstep). This paradigm helps to achieve a high degree of parallelism,
because the computation function can run in parallel on the graph vertices, and to deal with
the scalability problem. However, it comes at the trade-off of being more restrictive during
the implementation.

Giraph works in synchronized supersteps, but the execution inside each superstep is asyn-
chronous. Each vertex can be active or inactive in a superstep: (i) if it is active, the vertex
will be able to access its own value, access its edges, send messages to it’s neighbors and/or
vote to halt the computation, (ii) if it is inactive, the node will not execute. On the first
superstep all nodes are active and the computation function can be executed once on each
vertex. In following supersteps only vertices that receive a message, from previous superstep,
will become active (even if previously they voted to halt) and can run the same or another
computation function. A Giraph job therefore ends when all vertices have voted to halt and
no further messages are being sent. The execution of all active nodes is parallelized and
therefore executed in an asynchronous manner. Since in order to halt the computation we
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need to make sure that no messages are being sent, Giraph waits until the last vertex finishes
it’s execution before deciding if another superstep is required or the job must be ended.
In order to facilitate global calculation, Giraph provides the Aggregators, in which we can
store global statistics. We can think of them as global variables, to which vertices can provide
some values. These values get aggregated by Giraph at the end of each superstep then the
results become available to all vertices in the following superstep. Note that, there is no
fixed ordering in which the aggregations are done, as the vertex execution is asynchronous.
Thus, commutative and associative operations are only supported by the Aggregators. This
mechanism makes Giraph, overall, a synchronous platform.

B-GRAP implementation Every algorithm implemented on Giraph system needs to
deeply think about how to define the algorithm using a Think-LiKe-A-Vertex way. In our
case, each step of B-GRAP, described in Algorithm 1, is implemented as a computation func-
tion to be run on the vertices. We use two lists of Aggregators to store the number of edge
and the number of vertices in each partition. The vertex-centric paradigm of our algorithm
can be described as follows:

(i) Initialization superstep: each hub vertex choose randomly a label l (∈ [1,K]) as the
identifier of its partition. Then it provides the value 1 to the Aggregator correspond-
ing to the number of vertices in this partition, the value d+(v) for the Aggregator
corresponding to the number of edges. At the end of the superstep, all the values get
aggregated (summed) to be used in the next superstep to compute the balance.

(ii) Frequent label computation superstep: each vertex computes the score for each label
based on the set of labels of incoming neighbors and on one of the objective functions
defined in Section 4.2. If a new partition has a higher score (or depending on the
heuristics used) than the current vertex’s partition, the vertex decides to try to update
its partition during the following superstep. Otherwise, it does nothing.

(iii) Partition’s update and propagation superstep: concerned vertices try to update their
partition according to the ratio of vertices that decided to move to a partition i and the
remaining capacity of partition i. Vertices which succeed the update, communicate new
values to the Aggregators of i and propagate their new partitions to their neighbors.

(iv) Supersteps (ii) and (iii) keep on being alternated until convergence is reached. The
convergence condition is checked on the master program, before running a new frequent
label computation superstep. Once the convergence reached, the evaluations measures
can be computed on the basis of the final states of the partitions stored in the lists of
Aggregators.

7. Experiments

We achieve different experiments on different graph data sets in order to evaluate the qual-
ity of edge and vertex-balanced partitioning using EC, JSD, and MNU measures defined
previously. We compare our approach to Spinner [11] because it has shown better results
comparing to some existing algorithms. Moreover, since both B-GRAP and Spinner are de-
veloped using Apache Giraph environment, we can also provide an evaluation in the same
system conditions.
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In the following, we first describe the data sets and the experiment settings. Then, we
present in detail the results of B-GRAPVB and B-GRAPEB, compared against Spinner, and
achieved on nine graphs.

7.1. Data sets description and experiment settings:

All the experiments are done on a Hadoop cluster of 8 machines, with 64GB RAM and 8
compute cores. B-GRAP algorithm is implemented in Java using Apache Giraph environ-
ment [1]. Giraph is an open source implementation of distributed programming framework
Pregel [2], designed for Google cluster architecture, with several performance improvement
like multi-threading and memory usage optimization. It’s built on Hadoop infrastructure to
make distributed graph processing and can work with many data storage system support-
ing graph data (Neo4j, DEX, RDBMS, etc.). In Giraph, the graph is randomly partitioned
on several workers (machines)after a complete in-memory load. As in Pergel, Giraph uses
a vertex-centric approach to deal with large scale graph processing. In their approach, the
computation of the user defined function is done locally, i.e. on each vertex, and in parallel.
A vertex contains information about itself and its outgoing edges, it can change its state and
the state of these edges by exchanging messages with other vertices at the same iteration,
called super-step.

In our experiments, we use nine graph data sets of different degree distributions and
different sizes in terms of edge and vertex number as summarized in Table 1. Wikitalk (W),
Pockec (P), Flixster (F), LiveJournal (L), and Orkut (O) are social online networks graphs.
BerkeleyStanf (B) is the berkely.edu and stanford.edu web graph, SK-2005 (S) is hyperlinks
on ’.sk’ web. DelaunaySC (D) and Graph500 (G) are synthetic graphs. Notice that only (G)
is an undirected graph.

Table 1. Data sets description

Graph WikiTalk BerkeleyStanf Flixster DelaunaySC Pokec LiveJournal Orkut Graph500 SK-2005
(W) (B) (F) (D) (P) (L) (O) (G) (S)

Directed yes yes yes yes yes yes yes no yes
|V | 2.4M 0.7M 2.5M 8.4M 16M 4.8M 2.7M 4.6M 50.6M
|E| 5M 7.6M 7.9M 25.2M 30.1M 69M 117.2M 258.5M 1.9B
Source [42] [43] [44, 45] [16, 44] [46] [47] [44] [44] [12]

Experimental setting: We evaluate our algorithm over all the graphs presented in Table 1,
by varying the number of partitions K from 2 to 32. More precisely, we execute 10 runs of
B-GRAPVB and B-GRAPEB for each graph and each value of K to ensure the significance of
the results. For all experiments, we compute the average variation of the following measures
with respect to the number of partitions K and over the runs:

• The maximum normalized unbalance of vertices (MNUVB) and of edges (MNUEB).
• The divergence between the distribution of vertices (respectively of edges) and the uni-

form distribution JSDVB (respectively JSDEB).
• The edge-cuts ratio (EC).
• The computation time saving ratio (∆Time) of B-GRAP w.r.t Spinner. This ratio is

computed using the total CPU time in seconds spent to execute the algorithm, from the
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initialization until the convergence, and it is computed with:

∆Time =
∆TimeSpinner −∆TimeB-GRAP

∆TimeSpinner

.

Note that ∆Time > 0 means a better performance of our algorithm and a value close to 0

means similar performances with Spinner.
For all experiments, we set ε = 10−3 as a threshold stop value and we set τ average out

degree d̄+ = |E|
|V | . The penalty term weight parameter λ in the update function F is set to 1.

This gives an equal importance to the penalty term P and to FLP according to the update
functions defined in Section 4.2.

7.2. Initialization impact

In this section, we evaluate the impact of the initialization step of B-GRAPinit on the LP
approach.This experiment shows that B-GRAPinit has a positive impact on the convergence
time of a LP based partitioning. More precisely, we show how B-GRAPinit integrated in
Spinner partitioning algorithm helps to reduce the number of iterations required until the
convergence, while scaling the number of edges, vertices, and partitions. Besides, our ini-
tialization does not impact the quality of cuts neither the edge balance objective of Spinner
algorithm. It is important to note that Spinner algorithm considers the balance of both
original and virtual edges.

Table 2. The gain ratio percentage of Spinner combined with B-GRAPinit w.r.t. the original
Spinner algorithm according to the number of iterations (∆Iter), to the number of cuts (∆EC),
and to the computation time (∆Time). A value > 0 means a better results for B-GRAPinit and
vice-versa.

WikiTalk (W) BerkeleyStanf (B) Flixster (F)
K ∆Iter % ∆Time ∆EC % ∆Iter % ∆Time ∆EC % ∆Iter % ∆Time ∆EC %
2 43 35.1 22.2 27 19.1 21.7 34 24.6 -39.3
4 41 32.0 31.1 19 8.4 11.1 6 4.1 -2.4
8 46 34.9 28.8 30 22.4 13.7 23 16.8 -6.3
16 52 43.3 26.1 40 30.1 8.7 33 25.1 -2.6
32 64 54.1 22.7 38 30.3 6.1 55 47.8 -2.9

DelaunaySC (D) Pokec (P) LiveJournal (L)
K ∆Iter % ∆Time ∆EC % ∆Iter % ∆Time ∆EC % ∆Iter % ∆Time ∆EC %
2 33 25.2 10.6 -10 -6.8 -3.0 14 11.6 -12.4
4 13 10.0 -10.8 6 4.9 0.4 12 6.5 1.2
8 3 -0.4 -1.5 4 2.5 -2.2 8 3.2 1.2
16 4 1.5 0.6 1 -1.2 -0.2 10 6.3 -1.1
32 5 4.0 -0.7 10 5.7 -1.4 11 7.9 -0.1

Orkut (O) Graph500 (G) SK-2005 (S)
K ∆Iter % ∆Time ∆EC % ∆Iter % ∆Time ∆EC % ∆Iter % ∆Time ∆EC %
2 16 10.2 3.5 9 -0.1 -2.2 8 6.5 -43.4
4 -1 -2.8 3.9 -10 -20.7 1.0 5 -4.1 -23.7
8 1 -3.5 0.7 49 32.6 -0.6 8 -8.2 -33.7
16 -2 -6.3 0.7 42 28.7 -0.3 14 -11.7 -14.1
32 -10 -12.4 1.6 46 35.3 -0.2 20 4.9 -16.8
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Results Using the experimental setting defined in the paper, we compute over all runs of
Spinner and Spinner combined with B-GRAPinit, for each graph and for each number of
partitions K ∈ 2, 4, 8, 16, 32, the ratio of difference (∆) between the results of Spinner and
Spinner combined with B-GRAPinit. More precisely, we compute and present in Table 2 the
following scores:

• the convergence gain ratio according to the total number of iterations needed until the
convergence

∆Iter =
IterSpinner − IterB-GRAPinit

IterSpinner

• the edge-cuts gain ratio

∆EC =
ECSpinner −ECB-GRAPinit

ECSpinner

• the time saving ratio

∆Time =
∆TimeSpinner −∆TimeB-GRAPinit

∆TimeSpinner

A gain ratio > 0 a better performance of B-GRAPinit and a value close to 0 means similar
performance with Spinner. We emphasize in Table 2 significant values of ∆Iter ≥ 10%.

The values of ∆Iter reported in Table 2 show that our proposed initialization B-GRAPinit
helps to reduce the number of iterations of the LP algorithm for all graphs. The gain ratio
∆Iter is significant on (W), (B), (F), (L), and (G) and slightly high for others. In fact, their
is only three notable exceptions on (P) for K = 2, (O) for K = 32 and (G) for K = 4.

Similarly, the time saving ratio is almost ∆Time > 0 (on 7 graphs over 9), which means
that the Spinner algorithm running faster when using our initialization B-GRAPinit. The
exception that we notice on (O) and (S) graphs can be explained by the numbers of messages
exchanged between during the whole B-GRAPinit, which was higher than the number of
messages exchanged with Spinner.

The results on the ∆EC show that our proposed initialization speeds up the partition-
ing convergence without decreasing the quality of cuts. The quality of cuts obtained with
B-GRAPinit is better than Spinner for (W) and (B) graphs, similar for (D), (P), (L), (O),
and (G). However, B-GRAPinit shows bad quality for (S). We suppose that this result is a
consequence of the structure of the dataset that shows hub vertex strongly connected. We are
analyzing this case and we will study it in more detail in the future extension of our work.

Finally, we note that for the gain ratio of the maximum normalized edge unbalance
MNUeb (respectively the JSDEB for edge balance) scores between Spinner and B-GRAPinit,
we had the same behavior as the ∆EC. This result shows that our initialization does not
impact the edge balance of the partitioning. B-GRAPinit improves then both the cuts and
the convergence speed.

7.3. B-GRAP Vertex balance:

The experiments presented in this section consider the vertex balance constraints to partition
a graph. The main objective is to evaluate the ability of our algorithm B-GRAPVB to produce



A. El Moussawi et al. 15

balanced partitions with respect to the number of vertices, while improving the quality of cuts,
using the vertex-balance update function defined in Eq. (6).

For this aim, using the experimental protocol described in Section 7.1, we compare the
balance and the cuts quality of B-GRAPVB partitioning with Spinner partitioning.

Results: The results are presented in Figure 2. This figure shows, for each graph and
algorithm, the average variation of the MNUVB, JSDVB, EC, and ∆Time according the
number of partitions K. The figure horizontally shows a particular measure and vertically a
particular set of graphs.

figure/Spinner-vs-BGRAP_vb-JDI.pdf

Fig. 2. Variation of the average scores of MNUVB, JSDVB, EC, and ∆Time for the partitioning
obtained with B-GRAPVB and Spinner, w.r.t. K
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We analyze first the variation of the unbalance degree MNUVB and the total balance
of the partitioning JSDVB. As shown on the Figure 2, B-GRAPVB produces generally a
low unbalance degree for the most part of graphs (seven over nine w.r.t. MNUVB) while
varying the number of partitions K. On the other side, the results of Spinner show a high
unbalance degree MNUVB (> 1.1) when scaling with K, in particular for K ≥ 4, except
for (D) graph. We notice only two exceptions for B-GRAPVB on (B) and (W) graphs, when
K ≥ 24. However, the MNUVB of B-GRAPVB is still lower then Spinner for (B) graph.

Similarly, the results of JSDVB show that B-GRAPVB performs generally better than
Spinner. The value of JSDVB is very close to 0 over all graphs and for all K. This means
that B-GRAPVB produces high balanced partitions. B-GRAPVB gives better results for 6
graphs over 9 (with 5 significant differences for (B), (D), (P), (O), and (S) and similar results
for the others). We note that for the exceptions on (W) and (B) noticed previously for
MNUVB, the JSDVB values are very close to 0 which means that the partitioning has a high
global balance degree.

We compare the quality of cuts for both algorithms. Figure 2 shows similar quality of
EC. B-GRAPVB shows significant better results on BerkeleyStanf and WikiTalk graphs.

Finally, the ∆Time curves show that B-GRAPVB improves significantly the computation
time on all graphs. The time saving percent ∆Time is higher than 10% for all the graphs
and all K values, except of (O) graph, where the the results are better but less significant.

7.4. B-GRAP Edge balance:

Now we compare the performance of our algorithm B-GRAPEB with Spinner, using the edge-
balance update function defined in Eq. (8).

Results: We present the results of this experiment in Figure 3. For each graph and algo-
rithm we show the average variation of the following measures w.r.t. K: MNUEB, JSDEB,
EC, and ∆Time.

Figure 3 shows that the partitioning produced by B-GRAPEB has a low edge unbalance
degree for all graphs under analysis. In fact, the average MNUEB is generally less than 1.05,
except in the case of WikiTalk for K = 28 and K = 32 where the average MNUEB is equal to
1.12 and 1.13, respectively. However, if we analyze the results obtained from running Spinner,
we see that we obtain an unbalance degree MNUEB generally higher than 1.05 and MNUEB

shows bad values while increasing the number of partitions K. On the contrary, the variation
of MNUEB for B-GRAPEB shows that it scales with K with a stable balance quality.

The behaviour of JSDEB shows that B-GRAPEB generally scales up with K while main-
taining a good global balance, with few exceptions. Furthermore, B-GRAPEB obtains better
performance than Spinner over five graphs and gives similar JSDEB scores for the others.

The quality of cuts is generally close for both algorithms (Figure 3), with only one signif-
icant better result on WikiTalk.

Finally, ∆Time variation shows significant better results for B-GRAPEB on (W), (B),
(F) and (G) graphs. The computation time is slightly better for other graphs. In fact, this is
only with few exceptions on (G) for K ≤ 4 and for (S).

To summarize this experimental part, B-GRAPEB algorithm computes higher edge bal-
anced partitioning without impacting the quality of cuts and while showing generally faster
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computation time. Moreover, the results on the undirected graph Graph500 show that the
initialization step is efficient for the time execution of the algorithm. Finally, the results given
for the JSDEB and MNUEB show that a better balance can be obtained if we consider the
directness of edges for a directed graph.

8. Conclusion and Perspectives

In this paper we proposed two scalable and parallel partitioning algorithms B-GRAPVB and
B-GRAPEB, based on LP, that address the vertex balance and the edge balance problems on
both directed and undirected graphs. We defined the initialization strategy of our algorithm
that allows to speed up the convergence and two update functions to produce either vertex
balanced or edge balanced partitioning.

Our results show good performances of B-GRAP on various graphs and with different
scales. We show the positive impact of our proposed initialization conducted on 9 Graphs,
where B-GRAPinit speeds up the partitioning convergence without decreasing the quality of
cut, comparing to another LP based partitioning method. We show that B-GRAP produces
high vertex balanced and high edge balanced partitioning with a good cut quality comparing
to Spinner algorithm (significant values for 5 graphs and slightly better values for others), on
either directed and undirected graphs. Moreover, the computation time of B-GRAP is better
than Spinner, with a few exceptions for B-GRAPEB on two graphs.

As a future work, we plan to study other heuristics to build seeds for initialization based on
graph sampling approaches, while exploring the connectivity of vertices. We believe that the
relevant graph sample allows us to improve the propagation step in B-GRAP and to optimize
more the quality of the partitioning.

We would also study the impact of the partitioning on algorithms of graph analytics
with respect to the balance strategy, such as Shortest Path Computation, PageRank, and
Community Detection.
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