
RDF Data Management in the Amazon Cloud

Francesca Bugiotti
∗

Università Roma Tré, Italy
franbugiotti@yahoo.it

François Goasdoué
Université Paris-Sud and Inria

Saclay, France
fg@lri.fr

Zoi Kaoudi
Inria Saclay and Université

Paris-Sud, France
zoi.kaoudi@inria.fr

Ioana Manolescu
Inria Saclay and Université

Paris-Sud, France
ioana.manolescu@inria.fr

ABSTRACT

Cloud computing has been massively adopted recently in
many applications for its elastic scaling and fault-tolerance.
At the same time, given that the amount of available RDF
data sources on the Web increases rapidly, there is a con-
stant need for scalable RDF data management tools. In this
paper we propose a novel architecture for the distributed
management of RDF data, exploiting an existing commercial
cloud infrastructure, namely Amazon Web Services (AWS).
We study the problem of indexing RDF data stored within
AWS, by using SimpleDB, a key-value store provided by
AWS for small data items. The goal of the index is to effi-
ciently identify the RDF datasets which may have answers
for a given query, and route the query only to those. We de-
vised and experimented with several indexing strategies; we
discuss experimental results and avenues for future work.

1. INTRODUCTION
Cloud computing has been massively adopted recently in

many applications for the scalability, fault-tolerance and
elasticity features it provides. Cloud-based platforms free
the application developer from the burden of administering
the hardware and provide resilience to failures, as well as
elastic scaling up and down of resources according to the
demand. The recent development of such environments has
a significant impact on the data management research com-
munity, in which the cloud provides a distributed, shared-
nothing infrastructure for scalable data storage and process-
ing. Many works have relied on cloud infrastructures focus-
ing on different aspects such as implementing basic database
primitives in cloud services [4] or algebraic extensions of the
MapReduce paradigm [5] for efficient parallelized processing
of queries [3].

∗Part of the work has been performed while the author was
visiting Inria Saclay.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DanaC 2012 March 30, 2012, Berlin, Germany
Copyright 2012 ACM 978-1-4503-1143-4/12/03 ...$10.00.

Within the wider data management field, significant ef-
fort has been invested in techniques for the efficient man-
agement of Web data. A constantly increasing number of
sources expose and/or share their data represented in the
W3C’s Resource Description Framework (or RDF, in short)
[9]. A well-known interesting RDF data source is DBPe-
dia (http://aws.amazon.com/datasets/2319), while more data
sources are catalogued in the Linked Open Data Web site
(http://linkeddata.org). RDF has also been used in highly
dynamic news management scenarios, such as the BBC’s re-
porting on the World Football Cup [10]. Efficient systems
have been devised in order to handle large RDF volumes in
a centralized setting, with RDF-3X [15, 16] being among the
best-known.

To exploit ever-increasing volumes of data in a cloud,
works such as [6, 11, 14, 21], either focus on MapReduce or
use cloud-based key-value stores to store RDF data. These
works mostly target at designing parallel techniques for ef-
ficiently handling massive amounts of data.

In this work, we explore an alternative and possibly com-
plementary approach. We envision an architecture where
large amounts of RDF data is partitioned in small data-
sets and reside in an elastic cloud-based store. We focus
on the task of efficiently routing queries to only those da-
tasets that are likely to have matches for the query. Se-
lective query routing reduces the total work associated to
processing a query, and in a cloud environment where to-
tal work also translates in financial costs, leads to reduced
expenses. To achieve this, whenever data is uploaded in
the cloud store, we index it and store the index in an effi-
cient (cloud-resident) store for small key-value pairs. Thus,
we take advantage of: large-scale stores for the data itself;
elastic computing capabilities to evaluate queries; and the
fine-grained search capabilities of a fast key-value store, for
efficient query routing.

Our implementation relies on the Amazon Web Services
(AWS) cloud platform [1], one of the most prominent com-
mercial cloud platforms today, which has been used in other
data management research works [4, 18]. We store RDF
files in Amazon Simple Storage Service (S3) and use Ama-
zon SimpleDB for storing the index. Finally, RDF queries
are evaluated against the RDF files retrieved from S3, within
the Amazon Elastic Compute Cloud (EC2). While our re-
sults only hold within the Amazon platform, the architec-
ture is quite generic and could be ported to other similar
cloud-based environments.

This paper is organized as follows. Section 2 provides
some background on the RDF data model and the Ama-
zon Web Services platform. Section 3 presents our proposed
system architecture while Section 4 describes in detail our
RDF indexing techniques within the Amazon cloud. In Sec-
tion 5 we present the results of our experimental evaluation.
Finally, we discuss related work in Section 6 and conclude
with Section 7 by presenting directions for future work.

2. PRELIMINARIES
In this section, we briefly introduce the basics of our sup-

ported data model and query language as well as give a
description of the Amazon cloud.

2.1 RDF and SPARQL
In order to lay the background and fix the terminology of

the paper, here we briefly summarize some features of the
Resource Description Framework (RDF) data model [9, 12].
RDF is a data model and formalism recommended by W3C
and designed for the exchange and reuse of structured data
among web applications. It is based on the concept of re-
source which is everything that can be referred to through
a Uniform Resource Identifier (URI). RDF data model is
built on resources, properties (a.k.a. predicates) and val-
ues. Properties can be seen as relations linking resources
and values. The values can be either URIs, constants from
primitive types called literals (such as string or integers), or
blank nodes. Blank nodes are identifiers for unknown values.
We use an underscore-prefixed notation to refer to them, as
in _:bnodeID.

Information about resources is encoded using RDF triples,
also called statements. A statement is a triple of the form
(subject, property, object), abbreviated as (s, p, o). The sub-
ject of a triple identifies the resource that the statement is
about, the property identifies an attribute describing the
subject, while the object gives the value of the property.

More specifically, let U , L and B denote three (pairwise
disjoint) sets of URIs, literals, and blank nodes, respectively.
A (well-formed) triple is a tuple (s, p, o) from (U ∪B)×U ×
(U ∪ L ∪B), where s is the subject, p is the property and o

is the object of the triple.
A set of triples comprises a graph, which can be also called

a dataset. Indeed, a set of triples encodes a graph structure
in which every triple (s, p, o) describes a directed edge la-
belled with p from the node labelled with s to the node
labelled with o. A graph can be identified by a URI value.
In RDF, graphs can be built from other graphs through a
merge operation. This is particularly useful for traversing
various data sources with queries through the integration of
these data sources.

The merge of RDF graphs is as follows. If these graphs
have no blank nodes in common, then merging them results
in their union. Otherwise, the graphs do share blank nodes
and merging them amounts to renaming the (shared) blank
nodes within the graphs with fresh identifiers, so that we fall
into the previous case.

SPARQL [17] is the W3C standard for querying RDF
graphs. In this paper, we consider the Basic Graph Pattern
(BGP) queries of SPARQL, i.e., its conjunctive fragment
allowing to express the core Select-Project-Join database
queries. The normative syntax of BGP queries is

SELECT ?v1 . . .?vm FROM uri1 . . . FROM urin WHERE {t1, . . . , to}

with {t1, . . . , to} an RDF graph whose triples can also use
variables, ?v1 . . .?vm a set of variables occurring in {t1, . . . , to}
that defines the output of the query, and uri1, . . . , urin the
URIs of the graphs whose merging must be queried. Here,
the notion of triple is actually generalized to that of triple
pattern (s, p, o) from (U ∪B∪V)×(U ∪V)×(U ∪L∪B∪V),
where V is a set of variables. Observe that repeating a vari-
able in a SPARQL query is the way of expressing joins.

In the following, when a query has no FROM clause, we
assume that it must be evaluated against the merge of all
the graphs whose URIs are known.

Let us now turn to the semantics of a BGP query. First,
a mapping µ from B ∪V to U ∪B ∪L is defined as a partial
function µ : B ∪ V → U ∪ B ∪ L. If o is a triple pattern
or a set of variables, µ(o) denotes the result of replacing
the blank nodes and variables in o according to µ. The
domain of µ, dom(µ), is the subset of V where µ is defined.
Let q = SELECT ?v1 . . .?vm FROM uri1 . . . FROM urin WHERE

{t1, . . . , to} be a BGP query and D the graph obtained by
merging the datasets whose URIs are uri1, . . . , urin. The
evaluation of q is: eval(q) = {µ(?v1 . . .?vm) | dom(µ) =
varbl(q) and {µ(t1), µ(t2), ..., µ(tn)} ⊆ D}, with varbl(q)
the set of variables and blank nodes occurring in q.

Notice that evaluation treats blank nodes in a query as
non-distinguished variables. That is, one could consider
without loss of generality queries without blank nodes.

Notation. From now on, to avoid writing long URIs, we
use namespaces. Namespaces allow associating a short con-
venient prefix to the first part of a lengthy URI. Following
the namespace usage, a URI can be replaced by the prefix
to which is appended the last part of the URI. For example,
the URI http://xmlns.com/foaf/0.1/name can be written
foaf:name, provided that foaf has been declared as the na-
mespace for http://xmlns.com/foaf/0.1/.

2.1.1 Running Example

Throughout the paper we rely on a simple running exam-
ple consisting of three datasets, representing: the articles
published by Inria researchers, the books published by Inria
researchers, and the Inria labs. The content of these data-
sets is depicted in Figure 1. Although for now we use the
datasets as defined by the users, clearly, partitioning large
sets of triples into datasets so as to optimize the selectivity
of the index is an interesting avenue for future work.

The articles dataset describes the resource inria:article1

whose author (inria:hasAuthor) is represented by the re-
source inria:bar whose name (inria:hasName) is “Bar” and
whose nationality (inria:hasNationality) is“American”. The
namespace inria is used to abbreviate the URI prefix http://

inria.fr/.
The books dataset describes the resource inria:book1 whose

author (inria:hasAuthor) is inria:foo, and for which there
is an unknown (_:uid1) contact author (inria:hasContact-
Info) whose role (inria:hasRole) is “Professor” and whose
telephone number (inria:hasTel) is “+33 134879”. The re-
source inria:foo has also a name (inria:hasName) which is
“Foo”, nationality (inria:hasNationality) “French” and tele-
phone number (inria:hasTel)“+33 12345678”. The resource
inria:book2 is also described whose author (inria:hasAuthor)
is the unknown author _:uid1.

Finally, the labs dataset describes the resource labIn-

ria:lab1 whose name (labInria:hasName) is “ResearchLab”
and whose location (labInria:hasLocation) described by the

Articles

inria:article1 inria:bar
inria:hasAuthor

Barinria:hasName

Americaninria:hasNationality

Books

inria:book1

inria:book2 :uid1

inria:foo
inria:hasAuthor

inria:hasAuthor

inria:hasContactInfo

Professor

+33 1234879

+33 12345678

French

Foo

inria:hasRole

inria:hasTel

inria:hasName

inria:hasNationality

inria:hasTel

Labs

labInria:lab1

labInria:location

ResearchLab

48.710715,2.17545labInria:hasLocation

labInria:hasName

labInria:hasGPS

Figure 1: Graph representation of the example RDF data.

db = dom+
dom = (name, item+)
item = (key, attribute+)
attribute = (name, value)

Figure 2: SimpleDB database layout.

resource http://labs.inria.fr/lab1/location has the GPS
coordinates (labInria:hasGPS) “48.710715,2.17545”. The na-
mespace labInria is defined by the URI http://labs.inria.fr
/rdfExample/.

2.2 Amazon cloud
Amazon Web Services (AWS) provides since 2006 a cloud-

based services platform which organizations and individuals
can take advantage of, in order to develop elastic scalable ap-
plications. For the purpose of this work, we mostly relied on
the Amazon SimpleDB, a structured store for small atomic
objects, which we describe in Section 2.2.1, and on Amazon’s
Simple Storage Service (S3), outlined in Section 2.2.2.

2.2.1 Amazon SimpleDB

SimpleDB is a non relational data store provided by Ama-
zon which focuses on high availability (ensured through repli-
cation), flexibility and scalability. SimpleDB supports a set
of APIs to query and store items in the database. A Sim-
pleDB data store is organized in domains. Each domain is a
collection of items identified by their name. Each item con-
tains one or more attributes; an attribute has a name and a
set of associated values. Figure 2 outlines the structure of a
SimpleDB database.

In the sequel, we can thus summarize the layout of data
within SimpleDB as a four-level hierarchy D|I|A|V , where

D is the domain name, I is the item name, A and V are
attribute name and attribute value, respectively.

SimpleDB API. The main operations of SimpleDB API
are the following:

• ListDomains() retrieves all the domains associated to
one AWS account.

• CreateDomain(D) and DeleteDomain(D) creates a new do-
main D or deletes an existing one, respectively.

• PutAttributes(D, k, (a,v)+) inserts or replaces attri-
butes (a,v)+ into an item with name k of a domain
D. If the item specified does not exist, SimpleDB will
create a new item. BatchPutAttributes performs up to
25 PutAttributes operations in a single API call, which
allows for obtaining a better throughput performance.

• GetAttributes(D, k) returns the set of attributes asso-
ciated with item k in domain D.

• Select(expr) operation queries a specified SimpleDB
domain using query expressions similar to the standard
SQL SELECT statements. We elaborate more about
this API operation in the next section.

It is not possible to execute an API operation across dif-
ferent domains. Therefore, if required, the aggregation of
results from API operations executed over different domains
has to be done in the application layer. AWS ensures that
operations over different domains run in parallel. Hence, it
is beneficial to split the data in several domains in order to
obtain maximum performance.

As most non-relational databases, SimpleDB does not fol-
low a strict transactional model based on locks or times-
tamps. It only provides the simple model of conditional
puts. It is possible to update fields on the basis of the values

of other fields. It allows for the implementation of elemen-
tary transactional models such as some entry level versions
of optimistic concurrency control.

SimpleDB Select operation. The Select operation
which can be used for querying SimpleDB is similar to the
standard SQL select statements and has the following struc-
ture:

SELECT (* | count(*) | itemName() | (attr1, ... attrN))
FROM domain_name
[WHERE expression]
[sort_instructions]
[LIMIT limit]

The WHERE expression can be any of the following:

(<simple comparison>)
(<select expression> intersection <select expression>)
(NOT <select expression>)
(<select expression>)
(<select expression> or <select expression>)
(<select expression> and <select expression>)

Comparison operators (=, !=, >, ..., LIKE, IN, IS NULL, IS
NOT NULL, etc.) are applied to a single attribute and are
lexicographical in nature.

SimpleDB limitations. AWS imposes some size and car-
dinality limitations on SimpleDB. These limitations include:

• Domains number: the default settings of a AWS ac-
count allow for at most 250 domains. While it is pos-
sible to negotiate more, this has some overhead (one
must discuss with a sale representative etc. - it is not
as easy as reserving more resources through an online
form).

• Domain size: the maximum size of a domain cannot
exceed 10 GB and the 109 attributes.

• Item name length: the name of an item should not
occupy more than 1024 bytes.

• Number of (attribute, value) pairs in an item: this can-
not exceed 256. As a consequence, if an item has only
one attribute, that attribute cannot have more than
256 associated values.

• Length of an attribute name or value: this cannot ex-
ceed 1024 bytes.

In addition, when we execute a Select query in a domain,
there are also some limitations. Here we present only the
ones related to our proposed architecture.

• The query cannot return more than 2500 items and
the size of the result cannot exceed 1MB. If any of
these conditions are not met, it is possible to retrieve
the additional results by iterating the query execution
using an identifier returned from the previous round.

• The maximum query execution time is 5 seconds, i.e.,
if a query takes longer than 5 seconds to be executed,
it returns an error.

2.2.2 Amazon Simple Storage Service

Amazon S3 is a storage web service for raw data and
hence, ideal for storing large objects or files. S3 stores the
data in named buckets. Each object stored in a bucket has
associated a unique name (key) within that bucket, meta-
data, an access control policy for AWS users and a version

ID. The number of objects that can be stored within a bucket
is unlimited.

If we want to retrieve an object from S3, we should access
the bucket that contains it and request it by its name. S3
allows to access the metadata associated to an object with-
out retrieving the complete entity. Unlike SimpleDB, there
is no performance difference in S3 between storing objects
in multiple buckets and storing them in just one.

S3 API. The S3 API includes the following basic opera-
tions:

• ListBuckets() returns the list of created buckets, Create-
Bucket (B) creates a new bucket B and DeleteBucket(B)

deletes an existing bucket.

• PutObject(buck, key, obj, meta) stores an object obj

with name key and metadata meta within bucket buck.

• GetObject(buck, key) retrieves object key from a bucket
buck.

• GetObjectMetadata(buck, key) retrieves only the object’s
metadata without fetching the actual object.

2.2.3 Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is a virtual com-
puting environment that allows the use of web service inter-
faces to launch virtual computer instances on which users’
applications can be run. The virtual machine images are
stored in the cloud and it is possible to configure them choos-
ing hardware features such as RAM size, network access, etc.
The utilization cost is calculated on the basis of the config-
uration of the machine, the running time of the application
and the data transfer.

2.2.4 Amazon Simple Queue Service

Amazon Simple Queue Service (SQS) provides reliable
and scalable queues that enable asynchronous message-based
communication between the distributed components of an
application. This service prevents an application from mes-
sage loss and from requiring each component to be always
available.

3. ARCHITECTURE
Our envisioned architecture relies on the following services

provided by Amazon: S3 for permanent storage, SimpleDB
for storing structured information about the data stored in
S3, EC2 for running our modules and SQS for the commu-
nication between the different modules.

RDF datasets are stored in S3 and each dataset is treated
as a uninterpreted BLOB object. As explained in Section 2.2,
it is necessary to associate a key to every resource stored in
S3 in order to be able to retrieve it. For this reason, we
assign to each dataset as a key the URI of the dataset. In
general we indicate as URI(dsj) the URI associated to the
dataset j. On the other hand, dataset indexes are instead
kept in SimpleDB. In this way, we allow for fast retrieval of
the URIs of the RDF datasets.

An overview of our system architecture is depicted in Fig-
ure 3. A user interaction with our system can be described
as follows.

The user submits to the front-end component RDF data-
sets (1) and the front-end module stores the file in S3 (2).
Then, it creates a message containing the reference to the
dataset and inserts it to the loader request queue (3). Any

Figure 3: Proposed architecture.

EC2 instance running our indexing module receives such a
message (4) and retrieves the dataset from S3 (5). The in-
dexing module after transforming the dataset into a set of
RDF triples, it creates the index data and inserts it in Sim-
pleDB (6).

When a user submits a SPARQL query to the front-end
(7), the front-end inserts the corresponding message into
the query request queue (8). Any EC2 instance running our
query processor receives such a message and parses the query
(9). The query processor performs a lookup to the indexes in
SimpleDB to find out the datasets that contain information
to answer the query (10). Any processing required for merg-
ing or unioning the RDF datasets retrieved from SimpleDB
is performed in the execution module (11). Then, the local
query evaluator receives the final list of URIs pointing to
the RDF datasets in S3 (12), retrieves them and evaluates
the SPARQL query against these datasets (13). Then, it
writes the results to S3 (14) and creates a message which is
inserted into the query response queue (15). The front-end
receives this message (16) and retrieves the results from S3
(17). Finally, the results are returned to the user (18).

4. INDEXING STRATEGIES IN SIMPLEDB
In this section we describe the RDF indexing strategies

we have developed in SimpleDB that allow us to find out
in a light way the RDF datasets that should be retrieved
from S3 and then, queried to form the answer to the query.
All indexing strategies below return exactly the same set
of datasets for a given query. Since we use SimpleDB to
store the indexes they should conform with the data model
of SimpleDB described in Section 2.

Notation. To simplify presentation, we will describe each
indexing strategy in terms of the four levels of information
that SimpleDB allows us to use, namely (D|I|A|V) (see Sec-

tion 2.2.1). To index RDF, we may use the values of sub-
jects (S), properties (P) and objects (O) occurring in RDF
triples, as well as the URIs (U) of the RDF datasets. More-
over, we will also use a set of three token strings, which we
denote by S, P and O, and which we may insert in the in-
dex to specify whether some piece of data is to be treated
as a subject, property, or object, respectively. In addition,
we will use the symbol ‖ to denote string concatenation.
In cases where there is no confusion we may omit it (e.g.,
SP denotes the concatenation of the string values “subject”
and “property”). Similarly, we will use a token string de-
noted by D to represent a constant domain name. As we
will show, each indexing strategy can be represented by a
concatenation of four |-separated symbols, specifying which
information item is used in the domain name, item name,
attribute name and attribute value, respectively.

4.1 Attribute-based strategy
In the following we describe our first indexing strategy of

RDF datasets in SimpleDB and the query processing algo-
rithm which utilizes the indices in order to retrieve datasets
that are relevant to the SPARQL query. These datasets can
be used then to form the answer to the query.

Indexing. According to this strategy, for each dataset
three indexes are created: one for the subjects, one for the
properties and one for the objects. Each index resides in a
different SimpleDB domain. Then, for each dataset, an item
named after the dataset is inserted in the respective domain.
The name of the dataset is also the URI that allows us to
access the RDF graph stored in S3. Using our notation we
therefore have the following indexes:

1. (S|U |S|S), which enumerates subjects using attribute-
value pairs where the attribute name is the word “sub-
ject” and the value is the subject itself.

2. (P |U |P |P), which enumerates properties using attrib-
ute-value pairs where the attribute name is the word
“property” and the value is the property itself.

3. (O|U |O|O), which enumerates objects using attribute-
value pairs where the attribute name is the word “ob-
ject” and the value is the object itself.

Handling SimpleDB limitations. As already discussed,
SimpleDB can manage up to 256 attribute-value elements
for each item. This means that a given dataset, confined in
a single item by this strategy, can have up to 256 distinct
subjects, 256 distinct properties and 256 distinct objects.
While for properties this might not be a problem in many
cases, for subjects and objects the limit is quickly reached.
We have two dimensions of growth at our disposal to cope
with this:

1. We may assign “partition” URIs URI|1, URI|2, . . . ,
URI|k for a given real dataset URI URI. When e.g.,
the S domain overflows for the first time and a given
dataset URI, we create the artifficial URI|1 and regis-
ter the subsequent items as belonging to the (fictitious)
dataset URI|1. (This also amounts to a virtual par-
titioning of the input dataset in several slices.) When
URI|1 overflows, say, in the S or O index, we move
to URI|2 and so on. To ensure complete index look-
ups, a secondary index tracks all the partition URIs
associated to a given URI.

Table 1: Attribute-based indexing strategy
subject domain i

item key (attr. name, attr. value)
URIk(ds1) (S, s′ds1), (S, s

′′

ds1
), ...

URIk(ds2) (S, s′ds2), ...
property domain j

item key (attr. name, attr. value)
URIk(ds1) (P, p′ds1), (P, p

′′

ds1
), ...

URIk(ds2) (P, p′ds2), (P, p
′′

ds2
), ...

object domain l

item key (attr. name, attr. value)
URIk(ds1) (O, o′ds1), (O, o′′ds1), ...
URIk(ds2) (O, o′′ds2), ...

2. We may use more domains. Let B denote the max-
imum number of SimpleDB domains available to us
(B = 250 for a regular AWS account). We parti-
tion these domains according to their usage: some do-
mains, denoted S1, S2, . . ., Si will be used for the
subjects, and similarly P 1, P 2, . . ., P j , respectively,
O1, O2, . . ., Ol for the objects, with i, j, l ≥ 1 and
3 ≤ i + j + l ≤ B. For a given dataset, whenever we
reach the 256 attribute-value limitation in an item in
a domain Si (or P j , or Ol), we create a new item for
this dataset in the “next” domain Si+1 (respectively,
P j+1, or Ol+1). The domain Si+1 is created the first
time that the limits of the domain Si are reached (and
similarly for O and P). Increasing the number of do-
mains favors parallelism, since index entries for a given
dataset, that are partitioned over several domains, can
be simultaneously filled in, and consulted.

Our current implementation first, expands to several do-
mains in order to maximize parallelism, and then, once the
maximum number of domains has been taken, introduces
partition URIs. We plan to further the analysis of the trade-
offs between the two techniques in our future work.

Table 1 outlines data organization in SimpleDB using this
strategy. The data shown in Figure 1 leads to the index
shown in Table 2. For this small example, we use only three
domains and one item per dataset in each domain.

Querying. For each constant (URI or literal) of a SPARQL
query a SimpleDB SELECT query is submitted to the S (or
P , or O) domain(s), depending on the position of the con-
stant in the query. Each such look-up retrieves the URIs
of the dataset containing the respective subject (or object,
or property) value. For each triple pattern, the results of
all the SELECT queries based on constants of that triple need
to be intersected. The intersection leads to a set of URIs
obtained out of a given triple pattern. The union of all URI
sets thus obtained from the triples in a SPARQL query is
the set of datasets on which the query must be evaluated.

Using our running example assume that we want to eval-
uate the following SPARQL query:

Listing 1: Example SPARQL query

PREFIX inria: <http :// inria.fr/>
SELECT ?s
WHERE {

?s inria:hasAuthor "Foo" .
?s inria:hasContactInfo ?o .

}

Table 2: Example of attribute-based index
subject domain

item key (attr. name, attr. value)
articles (S, inria:article1), (S, inria:bar)
books (S, inria:book1), (S, inria:foo),

(S, :uid1), (S, inria:book1)
labs (S, labInria:lab1), (S, labInria:location)

property domain

item key (attr. name, attr. value)
articles (P, inria:hasAuthor), (P, inria:hasName), (P, in-

ria:hasNationality)
books (P, inria:hasAuthor), (P, inria:hasContactInfo),

(P, inria:hasRole)(P, inria:hasTel), (P, in-
ria:hasNationality), (P, inria:hasRole)

labs (P, labInria:hasLocation), (P, labInria:hasName),
(P, labInria:hasGPS)

object domain

item key (attr. name, attr. value)
articles (O, inria:bar), (O, “Bar”), (O, “American”)
books (O, inria:foo), (O, “Foo”), (O, “+33 12345678”), (O,

“French”), (O, “+33 1234879”), (O, “Professor”)
labs (O, labInria:location), (O, “ResearchLabs”),

(O, “48.710715,2.17545”)

The corresponding SimpleDB queries that are required in
order to retrieve the corresponding datasets is the following:

q1: SELECT itemName()
FROM property_domain
WHERE property = inria:hasAuthor;

q2: SELECT itemName()
FROM object_domain
WHERE object = "Foo";

q3: SELECT itemName()
FROM property_domain
WHERE property = inria:hasContactInfo;

The datasets retrieved from SimpleDB queries q1 and q2

will be intersected and the resulted datasets will be merged
with the datasets retrieved from query q3. The query will
be then evaluated on final set of the merged datasets.

Analytical cost model. In this section, we analyze the
cost of the index strategy with respect to the size of the index
as well as the number of required lookups while processing
a SPARQL query. In both cases we present analytical costs
for the worst case scenario.

Let n be the number of datasets stored in S3 and T the
maximum size of a dataset in terms of the number of triples
it consists. Hence, if Tdsi is the size of dataset dsi then
T = max(Tds1 , Tds2 , ..., Tdsn). We assume that the number
of distinct subjects, properties and objects values appearing
in a dataset is equal to the size of the dataset itself, and thus
equals to the number of triples (worst case scenario). For
each triple in a dataset we create three entries in SimpleDB.
The size of the index for this strategy will be 3× n× T .

For the query processing, let q be the number of triple
patterns of a BGP SPARQL query, then in the worst case
scenario, the number of constants a query can have is at
most 3 × q (i.e., in case of a boolean query). Using this
strategy, one lookup per constant in a query is performed to
the appropriate domain type. For the case where the Sim-
pleDB limit has not been reached and we thus have only one
domain for the subjects, properties and objects, the number
of lookups to SimpleDB is 3× q.

Table 3: Attribute-pair indexing strategy
subject-property domain i

item key (attr. name, attr. value)
URIk(ds1) (s′ds1 , p

′

ds1
), (s′ds1 , p

′′

ds1
), (s′′ds1 , p

′

ds1
) ...

URIk(ds2) (s′ds2 , p
′

ds2
), (s′ds2 , p

′′

ds2
), (s′′ds2 , p

′

ds2
) ...

property-object domain j

item key (attr. name, attr. value)
URIk(ds1) (p′ds1 , o

′

ds1
), (p′′ds1 , o

′′

ds1
) , ...

URIk(ds2) (p′ds2 , o
′

ds2
), ...

object-subject domain l

item key (attr. name, attr. value)
URIk(ds1) (o′ds1 , s

′

ds1
), (o′′ds1 , s

′

ds1
), ...

URIk(ds2) (o′ds2 , s
′

ds2
), ...

In the case where we have reached the SimpleDB limita-
tion and more than one domain for either of the subject,
property, object domains are created, we need to perform
one lookup to each domain separately. If d is the total num-
ber of allocated domains, the number of lookups to Sim-
pleDB in the worst case scenario equals to 3× q × d.

4.2 Attribute-pair strategy

Indexing. This strategy uses three indexes, one for each
pair of attributes in an RDF triple:

1. The first index is (SP |U |S|P), which enumerates the
relation (s, p), asserting whenever a subject has a
property.

2. The second index is (PO|U |P |O), which enumerates
the relation (p, o), asserting whenever a property refers
to an object.

3. Similarly, the third index is (OS|U |O|S), which enu-
merates the relation (o, s) asserting whenever an ob-
ject is connected to a subject.

Handling SimpleDB limitations. SimpleDB attribute-
value limitation leads to constraining a single dataset to 256
distinct subject-property pairs, 256 distinct property-object
pairs and 256 distinct object-subject pairs. To overcome
this limitation, we use the same technique as we described
in the previous indexing strategy. We increase the number
of each type of domain up to the number we have available.
At the point where this number is reached we start filling
the already existing domains by adding new items for the
same datasets. The general organization of this indexing
strategy in SimpleDB is depicted in Table 3. Using our
running example of Figure 1, we have the index organization
as shown in Table 4.

Querying. For each SPARQL triple pattern having at
least one constant, we evaluate one SimpleDB SELECT query
on the corresponding domain(s) depending on the position
of the constants in the triple. In case a triple pattern has
one bound value we define a query where the corresponding
attribute of the domain should not be null. In case a triple
pattern has two bound values c1 and c2 we define a Sim-
pleDB query whose where clause asks that c1 equals with c2.
The query will be evaluated against the union of the data-
sets returned by the SimpleDB SELECT queries corresponding
to each triple.

Using our running example and the example SPARQL
query of Listing 1 we show the corresponding SimpleDB

Table 4: Example of attribute-pair index
subject-property domain

item key (attr. name, attr. value)
articles (inria:article1, inria:hasAuthor), (inria:bar, in-

ria:hasName), (inria:bar, inria:hasNationality)
books (inria:book1, inria:hasAuthor), (inria:book, in-

ria:hasContactInfo), (inria:foo, inria:hasName),
(inria:foo, inria:hasNationality), (inria:foo, in-
ria:hasTel), (:uid1, inria:hasRole), (:uid1, in-
ria:hasTel) (inria:book2, inria:hasAuthor)

labs (labInria:lab1, labInria:hasLocation), (labIn-
ria:lab1, labInria:hasName), (labInria:location,
labInria:hasGPS)

property-object domain

item key (attr. name, attr. value)
articles (inria:hasAuthor, inria:bar), (inria:hasName,

“Bar”), (inria:hasNationality, “American”)
books (inria:hasAuthor, inria:foo), (in-

ria:hasContactInfo, :uid1), (inria:hasTel, “+33
12345678”), (inria:hasNationality, “French”),
(inria:hasRole, “Professor”), (inria:hasAuthor,
:uid1)

labs (labInria:hasLocation, labInria:location),
(labInria:hasName, “ResearchLabs”), (labIn-
ria:hasGPS, “48.710715,2.17545”)

object-subject domain

item key (attr. name, attr. value)
articles (inria:bar, inria:article), (“Bar”, inria:bar),

(“American”, inria:bar)
books (inria:foo, inria:book), (:uid1, inria:book),

(“Foo”, inria:foo), (“French”, inria:foo), (“+33
12345678”, inria:foo), (“Professor”, :uid1),
(“+33 1234879”, :uid1), (:uid1, inriafr:Foo)

labs (labInria:location, labInria:lab1), (“Research-
Labs”, labInria:lab1), (“48.710715,2.17545”,
labInria:location)

queries that are required in order to retrieve the correspond-
ing datasets:

q1: SELECT itemName()
FROM property_object_domain
WHERE inria:hasAuthor = "Foo";

q2: SELECT itemName()
FROM property_object_domain
WHERE inria:hasContactInfo IS NOT NULL;

The datasets retrieved from queries q1 and q2 will be
merged and the query will be then evaluated against the
merged datasets.

Analytical cost model. Similarly with the attribute-
based index, for each triple of a certain dataset three entries
are created in SimpleDB. In order to compute the size of
this index, we assume that the number of distinct values of
the subject-property pairs, property-object pairs and object-
subject pairs appearing in a dataset equal to the the number
of triples of the dataset (worst case scenario). Then, the size
of the index for the attribute-pair strategy equals to 3×n×
T , where n is the number of datasets and T the maximum
number of triples of a dataset as introduced previously.

In the query processing procedure of this indexing strat-
egy, one lookup is performed for each triple pattern of a
SPARQL query. Certainly, this holds only in the case where
the SimpleDB limit has not been reached. Then, the number
of lookups to SimpleDB when using the attribute-pair strat-

Table 5: Attribute-subset indexing strategy
attribute-subset domain

item key (attr. name, attr. value)
S‖subject (URIds1 , ǫ), (URIds2 , ǫ), ...
P‖property (URIds1 , ǫ), (URIds2 , ǫ),...
O‖object (URIds1 , ǫ), (URIds2 , ǫ),...

SP‖subject‖property (URIds1 , ǫ), (URIds2 , ǫ),....
PO‖property‖object (URIds1 , ǫ), (URIds2 , ǫ),...
SO‖subject‖object (URIds1 , ǫ), (URIds2 , ǫ),...

SPO‖subject‖property‖object (URIds1 , ǫ), (URIds2 , ǫ),...

egy is equal to q, where q is the number of triple patterns of
the SPARQL query.

In the case where we have reached the SimpleDB limita-
tion and created more than one domain for either type of
domain, we need to performe one lookup for each such do-
main. Then, the number of lookups to SimpleDB for the
worst case scenario is q × d, where q is the number of triple
patterns of the SPARQL query and d is the total number of
created domains in SimpleDB.

4.3 Attribute-subset strategy

Indexing. This strategy encodes each triple (s, p, o) by
a set of seven patterns (s), (p), (o), (s, p), (s, p, o),
(p, o) and (s, o) corresponding to all non-empty attribute
subsets. For each triple and each of these seven patterns, a
new SimpleDB item is created and named after the pattern.
As attribute name, we use the URI of the dataset containing
this pattern; as attribute value, we use ǫ.

Using our notation, the indexes we create can be described
as: (D|SS|U |ǫ), (D|PP |U |ǫ), (D|OO|U |ǫ), (D|SPSP |U |ǫ),
(D|POPO|U |ǫ), (D|SOSO|U |ǫ) and (D|SPOSPO|U |ǫ).

The general organization of this index is illustrated in Ta-
ble 5. The data from our running example leads to the index
configuration outlined in Table 6.

Handling SimpleDB limitations. In this indexing strat-
egy the limits of SimpleDB are exceeded when we have more
than 256 datasets stored in S3 and all these datasets have
one triple element value or a combination of them in com-
mon. Although this situation is not so often in various ap-
plication scenarios, we cope with this by creating an extra
domain each time the limitation is reached. In addition,
when more than 109 distinct values of all triple elements
combinations appear in the datasets stored in S3, the limit
of the number of items allowed in a domain is surpassed.
In this case we follow the same technique of adding a new
domain.

Querying. This index cannot be queried directly using
SimpleDB SELECT statements, since one cannot use them to
search and retrieve data according to an item key. For this
reason, we exploit this index through the GetAttributes(D,

k) SimpleDB API call, where D is the domain name and
k is the item name. This call returns the set of attributes
associated with that item.

For each triple pattern of a SPARQL query the corre-
sponding GetAttributes call is generated, giving as item name
a concatenation of the bound values of the triple pattern.
The URIs obtained through all the GetAttributes calls re-
sulting from each triple pattern are those of the datasets on
which the query must be evaluated.

For example, for the SPARQL query of Listing 1 we need

Table 6: Example of attribute-subset index
attribute-subset domain

item key (attr. name, attr.
value)

S‖inria:article1 (articles, ǫ)
S‖inria:bar (articles, ǫ)
S‖inria:book1 (books, ǫ)
S‖inria:book2 (books, ǫ)
S‖inria:foo (books, ǫ)
S‖inria: :uid1 (books, ǫ)
S‖labinria:lab1 (labs, ǫ)
S‖labInria:location (labs, ǫ)
P‖inria:hasAuthor (articles, ǫ), (books, ǫ)
P‖inria:hasName (articles, ǫ), (books, ǫ)
P‖inria:hasNationality (articles, ǫ), (books, ǫ)
P‖inria:hasTel (books, ǫ)
P‖inria:hasRole (books, ǫ)
P‖inria:hasContactInfo (books, ǫ)
P‖labInria:hasName (labs, ǫ)
P‖labinria:hasLocation (labs, ǫ)
P‖inria:hasLocation (labs, ǫ)
P‖labInria:hasGPS (labs, ǫ)
O‖inria:bar (articles, ǫ)
O‖“Bar” (articles, ǫ)
O‖“American” (articles, ǫ)
... ...
O‖“48.710715,2.17545” (labs, ǫ)
SP‖inria:article1‖inria:hasAuthor (articles, ǫ)
SP‖inria:bar‖inria:hasName (articles, ǫ)
SP‖inria:bar‖inria:hasNationality (articles, ǫ)
... ...
SP‖labInria:lab1‖labInria:hasName (labs, ǫ)
PO‖inria:hasName‖“Bar” (articles, ǫ)
PO‖inria:hasNationality‖“American” (articles, ǫ)
PO‖inria:hasAuthor‖inria:Bar (articles,ǫ)
... ...
PO‖labInria:hasGPS‖“48.710715,2.17545” (labs, ǫ)
SO‖inria:article1‖inria:Bar (articles, ǫ)
SO‖inria:bar‖“Bar” (articles, ǫ)
SO‖inria:bar‖“American” (articles, ǫ)
... ...
SO‖labInria:location‖“48.710715,2.17545” (labs, ǫ)
SPO‖inria:bar‖inria:hasName‖“Bar” (articles, ǫ)
... ...

to perform the following SimpleDB API calls:
GetAttributes(attribute-subset, PO‖inria:hasAuthor‖"Foo")

GetAttributes(attribute-subset, P‖inria:hasContactInfo)

If more than one domains have been created due to the
limitation of SimpleDB, then we execute the GetAttributes

to every domain. As in the previous cases, we then eval-
uate the SPARQL query to the the merge of the retrieved
datasets.

Analytical cost model. Since for each triple of a dataset
we create seven entries in SimpleDB, the size of the index of
this strategy, let it be I3, is 7×n×T , where n is the number
of datasets and T is the maximum number of triples in a
dataset.

For the query processing, we perform one lookup for each
triple pattern appearing in the SPARQL query in the case
where the SimpleDB limit has not been reached. In this
case the number of lookups to SimpleDB when using the
attribute-subset strategy is equal to q.

In the case where we have reached the SimpleDB limita-
tion, we create more than one domain. Let d be the to-

Table 7: Domain-per-dataset indexing strategy
URIdsi

item key (attr. name, attr. value)
subject (P‖property, object)
property (O‖object, subject)
object (S‖subject, property)

Table 8: Example of domain-per-dataset index
articles

item key (attr. name, attr. value)
inria:article1 (P‖inria:hasAuthor, inria:bar)
inria:hasAuthor, (O‖inria:bar, inria:article1)
inria:bar (S‖inria:article1, inria:hasAuthor)

(P‖inria:hasName, “Bar”),
(P‖inria:hasNationality, “American”)

inria:hasName (O‖“Bar”, inria:bar)
inria:hasNationality (O‖“American”, inria:bar)
“American” (S‖inria:bar, inria:hasNationality)
“Bar” (S‖inria:bar, inria:hasName)

tal number of domains in SimpleDB. Then, the number of
lookups to SimpleDB equals to q × d.

4.4 Domain-per-dataset strategy

Indexing. According to this strategy, a SimpleDB do-
main is allocated for and named after each dataset with
URI URIdsi . We use the subject, property, object values of
each triple in the dataset as the item names. Within our no-
tations, for each dataset U we create the following indexes:
(U |S|PP |O), (U |P |OO|S) and (U |O|SS|P).

The organization of this index is illustrated in Table 7
while Table 8 shows a the organization of the index for a
specific dataset of our example.

Handling SimpleDB limitations. SimpleDB limitations
leads to constraining a single dataset to 256 property-object
value pairs for each distinct subject value, 256 object-subject
value pairs for each property value and 256 subject-property
value pairs for each distinct object value. This means that
each subject, property, object value can appear 256 times
inside a dataset. In addition, each dataset is constrained to
having 109 distinct triple element values. In case any of the
above situations occur for a dataset we add a new domain
for this dataset.

Querying. For each triple pattern appearing in a given
SPARQL query, a SELECT SimpleDB query is defined and
submitted to each existing domain. The resulting URI sets
(one URI set for each triple pattern) are unioned and the
query will be evaluated on the union of all such sets.

For instance, for the SPARQL query of Listing 1, we define
the following SimpleDB queries for each domain i:

q1: SELECT *
FROM domain_i
WHERE property||inria:hasAuthor = "Foo";

q2: SELECT *
FROM domain_i
WHERE property||inria:hasContactInfo IS NOT NULL;

The datasets retrieved from queries q1 and q2 then merged
and the SPARQL query is evaluated against the merged re-
sult.

Analytical cost model. In this indexing strategy we
create three entries to SimpleDB for each triple of a dataset.
Therefore, the size of the index of this strategy is 3×n×T ,
where n is the total number of datasets stored in S3 and T

is the maximum size of a dataset.
For the query processing part of this strategy, we perform

one lookup to each domain for each triple pattern appearing
in the SPARQL query (if the SimpleDB limit has not been
reached). If q is the number of triple patterns of a SPARQL
query, the number of lookups to SimpleDB when using the
domain-per-dataset strategy is q × n.
In the case where we have reached the SimpleDB limi-

tation, we create more domains per dataset. If d is the
total number of domains in SimpleDB, then the number of
lookups to SimpleDB is q × d.

5. EXPERIMENTS
We have fully implemented our RDF data management ar-

chitecture using all indexing strategies previously described.
In this section, we describe a preliminary set of experiments
conducted by deploying our system in the Amazon Web Ser-
vices (AWS) environment.

5.1 Implementation and set up
We have used Java 1.6 to implement all the modules de-

scribed in Section 3. The EC2 instance where we run our
indexing module and query processor was part of the Ireland
AWS facility and consisted of a 64-bit machine with 7.5 GB
of memory, 2 virtual core with 4 EC2 Compute Units. An
EC2 Compute Unit is equivalent to the CPU capacity of a
1.0-1.2 GHz 2007 Xeon processor. For the local RDF query
evaluation we used the query processor ARQ 2.8.8 with Jena
2.6.4.

We used synthetic RDF data generated by the SP2Bench
generator [20] which produces data based on the DBLP bibli-
ography schema. We created 10 datasets consisted of 10.000
each and used a set of queries which are SPARQL BGP
queries obtained by some simplification of the SP2Bench
queries. For instance, we limited the queries to their BGP
part, or modified them so that they would all have non-
empty results when evaluated directly on the data1. The
queries we used had from 1 to 8 triple patterns.

5.2 Indexing
In this section we study the performance of our four RDF

indexing strategies, by measuring the performance of insert-
ing index entries into SimpleDB. In this set of experiments
we used 10 datasets of 10.000 triples each (i.e., 100.000
triples in total). We had 120 SimpleDB domains avail-
able to us for the experiments described here. Therefore,
for the attribute-based and attribute-pair indexes the max-
imum number of domains that can be allocated for each
domain type (i.e., S/P/O for attribute-based or SP/PO/OS
for attribute-pair) was set to 30. After indexing all 10 data-
sets, the numbers of domains allocated were as follows:

• For the attribute-based strategy: 9 S domains, 1 P

1The full semantics of a SPARQL query on an RDF database
should contain answers both from the explicit triples, and
the implicit ones which are derived from the explicit triples
using various RDF inference rules [17]. In the work de-
scribed here, we have not yet considered cloud-based rea-
soning; this is part of our future work.

0

200

400

600

800

1000

1200

1400

1600

10000 30000 50000 70000 90000

T
im

e
(s

ec
)

#Triples

Attribute-based

Attribute-pair

Attribute-subset

Domain-per-dataset

Figure 4: Indexing time.

domain and 22 O domains

• For the attribute-pair strategy: 30 SP domains, 22 PO
domains and 30 OS domains

• For the attribute-subset index: 1 domain;

• For the domain-per-dataset index: 10 domains, one for
each dataset.

Because the SimpleDB limitations for the first two strate-
gies are very restrictive even for small datasets, the domains
were partitioned throughout our indexing experiments (start-
ing from the smallest dataset of 10.000 triples).

For each indexing strategy we measure the time from the
moment we start indexing the data, until the moment the in-
dex has been completely built in SimpleDB. Figure 4 shows
the time required to build each index as the number of
stored RDF triples increases. Note that we have used the
BatchPutAttributes operation provided by SimpleDB which
inserts to a single domain 25 items at a time, in a trans-
actional fashion. We observe from the graph that the time
required for the index construction grows linearly with the
number of triples stored. As already shown by the analytical
cost model of our indexing strategies, the attribute-subset
index is the most time-consuming one since for each triple it
inserts seven items into SimpleDB. On the other hand, the
attribute-based index which defines only one attribute name
for each item is more efficient. The attribute-pair strategy
uses more domains and creates more unique attribute-value
pairs that should be inserted in SimpleDB, and thus, is more
expensive than the simple attribute-based approach. Fi-
nally, the domain-per-dataset index inserts each time data
to a specific domain and does not scale well as the number
of datasets stored in S3 increases. While it performs similar
to the attribute-pair index up to 3 datasets, the time then
increases rapidly for more datasets.

Figure 5 shows the total machine utilization of SimpleDB
together with the cost for indexing all 10 datasets. Amazon
charges 0.154 dollars per hour of utilization of a SimpleDB
machine located in their Ireland facility. The attribute-
based indexing strategy requires less machine utilization time
and is thus more cost-efficient as well. On the other hand,
the attribute-subset index is more expensive since it creates
many more entries in SimpleDB than the rest of the indexes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

2

4

6

8

10

12

Attribute-based Attribute-pair Attribute-subset Domain-per-dataset

C
o

st
 (

$
/m

o
n

th
)

S
im

p
le

D
B

 u
ti

li
za

ti
o

n
 (

h
o

u
rs

)

Indexing strategies

SimpleDB Usage

Cost

Figure 5: SimpleDB utilization and cost.

Table 9: Number of index look-up calls to Sim-

pleDB, for each query and indexing strategy.

Query #q #c Attr- Attr- Attr- Domain
based pair subset per dataset

Q1 1 1 1 22 1 10
Q2 2 3 2 44 2 20
Q3 2 2 2 44 2 20
Q4 2 3 24 44 2 20
Q5 3 4 25 66 3 30
Q6 4 5 26 88 4 40
Q7 8 9 30 176 8 80

Finally, while the attribute-pair and domain-per-dataset in-
dexes create about the same attribute-value pairs to insert in
SimpleDB, in the attribute-pair index we create many more
domains and thus consume more of SimpleDB resources.

5.3 Querying
In this section, we present our preliminary results when

evaluating various SPARQL BGP queries. The character-
istics of the queries we used are shown in Table 9, where
#q is the number of triple patterns and #c is the number
of constant values each query contains. For this set of ex-
periments, we have stored 10 RDF datasets in S3, each one
consisting of 10.000 triples, and built the four indexes for
this data. The number of domains created for each index is
as described in Section 5.2.

In Table 9 we also depict the number of SimpleDB calls
that were made for retrieving the appropriate URIs in each
indexing strategy, i.e., SELECT queries for the attribute-based,
attribute-pair and domain-per-dataset index, and GetAttribu-
tes calls for the attribute-subset index. This table verifies
our analytical cost model which shows that the number of
lookups depends on the number of triple patterns in each
query, as well as on the number of created domains. For
example, query Q7 which consists of 8 triple patterns re-
quires the largest number of lookups compared to the rest
of the queries in all indexing strategies. Moreover, since
the attribute-subset index consists of only one domain, the
number of calls performed to SimpleDB for any SPARQL
query is smaller than the calls performed by the other in-
dexing strategies. The attribute-pair index, which allocates

0

100

200

300

400

500

600

700

Q1 Q2 Q3 Q4 Q5 Q6 Q7

T
im

e
(m

se
c)

Queries

Attribute-based

Attribute-pair

Attribute-subset

Domain-per-dataset

Figure 6: Index exploitation time.

the largest number of SimpleDB domains, sustains a great
amount of SimpleDB calls for any kind of queries. Observe
that within AWS, calls to different SimpleDB domains are
evaluated in parallel, and this parallelization also benefits
our work, however, we did not attempt to split and paral-
lelize computations beyond that; we are interested to do so
as part of our future work.

In this experiment, we have also measured the time re-
quired for retrieving the final set of URIs required to evalu-
ate a SPARQL query (index exploitation time). We show the
index exploitation time in Figure 6 for each indexing strat-
egy and for various SPARQL queries. This time includes the
time to build the appropriate SELECT queries or GetAttributes
calls, the time required by SimpleDB to provide the results
of these queries/calls, and the time for intersecting the URI
sets thus obtained, whenever the look-up strategy requires
such post-processing.

All measurements are averaged over 10 runs. Since pre-
vious studies established that the performance of Amazon
EC2 performance may vary significantly over time [18, 7],
we also depict the 95% confidence intervals. The attribute-
subset indexing strategy outperforms the other strategies for
all queries because it imposes the least amount of calls to
SimpleDB. The attribute-based and attribute-pair indexes
exhibit a similar performance with the former to perform
slightly better because of the smaller amount of SimpleDB
lookups. However for some queries (e.g., Q5 and Q6) the
confidence intervals have a large overlap meaning that a
sorting between the two strategies for such queries is not
possible. Finally, although the domain-per-dataset indexing
strategy gives better results than the aforementioned two
indexes for most of the queries, it exhibits a very poor per-
formance for queries which contain more than 5 triple pat-
terns. This results from the large number of SELECT queries
posed to the same domains, which after a certain number of
requests become a bottleneck.

5.4 Experiments conclusion
Our preliminary results show the feasibility and efficiency

of our architecture as well as the performance of our pro-
posed indexing strategies. Comparing the indexing strate-
gies highlights a trade-off between the cost of the creation
of an index (both monetary and time cost) and the effi-
ciency on the lookup process. A prominent example of this

trade-off is the attribute-subset indexing strategy which is
the most expensive index to build but gives the best per-
formance while querying. Using bigger datasets and more
heterogeneous data is our next step of experimentation.

6. RELATED WORK
Significant attention has been paid recently to RDF stores

using cloud-based services. One system closely related to our
work is Stratustore [21], an RDF store that uses Amazon’s
SimpleDB as an RDF store back-end in combination with
Jena’s API. Stratustore indexes all triples in SimpleDB us-
ing the subjects of the triples as items, the properties as at-
tribute names and the objects as the values of the attributes.
A drawback of this approach is that SPARQL queries having
a variable in the property position cannot be answered. The
authors propose to insert one more entry per triple having
as attribute names the objects with values the properties
but this leads to a great increase in storage. The evaluation
of Stratustore is performed by running queries with up to
20 simultaneously Stratustore instances. Results show that
performance is not competitive with other RDF stores such
as Virtuoso. This is caused by the joins required for com-
plex queries which have to be performed at the client side.
However, as the number of Stratustore instances grows, the
throughput of the system also increases.

The CumulusRDF [11] system uses Apache Cassandra,
a nested key-value store, as a triple store back-end and
proposes two different indexing strategies for storing RDF
triples in Cassandra. The authors of [11] propose a hier-
archical indexing scheme using supercolumns where all six
combinations of subject, property, object are built-in in-
dexes. In the second indexing scheme, called flat layout,
simple columns are used where three main indexes are re-
quired together with a secondary index for several cases.
CumulusRDF is evaluated in 8 machines using an instance
of the DBPedia dataset and the queries used were only single
triple pattern lookups. The authors conclude that their flat
layout approach outperforms the hierarchical one. However,
both Stratustore and CumulusRDF focus on providing full
indexing capabilities in order to be able to answer SPARQL
queries from indexes. Different from this approach, our
main concern is to use the indexes for efficiently retrieving a
smaller subset of datasets from which we are able to extract
the answer to SPARQL queries using any in-memory RDF
store.

Dydra [2] is an RDF store relying on the Amazon EC2
infrastructure which provides a SPARQL endpoint to query
the data stored. Although Dydra addresses an RDF data
management problem similar to our, there is not much in-
formation available revealing the details of their approach.

Various works using MapReduce and related technologies
have appeared in the literature as well. These works focus
on developing large-scale RDF stores using the MapReduce
paradigm. [13] is one of the first works to introduce cloud
computing in the area of Semantic Web. It gives some pre-
liminary experimental results using Apache Hadoop, a very
popular implementation of MapReduce and Pig, a tool that
translates queries expressed in Pig Latin to MapReduce jobs.
In [6] the authors use Hadoop and propose a specific stor-
age scheme that partitions RDF files into smaller ones to be
stored in HDFS, the file system of Hadoop. They also use
summary statistics to determine the best plan to evaluate a
SPARQL query. [14] considers the evaluation of SPARQL

basic graph pattern queries in a MapReduce framework.
Specifically, the authors propose a multi-way join algorithm
to process SPARQL queries efficiently, as well as two meth-
ods to select the best query plan for executing the joins.
Experiments were conducted with Cloudera’s Hadoop distri-
bution on the Amazon EC2. Finally, [19] presents a method
to map SPARQL queries to Pig Latin queries.

7. CONCLUSIONS AND PERSPECTIVES
We have presented a novel architecture for the distributed

management of RDF data stored in cloud infrastructures.
We designed indexing techniques for retrieving the appro-
priate RDF files related to a specific query. We chose Ama-
zon Web Services as a platform and implemented all our
indexing strategies. We presented an analytical cost model
and an experimental evaluation of both the indexing and the
querying process of our strategies.

We plan to consider several extensions of this work.
Since the results of our experimental evaluation are only

preliminary, we plan to continue experimenting with bigger,
real-world datasets is our ongoing work. Interestingly, Ama-
zon has recently launched a new data service, namely Dy-
namoDB, that lifts some of the limitations we encountered
with SimpleDB. However, it brings its own limitations, and
in particular specific restrictions on the way one is allowed
to switch between different levels of service. Dynamo DB is
in beta stage for now; we may consider it as a replacement
for SimpleDB once its functioning is consolidated and better
known.

A full solution for a cloud-based large RDF store must
include an intelligent pricing model for the store as well as
for the index, reflecting the usage of cloud resources. In
this work we have outlined the monetary costs associated to
the index, which are a first ingredient of a comprehensive
pricing scheme. How indexes built once in a cloud amortize
over several users has been discussed in [8].

A direction we have not considered in this work is the
parallelization of the task of evaluating a query on a given
RDF dataset. This is obviously interesting, since the paral-
lel processing capabilities of a cloud may lead to very short
response times. However, when considering RDF data, a
first significant obstacle consists of the difficulty of finding a
way to partition the data, in order to enable different pro-
cessors to work each partition in parallel. This is complex
not only because RDF consists of “inextricable” graphs, but
also because conceptually, as explained in Section 2, queries
should be evaluated over the merge of all the datasets re-
siding in the store. This concurs to make the problem quite
challenging.

Finally, RDF is a well-known data model that allows for
extracting inferred information from the already existing
data. An interesting and important task therefore, is to
adapt our architecture and indexing strategies so that RDFS
reasoning can be also supported.

8. REFERENCES

[1] Amazon Web Services. http://aws.amazon.com/.

[2] Dydra. http://dydra.com/.

[3] A. Alexandrov, S. Ewen, M. Heimel, F. Hueske,
O. Kao, V. Markl, E. Nijkamp, and D. Warneke.
MapReduce and PACT - Comparing Data Parallel
Programming Models. In BTW, 2011.

[4] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann,
and T. Kraska. Building a Database on S3. In
SIGMOD, 2008.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In 6th Symposium
on Operating Systems Design and Implementation,
2004.

[6] M. F. Husain, L. Khan, M. Kantarcioglu, and
B. Thuraisingham. Data Intensive Query Processing
for Large RDF Graphs Using Cloud Computing Tools.
In 3rd International Conference on Cloud Computing,
2010.

[7] A. Iosup, N. Yigitbasi, and D. Epema. On the
Performance Variability of Production Cloud Services.
In IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing, 2011.

[8] V. Kantere, D. Dash, G. Gratsias, and A. Ailamaki.
Predicting Cost Amortization for Query Services. In
SIGMOD, 2011.

[9] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and Abstract Syntax.
W3C Recommendation, 2004.

[10] R. Krummenacher, K. Aberer, A. Kiryakov, and
R. Kanagasabai. Workshop on Semantic Data
Management: A Summary Report. SIGMOD Record,
39(3):24–26, 2010.

[11] G. Ladwig and A. Harth. CumulusRDF: Linked Data
Management on Nested Key-Value Stores. In SSWS,
2011.

[12] F. Manola and E. Miller. RDF Primer. W3C
Recommendation, February 2004.

[13] P. Mika and G. Tummarello. Web Semantics in the
Clouds. IEEE Intelligent Systems, 23(5):82–87, 2008.

[14] J. Myung, J. Yeon, and S.-g. Lee. SPARQL Basic
Graph Pattern Processing with Iterative MapReduce.
In Workshop on Massive Data Analytics on the Cloud,
2010.

[15] T. Neumann and G. Weikum. Scalable Join Processing
on Very Large RDF Graphs. In SIGMOD, 2009.

[16] T. Neumann and G. Weikum. The RDF-3X Engine for
Scalable Management of RDF Data. The VLDB
Journal, 19(1), 2010.

[17] E. Prud’hommeaux and A. Seaborn. SPARQL Query
Language for RDF. W3C Recommendation,
http://www.w3.org/TR/rdf-sparql-query/, 2008.

[18] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
Measurements in the Cloud: Observing, Analyzing,
and Reducing Variance. PVLDB, 3, September 2010.

[19] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen.
PigSPARQL: Mapping SPARQL to Pig Latin. In
SWIM, 2011.

[20] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP2Bench: A SPARQL Performance Benchmark. In
ICDE, 2009.

[21] R. Stein and V. Zacharias. RDF On Cloud Number
Nine. In 4th Workshop on New Forms of Reasoning for
the Semantic Web: Scalable and Dynamic, May 2010.

