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Abstract. There has been a significant surge in the adoption of deep
learning methods across various industrial and research domains. This in-
crease requires efficient training strategies to improve convergence speed,
robustness, and overall model optimization. The paper presents a bench-
mark analysis that highlights the benefits of learning rate (LR) sched-
ulers. The benchmark has been conducted using four training methods
that integrate the LR finder, the LR scheduler, and the LR optimizers
(Adam). The first three training methods use the LR finder to com-
pute the correct range and then use, respectively, the AdaptiveCycle
LR scheduler, the OneCycle LR scheduler, and the static LR for train-
ing; the last training method uses only a static LR. The OneCycle LR
scheduler has been used as it balances exploration and exploitation dur-
ing training by adjusting the LR cyclically. Additionally, we introduce
a novel scheduling method, AdaptiveCycle, that modifies the LR based
on validation loss plateaus over a cyclic LR curve, further optimizing
the training process. We have performed the benchmark using diverse
time-series data sets from the UCR and UCE repositories. The bench-
mark is performed across eleven deep learning models, simple such as
LSTM, FCN, and complex models such as Inception-time, XCM, and
LSTM-FCN. The accuracy, F1 score, and computational time allow us
to highlight the adaptability of training methods across various datasets
and models. The findings emphasize the advantages of employing LR
schedulers for efficient training. The AdaptiveCycle scheduler achieves
optimal performance across different models and datasets. The bench-
mark results will encourage the adoption of the LR scheduler in research
and industry.

Keywords: Deep Learning - Responsible Al - Training framework -
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1 Introduction

The use of deep learning has increased significantly in the past decade across
various applications. It has revolutionized the fields of computer vision, NLP,
and autonomous systems. The two main reasons for this are the advancement in
GPUs [16] and the enormous amount of data available [21]. Current technology
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allows us to collect, store, and process vast amounts of data to provide insights
and uncover complex data patterns using deep learning. With GPUs being ac-
cessible and affordable, they have played a pivotal role in enabling researchers
and developers to experiment with deep learning technologies.

With the increasing usage of neural networks, it is important to apply optimal
training dynamics for their efficient training. Training dynamics refers to the
process by which the neural networks update the weights associated with neurons
in different layers of the model during training. Optimizing this process would
lead to faster model convergence, saving computational time and resources while
not compromising model robustness [1]. The learning rate (LR) is the most
important hyperparameter in the neural network training process [11]. The LR
is used to control the step size for weight updates during model training. A too
high LR may lead to failed convergence due to unstable training, while a too
low LR requires many iterations to converge, leading to slow training [15].

Three main strategies are available to set the LR: LR finder, which helps
to select the best LR range for training; adaptive learning rate methods for
optimization, such as Adam [13], RMSprop, and LR schedulers to dynamically
change it during training. In this paper, we have benchmarked the results of
five different scenarios of combinations of the above methods. The main focus of
this paper is to understand that a static LR for training is disadvantageous, as
it fails to adapt the training process according to the optimization process. In
optimal training, two subprocesses occur: exploration and exploitation. We need
to explore the best model weights for convergence; for this, a high LR is required
at the start of the training. Then, we need to fine-tune the model weight for an
optimal solution, which is referred to as exploitation, and it requires a low LR.
Thus, a static LR cannot satisfy both conditions, and a compromise needs to be
made.

As stated before, we can use an adaptive optimizer like Adam, which will
dynamically adjust the weight for each parameter according to the gradient
information. This is the most widely practiced solution. The second is to use LR
schedulers; although they have gained popularity, they are still not widely used.
The popular LR schedulers are Exponential decay, Step decay, Cosine annealing,
and Cyclic Learning rates [10]. This paper focuses more on the One Cycle policy
[18] which does not follow a gradually decreasing LR unlike the other schedulers.
In OneCycle, the LR first starts small, gradually increases for exploration during
high LR and then finally starts decreasing back to the lower LR for fine-tuning
the model during exploitation. The LR change process is almost identical to
that required for optimal training. OneCycle also adjusts the momentum for the
adaptive optimizers to counter the effect of the varying LR, which might make
the model unstable. More details on these schedulers are provided in Section 2,
explaining the existing related work.

In this we introduce a new scheduler called AdaptiveCycle that could adopt
the LR depending on validation loss during training. AdaptiveCycle uses the
OneCycle policy on the backhand, which allows us to adjust the LR if the val-
idation loss has been increasing or on a plateau. Section 4, on methodology,
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explains in detail the algorithm of AdaptiveCycle to dynamically update the
LR. The dependence on validation loss allows the model to overfit. While do-
ing a literature review, we found the limited benchmark studies conducted in
this domain across diverse tasks, especially across functions with varying data
characteristics, and imbalanced and noisy datasets. The datasets used are time
series datasets from the UCR/UCE, having different features, as stated in Sec-
tion 4, benchmark setup. Time-series data were chosen to perform the bench-
mark experiments as it is used in many industries, such as Finance, Economics,
Healthcare, Energy, Telecommunications, Retail, Logistics, Manufacturing, and
Environment. The adaptability is tested across different deep learning models
with various sizes and complexities. The models used are We have evaluated the
performance across four main categories: accuracy, convergence speed, stability,
and model size. Brief explanations of the models used are provided in Section 4,
the benchmark setup.

Section 5 consists of the results and analysis. The conclusion and recommen-
dations of best practices are stated in Section 6. The main goal of the paper is
to provide the advantages of LR schedulers and to encourage their usage among
researchers and industry professionals, allowing more efficient training and a
robust, well-generalized model.

2 Related Work

This section gives a brief overview of the different adaptive optimizers and LR
schedulers that are available. Stochastic gradient descent (SGD) is a foundation
optimizer that uses gradients (first moments) to update parameters using a ran-
domly selected data subset. Unlike traditional optimizers such as SGD, adaptive
optimizers modify the LR for each parameter using squared gradients (second
moment). Adgrad [5] updates the LR based on the historic sum, while RMSprop
uses the moving average of the squared gradients. Adam (adaptive moment es-
timator) uses an exponential moving average of both the moments. Adam is the
most widely used as it is computationally efficient, requires less memory, and
works well with large models and datasets.

The StepLR, Cosine annealing, and OneCycle are the most widely used LR
schedulers [10]. Step LR reduces the LR by a fixed factor after a specified
number of epochs, called the step size. It is simple with a gradual LR decay
and is effective for model training, especially for fine-tuning. Cosine annealing
reduces the LR following a cosine curve. It initially starts from a high LR and
gradually approaches the minimum LR, and a warm restart is performed at the
end of training. It usually provides a smooth loss decay, but still needs a larger
number of epochs. The warm restart helps escape local minima.

OneCycle adjusts the LR cyclically over one smooth cycle [19]. Initially,
the LR starts at an assigned minimum value to warm up. Then it gradually
increases to the maximum value; having a high LR accelerates training. Finally,
the LR decreases back to the initial minimum LR or even to a slightly lower
LR for fine-tuning. The momentum is also adjusted inversely to the LR rate
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curve to balance the impact of high and low LRs. The high LR regions result
in the exploration of global minima and help avoid local minima. This allows
the model to avoid overfitting with better generalization and faster convergence.
OneCycle is used prominently for computer vision and NLP tasks, especially for
large datasets and models.

Studies have highlighted that schedulers like Cosine Anneling and OneCycle
improve the convergence rate, especially with OneCycle, which creates balanced
training for large datasets and models. However, most of these studies were
conducted on image datasets such as MNIST and CIFAR, over just a few models.
There is a lack of understanding of how it performs on smaller datasets and
models [22].

3 Benchmark setup

This section elaborates on the dataset employed, emphasizing its various fea-
tures. Additionally, an outline of the models applied in the research is presented,
along with five training scenarios. Details on the evaluation metrics and the
experimental setup are also provided.

3.1 Datasets

We primarily used the existing UCR benchmark dataset, as our results can be
compared with other benchmarks. We have selected four univariate and four
multivariate datasets from both UCR and UCE [3]. Table 1 illustrates these
datasets, provides a detailed summary of various datasets, and highlights key
attributes for each. In particular, we organized these signals into distinct cate-
gories based on the origin and nature of the time series.

Most of the parameters of deep learning models depend on time series at-
tributes, such as input length, input features, and the number of output classes
and labels. Hence, we also group the datasets according to characteristics that
may impact the formation and performance of the model. Each dataset is char-
acterized by several attributes: Length, Strength, Dimension, Multiclass, Split-
ratio, Balance, and Data-type as shown in Table 1. The length of the dataset
refers to the sequence length of the time series. The shortest dataset is Electric
Devices, which has a length of 96, while the longest is Ethanol Concentration,
which has a length of 1751. Strength refers to the number of total samples in
a dataset. Electric devices have the highest strength, followed by Pen Digits.
Self-regulation SCP1 has the lowest strength with 561 samples. Dimensionality
is the number of input feature; the higher the dimension, the more complex.
We similarly perform categorization depending on the number of output classes,
referred to as multiclass. Electric Devices and Pen Digits are multiclass datasets,
while "Star Light Curves" and "Ethanol Concentration" are not. This attribute
is crucial for classification tasks. All of our datasets are uni-labelled; the output
is a single dimension.
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For the benchmark to be consistent with the provided dataset to understand
the impacts of the model, we used the original train-test split provided. We
compute the split ratio, that is, the ratio between the train test splits. Most
datasets have around one; if it is greater than one, it has too few testing samples
compared to training, and less than 1 indicates few training samples compared
to testing. For the balance of the class distribution, we again have two categories,
balanced or unbalanced, which are assigned depending on the class ratio.

Table 1. Dataset characteristics

= ) 3 ©
Dataset B g g = E = &
3 = £ E a 3 =
2 a = o . A
Star Light Curves | 1024 | 9236 1 3 0.12 |Unbalanced| Sensor
Electric Devices 96 16637 1 7 1.15 |Unbalanced| Device
ECG 5000 140 | 5000 1 4 0.12 |Unbalanced ECG
Ethanol. 1751 | 1004 1 5 1 Balanced Spectro
Concentration
Pen Digits 8 10992 2 10 2.14 | Balanced Motion
Self l;gg;}a“on 896 | 561 | 6 2 1 | Balanced | EEQ
Racket Sports 30 303 6 4 1 Balanced HAR
NATOPS 51 360 24 6 1 Balanced HAR

3.2 Deep learning models

In this section, we examine a range of deep learning models for time series
classification utilized in the study. The models are generally categorized into
three types: basic simple models, extensive deep models, and hybrid models
integrating both CNN and RNN structures in their design.

LSTM network [8] - Effective for tasks like time forecasting and anomaly
detection, it can learn long-term dependencies through its memory structure.
The Bi-LSTM processes sequences in both forward and backward directions.

FCN network [14] - Utilizes 1D CNN blocks for time series, featuring layers
that upsample and downsample data. Average pooling reduces output dimensions
before feeding into a linear layer to obtain class probabilities as output. We have
also tested the same architecture using 2dCNN, which is known as Convent2d.

Resnet Network [7] - Resnet blocks are used to build the network. The
main concept introduced is residual connections in the block, which help in
the convergence and stabilization of the network. These blocks are used to up-
sample the input data and then apply average adaptive pooling, followed by a
linear layer.
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InceptionTime [9] - It is an ensemble of six Inception modules [20] with
different randomly initialized weight values. The inception module is composed
of CNN layers with varying filter lengths. This allows the neural network to
extract relevant features from long and short-time series.

Concat

Inception
RelLU
oo

Input
(N, dim, len)

n-classes

Inception module
Inception module
Inception module
Inception module

Inception module
Inception module
Linear
Q
£
el
5

Fig. 1. InceptionTime architecture

XceptionTime [17] - Its architecture integrates depthwise separable CNN
with different filter sizes, adaptive average pooling, and a non-linear normaliza-
tion technique. They are concatenated in series to capture temporal and spatial
information without manually extracting features.
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Fig. 2. XceptionTime architecture

dCNN [2] short for dimension-wise Convolutional Neural Network was in-
troduced recently to overcome the limitations of traditional CNNs in handling
multivariate time series data. The architecture of dCNN is similar to that of a
traditional CNN model, the difference lies in the input to the model, which is
transformed into a cube, in which each row contains a combination of all di-
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mensions. This helps the model learn temporal and dimensional discriminant
information. We have also used dResnet similar to dCNN as mentioned in the
original paper |[2].

XCM [6] - Designed for multivariate time series, it merges 2D and 1D CNNs
in a parallel architecture with upsampling and downsampling layers. Their out-
put is concatenated in the first dimension and passed through an upsampling
CNN layer. A linear layer at the end follows a pooling layer to get the output.
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Fig. 3. XCM model architecture

LSTM-FCN [12] - Combines LSTM and FCN in parallel, allowing for con-
catenation of results and the potential addition of an attention mechanism to
weigh the importance of sequence components.
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Fig. 4. LSTM-FCN model architecture

We have introduced a smaller hybrid architecture LSTM-2dCNN similar to
the LSTM-FCN. LSTM-2dCNN consists of a parallel network of LSTM and
2DCNN layers. The output of the 2DCNN is reshaped to allow for the concatena-
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tion. In this case, after the concatenation of the outputs of the parallel network,
the result is passed through the dropout and linear layer.
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Fig. 5. LSTM-2DCNN model architecture

3.3 Training scenarios

In this study, we have experimented with four different training algorithms. This
section describes the different training scenarios.

1. First, we use the LR finder to find the correct range and then use the Adap-
tiveCycle LR scheduler, which we have introduced in the paper.

2. First, using LR finder to find the correct range and then using OneCycle LR
scheduler.

3. Using LR finder to find the optimal LR ( the LR resulting in minimum loss
in the loss curve) to train the model and then use static LR for training.

4. Using a static LR to train the neural network, which has been set to le-5.

3.4 Evaluation metrics

The different evaluation metrics used for the benchmarking model and the five
training scenarios performances are explained in this subsection. These will help
us to understand the effect of various characteristics on performance.

Accuracy is a percentage of correctly classified inputs over the total number
of inputs in the testing dataset. The higher the accuracy, the better is modal
performance. However, in the case of an imbalanced dataset, it might be mis-
leading to use accuracy, as it cannot detect the model bias due to the imbalanced
dataset.

F1lscore is the harmonic mean of precision and recall. It is useful, especially
in the case of imbalanced data, as we also take into account the false positives
and false negatives to calculate the precision and recall. Similar to accuracy, the
higher the F1 score, the better the model performance.
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Precisi True Positives (1)
recision =
True Positives + False Positives

Recall True Positives ()
ecall =
True Positives + False Negatives

Precision x Recall
F1 =2
Score % Precision + Recall (3)

Convergence speed, in our case, has been quantified as the amount of time
a model requires to converge, that is, to have an optimal performance by stable
loss during training. It is one of the most important metrics for our study. Faster
convergence means efficient training, which helps save computational resources.

3.5 Experimentation setup

We have used cross-entropy loss for backpropagation during training and Adam
as an adaptive optimizer for all four scenarios mentioned previously. We have
used Pytorch to build all our functions and the customer schedulers instead of
fastai, as it provides more transparency, greater clarity, and control over the
training process. An L4 GPU of 16GB from Nvidia has been used for training
and testing these models. We have used PyTorch dataloaders and normalized
the data. Normalizing the data provides scaled uniformity and helps avoid in-
consistencies caused by batch-level statistics during training.

4 AdaptiveCycle Methodology

In this section, we go through the main process of training the deep learning
model with a detailed explanation of the LR finder, OneCycle LR and Adap-
tiveCycle LR schedulers. Parameters from the dataset, such as sequence length,
number of classes and dimension, are extracted and used for model creation. The
loss criteria and optimization are initialized.

LR Finder is used to calculate the optimal range of LR. This range is cal-
culated by increasing the LR exponential after each batch iteration. Usually,
the LR finder fits for just one epoch, but this might lead to unstable results
when the dataset is small, as it might not provide enough iterations to form
a stable curve. We have modified the existing LR finder to be used over more
epochs. The user can select this by setting the multi-epoch value as True or
False. Figure 6 shows the difference between with and without multiple epochs
for the ECG5000 dataset. In this case, it is more beneficial to use multi-epochs.
In the Results section, we discuss the scenarios depending on the dataset in
which setting the multi-epochs as True is more beneficial.

Another important hyperparameter affecting the training and model opti-
mization is the weight decay (Wd) we set for the optimizers. Figure 7 shows the
LR finder loss curve initialized with different Wd, and we can see that it does
have an effect. Usually, lower Wd works well for simple models, as there is less
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Fig. 6. LR finder results for ECG using LSTM-FCN model

chance of overfitting. At the same time, for complex architectures, a higher Wd
can help regularise the model by preventing heavy reliance on specific features.
We suggest performing a grid search of Wd using an LR finder. It will efficiently
capture the effects of the Wd and help pick the best one according to the loss
curves. The ideal Wd should have a smooth loss curve with less divergence. We
provide analysis on Wd in the Results section.

Learning Rate Finder with Different Weight Decay

—— Weight Decay = 0.001
——— Weight Decay = 0.01
—— Weight Decay = 0.1

1077 10°° 107° 1074 1072 102 1071 10°
Learning Rate

Fig. 7. Affect of weight decay on loss for ECG using LSTM-FCN model

Before going into detail about the AdaptiveCycle LR, it is important to un-
derstand the OneCycle LR and why there is a need to upgrade it to a more
customizable and controllable LR scheduler. OneCycle can be explained by di-
viding the training into four phases depending on the LR curve during training.
We start with a warm-up phase where the LR starts low at the set Ir _min and
gradually increases. This helps the model stabilize and avoid large weight up-
dates at the start of training. Then, the high LR phase, where it is around the
set Ir_max value. It helps train faster and explore the lost landscape to avoid
local minima. In the decay phase, the LR decreases and returns to Ir_min, where
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the model is fine-tuned. Then, in the final phase, the LR is reduced further for
just a few iterations, allowing the model to settle well into its optimal values.

The momentum follows a cycle inverse to the LR if set to true. It starts from
high, goes to a minimum, and then back to the original high value. However,
during the final phase of LR, the momentum also decreased slightly to avoid a
prominent change in model weight in the final phase. We can set the percentage
of cycle used for the increasing LR, which is usually set to 30 or 50.

AdaptiveCycle LR is a custome scheduler that is a combination of OneCy-
cleLR with the concept of reducing the LR value when there is no improvement
in the validation and training accuracy. This allows the validation performance
to have an impact on the LR adjustments. This increases our control over the
LR scheduler by offering to flexibly set the parameters controlling conditions to
reduce LR and reinitializing the OneCycle LR with updated parameter values.
The reduction of LR depending on validation loss helps stabilize the learning,
especially during the warm-up and high LR phases, preventing overfitting and
improving generalization. It helps in better fine-tuning the model. The algorithm
of the AdaptiveCycle LR helps us understand the concept better 1.

Algorithm 1 AdaptiveCycle Learning Rate Scheduler
Require: initial minimum learning rate [7,,in, maximum learning rate Ir;,qz, final
minimum learning rate {7 fmin, cycle length T', epochs E, patience p, factor f
Initialize OneCycleLR(ITmin, Irmax, 17 fmin, T, E)
least _validation loss = oo
for epoch =1 to N do
Start OneCycleLR: Ir < Irmin
epochs _patient <— 0
if epochs patient > p then
When epoch < 1, current loss < Validation Loss()
if current_loss < least_wvalidation _loss then
least _wvalidation loss <— current loss
else
epochs _patient <— epochs patient + 1
end if
for Iteration per batch do
Irnew < OneCycleLR(I7min, ITmaz, 1T fmin, T, E)
end for
else if epochs patient > p then
Ir_old =1r current
Apply Reduction policy Ir _new = Ir_current x f
Reinitialise the OneCycleLR
OneCycleLR(Irmin = (Ir_new)0.5,lrmaz = Ir_new,lrfmin, T, E)
end if
end for

Figure 8 shows the AdaptiveCycle LR applied in the dataset of Electric de-
vices and Racket sports when trained using the LSTM-FCN model. Observing
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Fig. 8. AdaptiveCycle LR curve when training LSTM-FCN model

the LR curves helps us better understand the algorithm. For the electric de-
vice dataset, we have set the cycle length as default, which means that after
each batch iteration, the algorithm changes the LR value, resulting in a smooth
curve. For the Racket Sports dataset, we have set the cycle length to Tyriginat /5.
Thus, the LR update now occurs every 5 iterations, and can be observed in the
image as steps. When a plateau in validation loss is reached, the LR reduction
occurs and the OneCycle is reset.

5 Benchmark Results

In this section, we provide a discussion on the results of the experiments con-
ducted with different training methods and on the evaluation metrics mentioned
in the section on benchmark setup. We also make inferences with respect to the
dataset features and try to generalize the best model in each case.

The accuracy plot in Figure 9 consists of 2 subplots, the first represent-
ing a box plot of average accuracy across the eleven models used per dataset
and the second representing the box plot of model accuracies across the eight
datasets. We will first focus on the training methods; both AdaptiveCycle LR
and OneCycle LR have provided better accuracy when compared to training
without schedulers. We can see that the variance for AdaptiveCycle LR is the
least across models and datasets.

Figure 10 represents the training and validation loss curve when using the two
schedulers; it can be seen that the AdaptiveCycle LR proposed provides greater
stability over the training compared to OneCycle LR. In the second half of the
training cycle, due to the decreasing LR, both methods lead to stability, but the
gap between the train and validation loss is greater at the end in OneCycle. We
also found that the variation across different initial seeds is more when using
OneCycle LR vs the AdaptiveCycle.

Similar to the accuracy plot, we also have the F1 score plot displayed in
Figure 11. The F1 score plot is important to observe when the training dataset
has an imbalanced class distribution. We have a skewed distribution of classes
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Fig. 10. Loss curves for Racket sports with LSTM-FCN model

in the Starlight Curves, Electric devices, and ECG datasets. Among them, the
F1 score does not decrease compared with accuracy for Starlight Curves and
Electric devices; this might be due to the larger dataset, indicating that the
model can still learn the class attributes when enough samples are available.
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This is not the case for ECG5000, as we have less than 20 samples for three of
the five classes, leading to a performance decrease. It can also be observed that
the performance of the LSTM model is lower when compared to the accuracy
in Figure 9, indicating that the model has not been generalized well across the
different classes.

The model scores per dataset plot allows us to compare the different training
methods, while the dataset scores across models will enable us to categorize the
model’s performance. After comparing the accuracy and the f1 score plots, we can
conclude that the Resnet and InceptionTime are stable models converging well
across the different training methods. Both models comprise numerous CNNs
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and feature deep convolutional architectures. The LSTM model is the one with
the worst performance.

We have observed that the OneCycle needs more fine-tuning when selling the
Ir-max and Ir-min. Incorrect settings may result in the model being unable to
reach the optimal solution, as observed for the Electric devices dataset. Espe-
cially when the Ir-max is a bit higher, it leads to an unstable model. As OneCycle
follows a predefined pattern of a fixed increase schedule followed by a decreasing
LR, it is inflexible. The AdaptiveOneCycle can address this issue as it changes
dynamically and is controlled by the validation loss; it helps prevent scenarios
of large oscillation during training due to high LR.

For evaluating the performance against computational time, we will be re-
ferring to the two Figures 12 and 13. Schedulers would be less time-consuming
than traditional learning with a low static learning rate. Each figure contains
a zoomed plot; they have the same consumption time since we run the sched-
ulers for about 50 epochs. Among the datasets, Electric devices have taken the
most time, as they have the largest data samples for training. Resulting in more
batches which leads to more iterations to be performed per epoch. When compar-
ing across models, it can be seen that the LSTM, FCN, Convnet2D, LSTM-FCN,
and LSTM-2dFCN are among the faster models. Inception Time and Xception
Time require much more as they are deeper architectures with more CNN layers.

The parameter size of XCM, Convnet2D, LSTM-FCN, and LSTm-2dFCN
are heavily dependent on the sequence length of the dataset, while the others
are more dependent on the dimension of the input data. However, the parame-
ter size has a negligible effect on the model’s computational time and accuracy
scores. This is due to the use of GPUs, designed to handle large-scale parallel
computations efficiently. GPUs’ high memory bandwidth and parallel process-
ing capabilities allow them to manage large parameter sizes without significant
performance degradation.
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6 Conclusion

Using an LR scheduler is the way to train deep learning models efficiently. We can
obtain better and faster convergence without affecting the model performance.
Both the OneCycle and AdaptiveCycle use the same initial strategy of warmup
of LR for exploration, followed by fine-tuning the model during the LR descent.
The OneCycle is easy to use, with its implementation being available in many
libraries such as Pytorch and fastai. Its only disadvantage is that during the high
LR, the model oscillates a lot, which may, in some cases, lead to a non-optimal
modal solution, as observed in the paper.

AdaptiveCycle, proposed by us, helps resolve most of the disadvantages of
using just OneCycle. It gives more fine-grained control over the learning rate
adjustments based on validation performance while still keeping the advantages
of OneCycle with faster convergence. It provides improved stability and perfor-
mance by decreasing the LR in cases when the oscillation of loss occurs, especially
in handling large, complex datasets. We hope the results of our benchmark study
will lead to more people using schedulers, as it will allow the research time to
be efficiently spent on data and model architecture rather than training mod-
els, while also saving resources. We would also release open-source code for our
project, allowing people to use the customer scheduler.

Acknowledgments. We would like to acknowledge the UCR and UCE Time Series
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