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Università Roma Tre, Italy and Inria Saclay, France
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2.1 Introduction

Since its emergence, cloud computing has been massively adopted due to
the scalability, fault-tolerance and elasticity features it o↵ers. Cloud-based
platforms free the application developer from the burden of administering the
hardware and provide resilience to failures, as well as elastic scaling up and
down of resources according to the demand. The recent development of such
environments has a significant impact on the data management research com-
munity, in which the cloud provides a distributed, shared-nothing infrastruc-
ture for scalable data storage and processing. Many recent works have focused
on the performance and cost analysis of cloud platforms, and on the exten-
sion of the services that they provide. For instance, [9] focuses on extending
public cloud services with basic database primitives, while extensions for the
MapReduce paradigm [14] are proposed in [5] for e�cient parallel processing
of queries in cloud infrastructures.

At the same time, there is an abundance of RDF data published on the
Web nowadays. DBpedia, BBC and Open Government Data are only a few
examples of the constantly increasing Linked Open Data cloud (LOD)1. To
exploit such large volumes of Linked data, an interesting option is to ware-
house it into a single access point repository. This typically involves some
crawling or other means of identifying interesting data sources and loading
the data into the repository where further processing can be applied. E�cient
systems have been devised in order to handle large volumes of RDF data in a
centralized setting, with RDF-3X [22] being among the best-known. However,
as the amount of data continues to grow, it is no longer feasible to store the
entire linked data sets on a single machine and still be able to scale to multiple
and varied user requests. Thus, such huge data volumes have raised the need
for distributed storage architectures and query processing frameworks, such as
the ones provided by P2P networks and discussed in Chapter ?? or federated
databases discussed in Chapter ??.

In this chapter we focus on recent proposals for distributed and parallel
query processing techniques which are suited to cloud infrastructures. In par-
ticular, we present an architecture for storing RDF data within the Amazon
cloud that provides e�cient query performance, both in terms of time and
monetary costs. We consider hosting RDF data in the cloud, and its e�cient

1lod-cloud.net
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storage and querying through a (distributed, parallel) platform also running
in the cloud. Such an architecture belongs to the general Software as a Service
(SaaS) setting where the whole stack from the hardware to the data manage-
ment layer are hosted and rented from the cloud. At the core of our proposed
architecture reside RDF indexing strategies that allow to direct queries to a
(hopefully tight) superset of the RDF datasets which provide answers to a
given query, thus reducing the total work entailed by query execution. This
is crucial as, in a cloud environment, the total consumption of storage and
computing resources translates into monetary costs.

This chapter is organized as follows. First, we provide a brief survey of the
existing works which aim at storing and querying large volumes of RDF data
in clouds, in Section 2.2. We introduce in Section 2.3 the di↵erent parts of
the Amazon Web Services (AWS) cloud platform that we use in our work and
our architecture. Then we focus on our specific indexing and query answering
strategies in Section 2.4. Finally, we provide relevant implementation details
in Section 2.5 and experiments that validate the interest and performance of
our architecture in Section 2.6.

2.2 Classification of RDF Data Management Platforms
in the Cloud

We first review the state-of-the-art works in cloud-based management of
RDF data. The field is very active and numerous ideas and systems have ap-
peared recently. We present them classified according to the way in which they
implement three fundamental functionalities: data storage, query processing,
and reasoning, which (going beyond cloud-based data storage and querying)
is specific to the RDF context.

2.2.1 Cloud-based RDF storage

A first classification of existing platforms can be made according to their
underlying data storage facilities. From this perspective, existing systems can
be split into the following categories:

• systems which use existing “NoSQL” key-value stores [12] as back-ends
for storing and indexing RDF data;

• systems relying on a distributed file system, such as HDFS, for ware-
housing RDF data;

• systems relying on other storage facilities, such as a set of independent
single-site RDF stores, or data storage services supplied by the cloud
providers.
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Systems of the first category use the underlying key-value stores for both
storage and indexing of RDF data. The most commonly used indexing scheme
is one already adopted in centralized RDF stores, which either uses all six
permutations of subject, predicate, object of the RDF triples or a subset of
them. Because of the key-value pair data model of the key-value stores, usually
one table is created for each one of these permutations. Representatives of this
category include systems such as Rya [25] which uses Apache Accumulo [2],
CumulusRDF [21] based on Apache Cassandra [3], Stratustore [30] which relies
on Amazon’s SimpleDB [1], and H2RDF [23] or MAPSIN [28] built on top of
HBase [4]. Depending on the specific capabilities of the underlying key-value
store, di↵erent designs have been chosen for the key and values. In H2RDF,
the first two elements are used as the key, and the last one as the attribute
value, while in Rya, all three elements are used as the key while the value
remains empty. In our own AMADA platform [6], we use the first element as
the key, the second as the attribute name and the last one as the attribute
value, as we will detail further on in this chapter. Trinity.RDF [33], a recent
system developed in Microsoft, also belongs to this category. Trinity.RDF is
a graph engine for RDF data based on Trinity [29], a distributed in-memory
key-value store. Although it takes advantage of the graph structure of RDF,
essentially it also indexes RDF data based on three di↵erent permutations
of subject, predicate, object. While key-value stores are ideal for matching
individual triple patterns, join operations are not supported by the key-value
stores and thus, the join evaluation should be implemented and performed out
of the store. This may raise performance issues.

The second category comprises platforms, such as those described in [17,
26, 27], that use the Hadoop Distributed File System (HDFS) to store RDF
data. In [27] RDF datasets are simply stored in HDFS as they are provided
by the user, while in [17] a specific partitioning scheme is used which groups
triples based on their predicate values and the type of their objects. These
systems are built to make the most out of the parallel processing capacities
provided by the underlying MapReduce paradigm. They are able to handle
large data chunks (files), however they do not provide fine-grained access to
this data.

Within the third category lies [16], where RDF data is partitioned based on
a graph partitioning tool and each partition is stored in one machine within a
centralized RDF store. While this approach works well for star-shaped queries,
it needs a big amount of data replication for more complicated ones which
makes it not scalable to very large datasets. In our work [6, 10], we use a
mixed approach with data residing in Amazon’s storage service (S3) and a
full data index built in Amazon’s key-value store. As we explain in the rest
of the chapter, this approach highly depends on the data partitioning and is
suitable for selective queries.
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2.2.2 Cloud-based SPARQL query processing

A second relevant angle of analysis of cloud-based RDF platforms comes
from their strategy for processing SPARQL queries. From this perspective, we
identify two main classes:

• systems relying on the parallel programming paradigm of MapRe-
duce [14];

• systems attempting to reduce or avoid altogether MapReduce steps. The
reason is that while MapReduce achieves important parallel scalability,
the start-up time of a MapReduce job is significant [13], an overhead
which may be too high for interactive-style queries.

Systems such as [17, 27, 26] belong to the first class above where di↵erent
MapReduce-based evaluation strategies are proposed. In [27] one MapReduce
job is used for each join operation, while in [17, 26] the goal of the query evalu-
ation is to heuristically reduce the number of MapReduce jobs by performing
as many joins as possible in parallel. Using MapReduce for query process-
ing is suitable for analytical-style queries but may cause a big overhead for
interactive-style very selective queries.

In the second class we find systems relying on key-value stores which ex-
ploit the indices to e�ciently find matches to the triple patterns of the query.
Such systems typically gather the matches of the triple patterns in a single
site and implement their own join operators [25, 30]. Works such as [6, 10, 16],
which take advantage of existing RDF stores, also belong to this group. Trin-
ity.RDF [33] is classified in this category as well; it uses a graph-oriented
approach by exploring the distributed RDF graph in parallel. Finally, H2RDF
uses a hybrid approach depending on the selectivity of the query; for non-
selective queries a MapReduce-based query plan is used, while for very selec-
tive queries data retrieved from the key-value store are joined locally.

2.2.3 RDF reasoning in the cloud

The first chapter has introduced the role of inference (or reasoning) and
the importance of implicit data in an RDF data management context. From
the perspective of their way to handle implicit data, cloud-based RDF data
management platforms can be classified in three classes:

• pre-compute and materialize all implicit triples;

• compute the necessary implicit triples at query time;

• some hybrid approach among the two above, with some implicit data
computed statically and some at query time.

In [31] the RDF(S) inference rules are used for precomputing the whole
RDFS entailment using MapReduce jobs. In this case, query processing can
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take place using regular query processing techniques and can be very e�-
cient. On the other hand, computing the whole RDFS entailment causes a
significant storage overhead and on the presence of data or schema updates
the whole RDFS entailment should be recomputed again. On the contrary,
in [32] the RDFS entailment is computed on demand based on a given triple
pattern. However, no general query evaluation algorithms are presented. The
only work that injects some RDFS entailment within query processing is [17]
using query reformulation. Certainly, such an approach does not impose any
storage overhead and is very flexible for updates but does incur an overhead
during query time depending on the complexity of the query.

The remaining systems do not consider reasoning at all, which implies
that they assume all the implicit data has been made explicit (through infer-
ence) and stored before evaluating queries. Our own AMADA platform is also
currently based on this assumption, and in the remainder of the chapter, we
will not further consider cloud-based RDF reasoning. Given the complexity of
distributed reasoning and the interest in large-scale Semantic Web data, we
expect this to attract significant interest in the near future.

2.3 AMADA: RDF Data Repositories in the Amazon
Cloud

We consider hosting RDF data in the cloud, and its e�cient storage and
querying through a (distributed, parallel) platform also running in the cloud.
Such an architecture belongs to the general Software as a Service (SaaS) set-
ting where the whole stack from the hardware to the data management layer
are hosted and rented from the cloud. We envision an architecture where large
amounts of RDF data reside in an elastic cloud-based store, and focus on the
task of e�ciently routing queries to only those datasets that are likely to have
matches for the query.

Our proposal has been implemented using the Amazon Web Ser-
vices (AWS) cloud platform [1], one of the most prominent commercial cloud
platforms today, and our platform is called AMADA. AWS provides elastic
scalable cloud-based services that organizations and individuals can use to
develop their own applications.

In the following, Section 2.3.1 introduces the Amazon services used by
AMADA, while Section 2.3.2 presents our proposed architecture built on top
of it.
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2.3.1 Amazon Web Services

In AMADA, we store RDF files in Amazon Simple Storage Service (S3) and
use Amazon DynamoDB for storing the index. SPARQL queries are evaluated
against the RDF files retrieved from S3, within the Amazon Elastic Compute
Cloud (EC2) machines and the communication among these components is
done through the Simple Queue Service (SQS).

In the following we describe the services used by our architecture. We also
introduce the parameters used by AWS for calculating the pricing of each of
its services; the actual figures are shown in Table 2.1 (the notations in the
table are explained in the following subsections). More details about AWS
pricing can be found in [1].

ST $
m,GB

= $0.125 IDX $
m,GB

= $1.13

STput$ = $0.000011 IDXput$ = $0.00000032

STget$ = $0.0000011 IDXget$ = $0.000000032

VM $
h,l = $0.38 QS$ = $0.000001

VM $
h,xl = $0.76 egress$GB = $0.12

TABLE 2.1: AWS Ireland costs as of February 2013.

2.3.1.1 Simple Storage Service

Amazon Simple Storage Service (S3) is a storage web service for raw data
and hence, ideal for storing large objects or files. S3 stores the data in named
buckets. Each object stored in a bucket has associated a unique name (key)
within that bucket, metadata, an access control policy for AWS users and
a version ID. The number of objects that can be stored within a bucket is
unlimited.

To retrieve an object from S3, the bucket containing it should be accessed,
and within bucket the object can be retrieved by its name. S3 allows to access
the metadata associated to an object without retrieving the complete entity.
Storing objects in one or multiple S3 buckets has no impact on the storage
performance.

Pricing. Each read file operation costs STget$, while each write operation
costs STput$. Further, ST $

m,GB

is the cost charged for storing 1 GB of data
in S3 for one month. AWS does not charge anything for data transferred to or
within their cloud infrastructure. However, data transferred out of the cloud
incurs a cost: egress$

GB

is the price charged for transferring 1 GB.

2.3.1.2 DynamoDB

Amazon DynamoDB2 is a key-value based store that provides fast access to
small objects, ensuring high availability and scalability for the data stored [15].

Figure 2.1 outlines the structure of a DynamoDB database. A DynamoDB

2http://aws.amazon.com/dynamodb/
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database table
1 1..n

item
1 1..n

attribute
1 1..n

name
1

1

1

1..n valuekey1
1..2

FIGURE 2.1: Structure of a DynamoDB database.

database is organized in tables. Each table is a collection of items identified
by a primary composite key. Each item contains one or more attributes; in
turn, an attribute has a name and a set of associated values3.

An item in a table can be accessed by providing its composite key which
consists of two attributes: the hash key and the range key. Internally, Dy-
namoDB maintains an unordered hash index on the hash key and a sorted
range index on the range key. Further, it partitions the items of a table across
multiple servers according to a hash function defined on the hash key.

DynamoDB provides a very simple API to execute read and write opera-
tions. The methods that we use in our platform include4:

• PutItem(T, Key(hk, [rk]), (a,v)+) creates a new item in the table T

containing a set of attributes (a,v)+ and having a key composed by
a hash key hk and range key rk, or replaces it if it already existed.
Specifying the range key is optional.

• BatchWriteItem(item+) puts and/or deletes up to 25 Items in a single
request, thus obtaining better performance.

• GetItem(T, Key(hk, [rk]), (a)*) returns the item having the key
Key(hk, [rk]) in table T. Once again, specifying the range key is op-
tional. It is possible to retrieve only a subset of the attributes associated
to an item by specifying their names (a)* in the request.

DynamoDB does not provide support for operations executed on data from
di↵erent tables. Therefore, if combining data across tables is required, the re-
sults from the respective tables have to be combined at the application layer.
The read and write throughputs for each table in DynamoDB are set indepen-
dently by the developer. AWS ensures that operations over di↵erent tables run
in parallel therefore the maximum performance (and a reduced monetary cost)
can be obtained splitting data across multiple tables. In addition, DynamoDB
does not follow a strict transactional model based on locks or timestamps.
Instead, it implements an eventual consistency model5 that privileges high
availability and throughput at the expense of strong synchronization.

3An item can have any number of attributes, although there is a limit of 64 KB on the
item size.

4For the sake of readability in the rest of the chapter we will refer to those operations
simplifying the notation and the parameters, the full specification of those operations can
be found in the DynamoDB documentation [1].

5http://aws.amazon.com/dynamodb/faqs/#What_is_the_consistency_model_of_Amazon_DynamoDB
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Pricing. Each item read and write API request has a fixed price, IDXget$

and IDXput$ respectively. One can adjust the number of API requests that
a table can process per second. Further, DynamoDB charges IDX $

m,GB

for
storing 1 GB of data in the index store during one month.

2.3.1.3 Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) provides virtual machines, called
instances, which users can rent to run their applications on. A developer can
store in AWS the image or static data containing the software that an instance
should run once it is started. Then, it can launch instances e.g. large, extra-
large, etc that have di↵erent hardware characteristics, such as CPU speed,
RAM size, etc.

Pricing. The EC2 utilization cost depends on the kind of virtual machines
used. In our system, we use large (l) and extra-large (xl) instances. Thus,
VM $

h,l

is the price charged for using a large instance for one hour, while

VM $
h,xl

is the price charged for using an extra-large instance for one hour.

2.3.1.4 Simple Queue Service

Amazon Simple Queue Service (SQS) provides reliable and scalable queues
that enable asynchronous message-based communication between the dis-
tributed components of an application. This service prevents an application
from message loss and from requiring each component to be always available.

Pricing. QS $ is the price charged for any request to the queue service API,
including send message, receive message, delete message, renew lease etc.

2.3.2 General architecture

We envision an architecture where large amounts of RDF data reside in an
elastic cloud-based store, and focus on the task of e�ciently routing queries
to only those datasets that are likely to have matches for the query. Selective
query routing reduces the total work associated to processing a query, and in
a cloud environment, total work also translates in financial costs! To achieve
this, whenever data is uploaded in the cloud store, we index it and store the
index in an e�cient (cloud-resident) store for small key-value pairs. Thus,
we take advantage of: large-scale stores for the data itself; elastic computing
capabilities to evaluate queries; and the fine-grained search capabilities of a
fast key-value store, for e�cient query routing.

RDF datasets are stored in S3 and each dataset is treated as an unin-
terpreted BLOB object. As explained in Section 2.3.1.1, it is necessary to
associate a key to every resource stored in S3 in order to be able to retrieve
it. Thus, we assign to each dataset: (i) a URI consisting of the bucket name
denoting the place where it is saved; (ii) and the name of the dataset. The com-
bination of both (i), (ii) describes uniquely the dataset. In general we indicate



58 Linked Data Management: Principles and Techniques

FIGURE 2.2: AMADA architecture based on AWS components.

as URI
dsj the URI associated to the dataset j. The indexes use this URI for

retrieving the correct datasets. Finally, we store our indexes in DynamoDB,
as it provides fast retrieval for fine-granularity objects.

An overview of our system architecture is depicted in Figure 2.2. A user
interaction with our system can be described as follows.

The user submits to the front-end component an RDF dataset (1) and the
front-end module stores the file in S3 (2). The front-end then creates a message
containing the reference to the dataset and inserts it to the loader request
queue (3). Any EC2 instance running our indexing module receives such a
message (4) and retrieves the dataset from S3 (5). The indexing module, after
transforming the dataset into a set of RDF triples, creates the index entries
and inserts them in DynamoDB (6).

When a user submits a SPARQL query to the front-end (7), the front-
end inserts the corresponding message into the query request queue (8). Any
EC2 instance running our query processor receives such a message and parses
the query (9). Then, the query processor performs a lookup in the index
stored in DynamoDB (10). Depending on the indexing strategy, the lookup will
return data that can be used to answer the query directly (without scanning
any data stored in S3) or data that can be used to find out which datasets
contain information to answer the query. Any processing required on the data
retrieved from DynamoDB is performed by the execution module (11). If a
final results extraction step is required, the local query evaluator receives the
final list of URIs pointing to the RDF datasets in S3 (12), retrieves them and
evaluates the SPARQL query against these datasets (13). The results of the
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query are written to S3 (14) and a message is created and inserted into the
query response queue (15). Finally, the front-end receives this message (16),
retrieves the results from S3 (17) and the query results are returned to the
user and deleted from S3 (18).

Although we use Amazon Web Services, our architecture could be easily
adapted to run on top of other cloud platforms that provide similar services.
Examples of such platforms include Windows Azure6 and Google Cloud7.

2.4 RDF Storing and SPARQL Querying within AMADA

In the following, we introduce the di↵erent strategies we have devised to
answer SPARQL queries e�ciently within AMADA, both in terms of time
and monetary costs.

First, Section 2.4.1 introduces the running example to demonstrate the
indexing strategies used in AMADA. Section 2.4.2 proposes a strategy that
loads all the RDF data in DynamoDB, making it possible to answer queries
only by looking up in the index. Finally, Section 2.4.3 presents indexing strate-
gies that allow to select the RDF datasets that should be retrieved from S3
to answer a given SPARQL query.

2.4.1 Data model and running example

In the following, we consider RDF graphs consisting of triples of the form
(s,p,o). We use the expression RDF graphs and RDF datasets interchange-
ably. We also use the notion of RDF merge (recall Definition 4 in Chapter 1) to
integrate two or more RDF graphs without there being blank node conflicts.

Regarding the query language, we focus on a subset of SPARQL. We deal
with SELECT or ASK queries and we consider basic graph pattern (BGP) queries,
i.e., the conjunctive fragment of SPARQL allowing to express the core Select-
Project-Join database queries. We also exclude queries with unbound triple
patterns as such queries cannot benefit from any indexing strategy. Support of
more complex SPARQL queries, such as OPTIONAL, UNION, etc., depends
on the operations supported by the execution module of the query processor.
We evaluate a BGP query B over the RDF merge G of several RDF graphs
using the semantics presented in Chapter 1, i.e., the results of the query are
equal to [[B]]

G

.
Throughout this chapter we rely on a simple running example consisting of

three linked RDF datasets and a SPARQL query. The data consists of (i) the
publications dataset that contains information about publications, (ii) the au-

6http://www.windowsazure.com
7https://cloud.google.com/



60 Linked Data Management: Principles and Techniques

publications

:publisher1

:article1

:bar
:hasAuthor

:book1
:hasPublished

:foo
:hasAuthor

:hasAuthor

Databases
:field

:cites

authors

:bar :lab1

:member

:uid1

:foo

:hasContactInfo

42, Lake street

+331234879

French

Foo

:hasAddress

:hasTel

:hasName

:hasNationality

:member

labs

:lab1

:location

ResearchLab

48.710715,2.17545:hasLocation

:hasName

:hasGPS

FIGURE 2.3: Graph representation of the example RDF data.

⌥ ⌅
SELECT ?pub ?author
WHERE {

?pub :hasAuthor ?author .
?author :member :lab1 .

} �⌃ ⇧
FIGURE 2.4: SPARQL example query Q1

thors dataset that contains information about the authors of the publications,
and (iii) the labs dataset that contains information about the labs the authors
are member of. The content of these datasets is depicted in Figure 2.38. Note
that in our work, we use the datasets as uploaded by the users. However, if
very large data sets are uploaded, one could envision partitioning them into
smaller ones in a divide-and-conquer fashion, to make query processing more
e�cient; this is an orthogonal extension that we do not discuss here. The
SPARQL query used in our example is depicted in Figure 2.4. The query asks
for the publications of the authors who are members of :lab1.

8For convenience, we omit the namespaces and denote by the prefix ’:’ that a node of
an RDF graph is a URI.
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RDF
S subject S token string for subject
P predicate P token string for predicate
O object O token string for object
U URI N constant table name
T RDF term

Datasets
D set of RDF datasets
ds a dataset in D

|ds| #triples in ds
q a SPARQL query
|q| #triple patterns in q

DynamoDB
N table name
K item key
A attr. name
V attr. value

TABLE 2.2: Notation.

Notation. In the following, we denote by D the RDF datasets that need to
be indexed by our system. In addition for any dataset ds 2 D, we use |ds| to
represent the total number of triples of this dataset. In turn, we denote by q
a SPARQL query, and |q| is the number of triple patterns in q.

To simplify our presentation, we describe each indexing strategy with re-
spect to the four levels of information that DynamoDB allows us to use,
namely table name (N), item key (K), attribute name (A) and attribute
value (V ). Each indexing strategy can be represented by a concatenation of
four |-separated symbols, specifying which information item is used in the
table name, item key, attribute name and attribute value, respectively.

To index RDF, we use the values of subjects (S), predicates (P ) and objects
(O), and URIs (U) of the RDF datasets residing in S3. Moreover, we will also
use RDF terms (T ) to denote any among subject, predicate and object. Thus,
a term t appears in a dataset D i↵ t appears as a subject, predicate or object
in D. We will also use a set of three token strings, which we denote by S, P
and O, and which we may use to di↵erentiate data that needs to be treated
as a subject, predicate, and object, respectively. We will use the symbol k to
denote string concatenation. In cases where there is no confusion we may omit
it (e.g., SP denotes the concatenation of the string values corresponding to
“subject” and “predicate”). Similarly, we will use a token string denoted by
N to represent a constant table name. Table 2.2 summarizes all the notation
we use in the rest of the chapter.

Analytical cost model. For comparing the di↵erent strategies, we focus
on the index size and query look-ups. Thus, for each strategy, we will present
analytical models for calculating data storage size and query processing costs
in the worst case scenario. This scenario will be described for each of the
strategies.

In this chapter, we do not consider a complete cost model of AMADA
that would include e.g. local processing, data transfer, etc. However, a full
formalization of the monetary costs associated to our architecture can be
found in [11].
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S table
item key (attr. name, attr. value)
subject (predicate, object)

P table
item key (attr. name, attr. value)
predicate (subject, object)

O table
item key (attr. name, attr. value)
object (predicate, subject)

(a) QAS indexing strategy

S table
item key (attr. name, attr. value)
:publisher1 (:hasPublished, :book1)
:article1 (:cites, :book1),

(:hasAuthor, :bar)
(:field, “Databases”)

. . . . . .

P table
item key (attr. name, attr. value)
:hasPublished (:publisher1, :book1)
:hasAuthor (:book1, :foo)

(:book1, :bar)
(:article1, :foo)

. . . . . .

O table
item key (attr. name, attr. value)
:foo (:hasAuthor, :book1)
:bar (:hasAuthor, :book1)

(:hasAuthor, :article1)
“Database” (:field, :article1)
. . . . . .

(b) Example of QAS index

TABLE 2.3: Query-answering indexing strategy

2.4.2 Answering queries from the index

The first strategy we describe relies exclusively on the index to answer
queries. This is achieved by inserting the RDF data completely into the index,
and answering queries based on the index without requiring accessing the
dataset. We denote this strategy by QAS and we describe it in more details
below.

Indexing. A DynamoDB table is allocated for each RDF triple attribute:
one for the subjects, one for the predicates and one for the objects. We use
the subject, predicate, object values of each triple in the datasets as the item
keys in the respective DynamoDB table, and as attribute (name, value) pairs,
the pairs: (predicate, object), (object, subject) and (subject, predicate) of the
triple. Thus, each entry in the table completely encodes an RDF triple, and
all database triples are encoded in the indexes: (S|S|P |O), (P |P |O|S) and
(O|O|S|P ).

The organization of this index is illustrated in Table 2.3(a) while Table
2.3(b) shows the organization of the index for the triples of our example.

Querying. When querying data indexed according to QAS, one needs to
perform index look-ups in order to extract from the index sets of triples that
match the triple patterns of the query, and then process these triples through
relational operators (selections, projections and joins) which AMADA pro-
vides in its execution module of the query processor (Figure 2.2). In our im-
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plementation, we have used our in-house relational operators of ViP2P [20]
but any relational query processor supporting these operators could be used.

For each triple pattern appearing in a given BGP query, a GetItem Dy-
namoDB call is executed. If the triple pattern has only one bound value then
the call is done to the respective table, i.e., if the bound value is a predicate,
the call is performed to the predicate table. Otherwise, if two values of the
triple pattern are bound, we choose the most selective of them. Thus, we get
from the index the least amount of values that match the triple pattern. In our
implementation we use the following heuristic: objects are more selective than
subjects, which in turn are more selective than the predicates. Alternatively,
one could use statistics on the RDF dataset to order the look-ups according
to cardinality estimations on the number of triples returned by each index
look-up, intermediary result sizes etc. Those statistics can be calculated for
each dataset at indexing time and stored in DynamoDB as well.

For each triple pattern t
i

, the resulting attribute name-value pairs retrieved
from DynamoDB form a relation R

i

with two columns: one holding the at-
tribute names and another the attribute values. If the triple pattern has only
one bound value, the values of these columns contain the bindings of the vari-
ables of t

i

. Otherwise, if t
i

contains two bound values, a selection operation
is used to filter out the values that do not match the triple pattern. These
relations are then joined and the result forms the answer to the query.

For instance, consider the SPARQL query of Figure 2.4. First, we define
the following DynamoDB requests:

r1: GetItem(P, :hasAuthor)

r2: GetItem(O, :lab1)

Request r1 returns attribute name-value pairs (s1, o1) which form a re-
lation R1, while r2 returns attribute name-value pairs (s2, p2) which form
another relation R2. Then, a selection operation is performed which requires
all values of the second column of R2 to be equal to the predicate :member

(i.e., �2=:member

(R2)). The remaining values of the first column of R2 are
the bindings to the variable of the second triple pattern. Finally, a join is
performed between the second column of R1 and the first column of R2

and the results of the join form the answer to the SPARQL query Q1, i.e.,
[[Q1]]]

G

= R1 ./2=1 ⇡1(�2=:member

(R2)).

Analytical cost model. We now analyze the cost of the QAS indexing
strategy as well as the number of required lookups while processing a SPARQL
query.

We assume that the number of distinct subject, predicate and object values
appearing in a dataset is equal to the size of the dataset itself, and thus equals
to the number of triples (worst case scenario). In this indexing strategy we
create three entries to DynamoDB for each triple in our dataset ds 2 D.
Therefore, the size of the index of this strategy is

P
ds2D 3⇥ |ds|.

To process queries, we perform one lookup for each triple pattern appearing
in the SPARQL query q. Thus, the number of lookups to DynamoDB is |q|.
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N table
item key (attr. name, attr. value)

v1 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
v2 (URI

ds2 , ✏), . . .
v3 (URI

ds1 , ✏), (URI
ds2 , ✏), . . .

(a) RTS indexing.

N table
item key (attr. name, attr. value)
:publisher1 (publications, ✏)
:book1 (publications, ✏)
:article1 (publications, ✏)
:bar (authors, ✏), (publications, ✏)
:foo (authors, ✏)
:lab1 (authors, ✏), (labs, ✏)
:location (labs, ✏)
:hasAuthor (publications, ✏)
:hasPublished (publications, ✏)
:member (authors, ✏)
:hasName (authors, ✏), (labs, ✏)
. . .

(b) Sample RTS index entries.

TABLE 2.4: RTS indexing strategy.

2.4.3 Selective indexing strategies

In this section, we present three strategies for building RDF data sets in-
dexes within DynamoDB: the term-based strategy, the attribute-based strat-
egy and, the attribute-subset strategy. Each strategy exploits a di↵erent tech-
nique for indexing the RDF datasets and uses DynamoDB tables, items and
attributes according to a di↵erent pattern. The system uses these indexes in
order to identify among all the RDF data sets, those which may contribute to
answer a given query then loads them from S3 into an EC2 instance and pro-
cesses the query there. In this paragraph we illustrate the indexing techniques,
the query strategies and the combining result methods then in Section 2.6 we
analyze how the performances vary, in each index, according to the dataset
and query characteristics.

2.4.3.1 Term-based strategy

This first indexing strategy, denoted RTS, relies on the RDF terms found
within the datasets stored in S3. This strategy does not take into account
whether a certain term is found as a subject, predicate or object inside a
dataset.

Indexing. For each RDF term (URI or literal) appearing in a dataset, one
DynamoDB item is created with the value of this term as key, the URI of
the dataset that contains this RDF term as attribute name, and a null string
(denoted ✏) as attribute value. The name of the dataset is also the URI allowing
to access the RDF graph stored in S3. That is, the index is of the form:
(N |T |U |✏).

Table 2.4(a) depicts the general layout for this indexing strategy, where v
i

are the values of the RDF terms. Table 2.4(b) illustrates the index obtained
for the running example.
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Querying. For each RDF term of a BGP query a GetItem look-up in the
RTS index retrieves the URIs of the datasets containing a triple with the given
term. For each triple pattern, the results of all the GetItem look-ups must be
intersected, to ensure that all the constants of a triple pattern will be found
in the same dataset. The union of all URI sets thus obtained from the triple
patterns of a SPARQL query provides the URIs of the data sets to retrieve
from S3 and from the merge of which the query must be answered.

Using our running example, assume that we want to evaluate the SPARQL
query of Figure 2.4. The corresponding DynamoDB queries required in order
to retrieve the corresponding datasets are the following:

r1: GetItem(T, :hasAuthor)

r2: GetItem(T, :member)

r3: GetItem(T, :lab1)

The datasets retrieved from the DynamoDB request r1 will be merged
with those obtained by intersecting the results of r2 and r3. The query will
be then evaluated on the resulting (merged) graph to get the correct answers.

Analytical cost model. We assume that each RDF term appears only once
in a dataset (worst case scenario) and thus, the number of RDF terms equals
to three times the number of triples. For each RDF term in a dataset we
create 1 entry in DynamoDB. Then, the number of items in the index for this
strategy is

P
ds2D 3⇥ |ds|.

For query processing, the number of constants a query can have is at most
3 ⇥ |q|, i.e. a boolean query. Using this strategy, one lookup per constant
in the query is performed to the index and thus, the number of lookups to
DynamoDB is 3⇥ |q|.

2.4.3.2 Attribute-based strategy

The next indexing strategy, denoted ATT, uses each attribute present in
an RDF triple and indexes it in a di↵erent table depending on whether it is
subject, predicate or object.

Indexing. Let element denote any among the subject, predicate and object
value of an RDF triple. For each triple of a dataset and for each element of the
triple, one DynamoDB item is created. The key of the item is named after the
element value. As DynamoDB attribute name, we use the URI of the dataset
containing a triple with this value; as DynamoDB attribute value, we use ✏.
This index distinguishes between the appearances of an URI in the subject,
predicate or object of a triple: one DynamoDB table is created for subject-
based indexing, one for predicate- and one for value-based indexing. Using
our notation we therefore have the following indexes: (S|S|U |✏), (P |P |U |✏),
and (O|O|U |✏). In this way, false positives can be avoided (e.g., datasets that
contain a certain URI but not in the position that this URI appears in the
query will not be retrieved).
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S table
item key (attr. name, attr. value)

s1 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
s2 (URI

ds2 , ✏), . . .
P table

item key (attr. name, attr. value)
p1 (URI

ds1 , ✏), (URI
ds2 , ✏), . . .

p2 (URI
ds2 , ✏), . . .

O table
item key (attr. name, attr. value)

o1 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
o2 (URI

ds2 , ✏), . . .

(a) ATT indexing.

S table
item key (attr. name, attr. value)
:publisher1 (publications, ✏)
:book1 (publications, ✏)
:article1 (publications, ✏)
:bar (authors, ✏)
:foo (authors, ✏)
:uid1 (authors, ✏)
:lab1 (labs, ✏)
:location (labs, ✏)

P table
item key (attr. name, attr. value)
:hasAuthor (publications, ✏)
:hasPublished (publications, ✏)
:hasNationality (authors, ✏)
:hasName (authors, ✏), (labs, ✏)
. . .

O table
item key (attr. name, attr. value)
:book1 (publications, ✏)
:bar (publications, ✏)
“Databases” (publications, ✏)
“French” (authors, ✏)
:location (labs, ✏)
. . .

(b) Sample ATT index entries.

TABLE 2.5: ATT strategy.

Querying. For each RDF term (URI or literal) of a BGP query, a Dy-
namoDB GetItem look-up is submitted to the S, P , or O table of the ATT
index, depending on the position of the constant in the query. Each such look-
up retrieves the URIs of the datasets which contain a triple with the given
term in the respective position. For each triple pattern, the results of all the
GetItem look-ups based on constants of that triple need to be intersected. This
ensures that all the constants of a triple pattern will be located at the same
dataset. The union of all URI sets thus obtained from the triple patterns of
a SPARQL query provides the URIs of the data sets to retrieve from S3 and
from the merge of which the query must be answered.

Using our running example assume that we want to evaluate the SPARQL
query of Figure 2.4. The corresponding DynamoDB queries that are required
in order to retrieve the corresponding datasets are the following:

r1: GetItem(S, :hasAuthor)

r2: GetItem(P, :member)

r3: GetItem(O, :lab1)

The dataset URIs retrieved from DynamoDB request r1 will be merged
with the datasets resulting from the intersection of those retrieved from the
requests r2 and r3. The query will be then evaluated on the resulting (merged)
graph to get the correct answers.

Analytical cost model. We assume that the number of distinct subjects,
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predicates and objects values appearing in a dataset is equal to the size of the
dataset itself, and thus equal to the number of triples (worst case scenario).
For each triple in a dataset we create three entries in DynamoDB. Thus, the
size of the index for this strategy will be

P
ds2D 3⇥ |ds|.

Given a SPARQL query q, one lookup per constant in a request is per-
formed to the appropriate table. Thus, the number of lookups to DynamoDB
is 3⇥ |q|.

2.4.3.3 Attribute-subset strategy

The following strategy, denoted ATS, is also based on the RDF terms
occurring in the datasets, but records more informations on how terms are
combined within these triples.

Indexing. This strategy encodes each triple (s, p, o) by a set of seven pat-
terns s, p, o, sp, po, so and spo, corresponding to all non-empty attribute sub-
sets. For each of these seven patterns a new DynamoDB table is created. For
each triple seven new items are created and inserted into the corresponding ta-
ble. As attribute name, we use the URI of the dataset containing this pattern;
as attribute value, we use ✏. Using our notation, the indexes we create can be
described as: (S|S|U |✏), (P |P |U |✏), (O|O|U |✏), (SP |SP |U |✏), (PO|PO|U |✏),
(SO|SO|U |✏) and (SPO|SPO|U |✏).

A general outline of this strategy is shown in Table 2.6(a) and the data from
our running example leads to the index configuration outlined in Table 2.6(b).

Querying. For each triple pattern of a BGP query the corresponding GetItem

call is sent to the appropriate table depending on the position of the bound
values of the triple pattern. The item key is a concatenation of the bound
values of the triple pattern. The URIs obtained through all the GetItem calls
identify the datasets on which the query must be evaluated.

For example, for the SPARQL query of Figure 2.4 we need to perform the
following DynamoDB API calls:

r1: GetItem(P, :hasAuthor)

r2: GetItem(PO, :memberk:lab1)

We then evaluate the SPARQL query on the RDF merge of the retrieved
datasets.

Analytical cost model. For each triple in D, we create at most seven entries
in DynamoDB. Thus, the size of the index for this strategy is

P
ds2D 7⇥ |ds|.

To answer a query q, we perform one lookup for each triple pattern ap-
pearing in the SPARQL query. Thus, |q| is the number of DynamoDb requests
an attribute-subset strategy performs.
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S table
item key (attr. name, attr. value)

s1 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
s2 (URI

ds2 , ✏), . . .
P table

item key (attr. name, attr. value)
p1 (URI

ds1 , ✏), (URI
ds2 , ✏), . . .

p2 (URI
ds2 , ✏), . . .

O table
item key (attr. name, attr. value)

o1 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
o2 (URI

ds2 , ✏), . . .
SP table

item key (attr. name, attr. value)
s1kp1 (URI

ds1 , ✏), (URI
ds2 , ✏),. . ..

s1kp2 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
s2kp1 (URI

ds2 , ✏), . . .
PO table

item key (attr. name, attr. value)
p1ko1 (URI

ds1 , ✏), (URI
ds2 , ✏),. . ..

p1ko2 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
p2ko1 (URI

ds2 , ✏), . . .
SO table

item key (attr. name, attr. value)
s1ko1 (URI

ds1 , ✏), (URI
ds2 , ✏),. . ..

s1ko2 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
s2ko3 (URI

ds2 , ✏), . . .
SPO table

item key (attr. name, attr. value)
s1kp1ko1 (URI

ds1 , ✏), (URI
ds2 , ✏),. . ..

s1kp2ko2 (URI
ds1 , ✏), (URI

ds2 , ✏), . . .
s2kp1ko3 (URI

ds2 , ✏), . . .

(a) ATS indexing.

S table
item key (attr. name, value)
:publisher1 (publications, ✏)
:book1 (publications, ✏)
:article1 (publications, ✏)
. . . . . .

P table
item key (attr. name, value)
:hasPublished (publications, ✏)
:hasAuthor (publications, ✏)
:member (authors, ✏)
:hasName (publications, ✏), (labs, ✏)
. . . . . .

O table
item key (attr. name, value)
:book (publications, ✏)
:lab1 (authors, ✏)
“ResearchLab” (labs, ✏)
. . . . . .

SP table
item key (attr. name, value)
:publisher1k:hasPublished (publications, ✏)
:bark:lab1 (authors, ✏)
. . . . . .

PO table
item key (attr. name, value)
:hasPublishedk:book1 (publications, ✏)
:hasAuthork:bar (publications,✏)
. . . . . .

SO table
item key (attr. name, value)
inria:publisherkinria:book1 (publications, ✏)
inria:article1k“Databases” (publications, ✏)
. . . . . .

SPO table
item key (attr. name, value)
:article1k:fieldk“Databases” (publications, ✏)
. . . . . .

(b) Sample ATS index entries.

TABLE 2.6: ATS strategy.

2.5 Implementation Details

The majority of RDF terms used are URIs which consist of long strings of
text. Since working with long strings is expensive in general, mapping dictio-
naries have been used in many centralized RDF stores such as [22]. In these
works, RDF terms are mapped to numerical values and then, triple storage
and query evaluation is performed using these numerical values. The final
answers of the query evaluation is decoded again to the original RDF terms.

We adopt a similar mapping dictionary for the QAS strategy. In particular,
we use a hash function to map RDF terms to binary values. At query runtime,
we need to decode the answers of the query. Thus, a dictionary table which
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holds the reverse mapping is required, i.e., from the binary values to the
original RDF terms. The dictionary table is stored in DynamoDB and contains
the binary values in the item keys and their corresponding representation as
the attribute values. After query evaluation has finished and our answer is in
binary form, we perform the appropriate GetItem requests to the dictionary
table to decode the results.

We also use a hash function to store the key items for the RTS, ATT and
ATS indexes. For these strategies, only the encoding part is required since the
actual answer to the queries is extracted from the documents stored in S3. In
this way we avoid storing arbitrary long URIs as keys in the indexes and use
smaller values (16 bytes), reducing the space occupied by the index.

Finally, note that using a hashing procedure enables us to encode RDF
terms to binary values from di↵erent machines without any node coordination.
This is because of the deterministic nature of hash functions which always
generate the same hash value for the same given input. On the other hand,
hashing can lead to collisions, i.e., two di↵erent inputs can be mapped to the
same hash value. In the RTS, ATT and ATS strategies such a collision would
only a↵ect the number of datasets that need to be retrieved from S3 (false
positives) and not the answers of the query. But even in the QAS strategy we
can minimize the probability of a collision by choosing an appropriate hash
function. For instance, for a 128-bit hash function, such as MD5, and a number
of di↵erent elements 2.6⇥ 1010, the probability of a collision is 10�18! [8].

2.6 Experimental Evaluation

The proposed architecture and algorithms we presented in Section 2.4 have
been fully implemented in our system AMADA9 [6]. In this section we present
an experimental evaluation of our strategies and techniques.

2.6.1 Experimental setup and datasets

Our experiments were run in the AWS Ireland region in February 2013.
For the local SPARQL query evaluation needed by strategies RTS, ATT,
and ATS we have used RDF-3Xv0.3.710 [22], a widely known RDF research
database, to process incoming queries on the datasets identified by our index
look-ups. Thus, RDF-3X was deployed on EC2 machines in order to process
queries on a (hopefully tight) subset of the dataset, as identified by each
respective strategy. For the QAS strategy, when the queries are processed di-
rectly on the DynamoDB data (thus, no data is loaded in an RDF database),

9https://team.inria.fr/oak/amada/
10http://code.google.com/p/rdf3x/
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⌥ ⌅
select ?x
where {
?x yago:hasWonPrize ?y .
} �⌃ ⇧

FIGURE 2.5: Experiments query Q3 with low selectivity.

we relied on the physical relational algebraic select, project and join operators
of our ViP2P project [20].

We have used two types of EC2 instances for running the indexing module
and query processor:

• Large (l), with 7.5 GB of RAM memory and 2 virtual cores with 2
EC2 Compute Units each.

• Extra large (xl), with 15 GB of RAM memory and 4 virtual cores
with 2 EC2 Compute Units each.

An EC2 Compute Unit is equivalent to the CPU capacity of a 1.0-1.2 GHz
2007 Xeon processor.

As a dataset we have used subsets of YAGO11 and DBpedia12 RDF dumps.
The subsets we used consist of approximately 35 million triples in total (5 GB
in NTRIPLE syntax).

We have hand-picked 9 queries over these two datasets with di↵erent char-
acteristics. Queries are Figures 2.5, 2.6, 2.7 show in detail three of these
queries; the other are similar. The number of triple patterns each query
contains ranges from 1 to 5, which is a number used more often in real-
life SPARQL queries [7]. The characteristics of the queries we use are shown
in Table 2.7, where struct indicates the structure of each query (simple for
single triple pattern queries, star for star-shaped join queries and mix for
complex queries combining both star and path joins), #tp is the number of
triple patterns, #c is the number of constant values each query contains, and
#results is the number of triples each query returns. Furthermore we present
the number of distinct datasets #d which will be used from each strategy to
answer the query.

2.6.2 Indexing time and costs

In this section we study the performance of our four RDF indexing strate-
gies. The RDF datasets are initially stored in S3, from which they are gathered
in batches by 4 l instances running the indexing module. We batched the da-
tasets in order to minimize the number of calls needed to load the index into

11http://www.mpi-inf.mpg.de/yago-naga/yago/
12http://dbpedia.org/
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⌥ ⌅
select ?x ?z ?w
where {
?x rdf:type yago:wordnet_scientist_110560637 .
?x yago:diedOnDate ?w .
?x yago:wasBornOnDate ?z .
} �⌃ ⇧

FIGURE 2.6: Experiments query Q5 with medium selectivity.

⌥ ⌅
SELECT ?name1 ?name2
WHERE {

?p1 yago:isMarriedTo ?p2 .
?p2 yago:hasGivenName ?name2 .
?p1 yago:hasGivenName ?name1.
?p2 yago:wasBornIn ?city .
?p1 yago:wasBornIn ?city .

} �⌃ ⇧
FIGURE 2.7: Experiments query Q9 with high selectivity.

DynamoDB. Moreover, we used l instances because we found out that Dy-
namoDB is the bottleneck while indexing. We should also note that we used
a total throughput capacity in our DynamoDB tables of 10, 000 write units.
This means that if a strategy required more than one table we divided the
throughput among all tables.

We measure the indexing time and monetary costs of building the indexes
in DynamoDB. For the strategies RTS, ATTand ATS we show results only with
the dictionary on, as there is always a benefit from it. For the QAS strategy
we show results both with (QAS on) and without (QAS o↵) the dictionary as
the di↵erence between the two leads to some interesting observations.

In Figure 2.8 we demonstrate for each strategy the time required to create
the indexes, their size and their indexing cost. Note that to add the items into
DynamoDB we used the BatchWriteItem operation which can insert up to 25
items at a time in a table. We observe from the blue bars of the left graph
of Figure 2.8 that the ATS index is the most time-consuming, since for each
triple it inserts seven items into DynamoDB. The same holds for the size of
the index, as the ATS occupies about 11 GB. In contrast, the RTS index which
inserts only one item for each RDF term is more time-e�cient. An interesting
observation is that the QAS o↵ indexing requires significantly less time than
when the dictionary is used. This is because inserting items in the dictionary
table for each batch becomes a bottleneck. Also, the size of the QAS index
with the dictionary is only slightly smaller than when the dictionary is not
used, i.e., 9 GB in QAS on vs. 10.6 GB in QAS o↵. This is because of the
datasets used in the experiments where URIs are not repeated many times
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Query struct #tp #c #results #d by RTS #d by ATT #d by ATS

Q1 simple 1 2 1 2 2 1
Q2 simple 1 2 433 3 3 3
Q3 simple 1 1 72829 2 2 2
Q4 star 2 4 1 19 19 19
Q5 star 3 4 2895 26 25 25
Q6 star 3 3 50686 34 34 34
Q7 star 4 4 42785 39 39 39
Q8 mix 5 6 2 9 9 9
Q9 mix 5 5 12 5 5 5

TABLE 2.7: Query characteristics.
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FIGURE 2.8: Indexing time and size (left) and cost (right).

across the datasets and thus, the storage space gain is not exemplary. Also
note that the size of the index also a↵ects the money spent for keeping the
index. For example, the QAS on index would cost about 10$ per month, while
the QAS o↵ would cost an extra 2$ per month. On the other hand, the RTS
or ATS indexes are more economical and would only cost acout 3$ per month.

In the right graph of Figure 2.8, we show the monetary cost of DynamoDB
and the EC2 usage when creating the index. Again, the ATS index is the most
expensive one both in DynamoDB and EC2. Moreover, we observe that the
QAS on is more expensive than QAS o↵ due to the increased number of items
that we insert in the index when using the dictionary. The costs of S3 and
SQS are constant for all strategies (0.0022$ and 0.0004$, respectively) and
negligible compared to the costs of DynamoDB and EC2 usage. We thus omit
them from the graph.

2.6.3 Querying time and costs

For this set of experiments, we use the data and indexes we have created
in the previous experiment (see Section 2.6.2) and measure the query response
times and monetary costs of our queries. We ran one query after the other
sequentially using only one XL machine.
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FIGURE 2.9: Querying response time (left) and cost (right).

Figure 2.9 presents the response times of each query in each strategy and
the total monetary cost for the whole query workload in each strategy regard-
ing EC2 and DynamoDB usage. We observe that for the datasets oriented
strategies, i.e., RTS, ATS, and ATT, the queries accessing a small number
of dataset (less than 10) are very e�cient and are executed in less than 50
seconds. As the number of dataset increases (Q4-Q9) so does the response
time for these strategies. This is expected since the retrieved dataset have
to be loaded in RDF-3X in order to answer the query; as this number in-
creases, RDF-3X loading time also goes up. Out of these three strategies we
cannot pick a winner since all strategies retrieve almost the same dataset from
DynamoDB. The only cases where we had a false positive, i.e., datasets not
contributing to the query result, are RTS and ATT for query Q1 and RTS for
query Q5 (see Table 2.7). We believe this may often be the case in practice
when a triple pattern has two constants: intersecting the respective two sets
of dataset URIs will not leave many false positives.

The strategies relying solely in DynamoDB to answer the queries (QAS on
and QAS o↵) are better for highly selective queries than those relying on RDF-
3X. Especially the one using the dictionary encoding is good even for not very
selective queries like Q6 and Q7. On the other hand, answering queries with
low selectivity without a dictionary through DynamoDB seems a bad idea due
to the large number of items requested from DynamoDB and the large number
of intermediate results that are loaded in memory. An interesting exception
is Q3, for which the dictionary did not improve the performance. Note that
the dictionary encoding invokes a big overhead for decoding the final results
(transforming them from compact identifiers to their actual URI values), and
especially if the number of returned results is large. If there are no joins in a
query, as it is in the case of Q3, there is no profit from the dictionary encoding,
and thus, decoding the large number of returned results is a big overhead.

In terms of monetary cost shown at right of Figure 2.9 we observe that
the most expensive strategy regarding both EC2 and DynamoDB is QAS o↵.
For EC2, this can be easily explained by considering the query response times
for this strategy and having in mind that queries Q6 and Q7 required more
than 300 seconds to be evaluated, overwhelming the CPU for a large period
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of time. Regarding DynamoDB, the strategy is also expensive since the size
of the items that need to be retrieved is significantly larger than for other
strategies, which return only dataset names or compact encodings in the case
of QAS on. As anticipated, strategies RTS, ATS and ATT have almost the
same EC2 costs, explained by their similar query response times.

2.6.4 Scalability

In this section we measure the total time for a workload of 27 queries (a
mix of the queries whose characteristics appeared in Table 2.7) as the number
of EC2 machines increases (scale-out) for strategies RTS and QAS on. ATT
and ATS present similar behavior with RTS and thus they are omitted from
this experiment. In addition QAS on is always better than QAS o↵ so we chose
to drop it from the graphs. The experiments were executed using XLmachines
varying their number from 1 to 8 and keeping the threads number (4) equal
to the number of cores of each machine (allowing a concurrent execution of 4
queries per machine).

In Figure 2.10 we demonstrate how increasing the EC2 machines can a↵ect
the total response time for executing the whole query workload. The query
response time follows a logarithmic equation where in the beginning and until
reaching 4 EC2 instances the time is constantly dropping until reaching a
threshold where we cannot run faster due to the fact that all queries are
distributed among machines and run in parallel. For example for our workload
of 27 queries, using 8 machines will result into running 3 queries on each
machine and due to the number of threads all queries will run in parallel and
the total time will be equal with the less e�cient query. Both strategies scale
well with QAS on being slightly worse due the large number of concurrent
requests in DynamoDB.

Scaling-out the machines for DynamoDB is not feasible in the Amazon
cloud. In general, similar services from AWS are usually o↵ered as black boxes
and the user does not have control over them other than specifying some
performance characteristics, such as the throughput in DynamoDB discussed
in Section 2.3.1.2. Finally, we have also experimented with scaling the size
of the data in [10] and observed that the time for building the index scales
linearly with the number of triples in the datasets, as it is also evident from
our analytical cost model, so we omit it from this experimental evaluation.

2.6.5 Experiments conclusion

Summing up, our baseline strategy RTS is the best, providing a good trade-
o↵ between indexing time, index size, query e�ciency and overall monetary
cost both for building the indexes and answering queries as well. Targeting
query e�ciency, QAS on is the best strategy being 50% more expensive than
RTS. In addition the size of the index for QAS on is five times bigger in
comparison with RTS, making the strategy highly expensive for large periods
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FIGURE 2.10: Total time for workload of #27 queries.

of usage. Among the discussed strategies ATS can be considered as one of the
worst since it is the most costly in terms of money and index size, whereas from
the e�ciency perspective the indexing time is huge and the query response
time does not defer significantly from the other strategies (RTS and ATT)
relying on RDF-3X to answer the queries.

2.7 Summary and Perspectives

This chapter described an architecture for storing and querying RDF data
using o↵-the-shelf cloud services, in particular the AMADA platform we have
developed and demonstrated recently [6, 10]. The starting point of the present
work is [10], however in this chapter we have presented a di↵erent set of strate-
gies and accordingly new experiments, at a much larger scale than we had pre-
viously described in [10]. A brief classification of the state-of-the art in this
area according to three main dimensions (data storage, query processing and
reasoning) is included, while further detail can be found in our tutorial [19].

Within AMADA, we devised indexing techniques for identifying a tight su-
perset of the RDF datasets which may contain results for a specific query, and
we have proposed a technique for answering a SPARQL query from the index
itself. We presented analytical cost models for each strategy and evaluated
their indexing and querying performance and monetary costs.

A direction we have not considered in this work is the parallelization of
the task of evaluating a single query on a large RDF dataset. This is obviously
interesting, especially for non-selective queries, since the parallel processing
capabilities of a cloud may lead to shorter response times. Algorithms and
techniques proposed for other distributed architectures such as P2P-based or
federated ones may also be applicable (see Chapters ??).

At the same time, when considering RDF data, a first significant obsta-
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cle consists of the di�culty of finding a way to partition the data, in order
to enable di↵erent processors to work each partition in parallel. RDF graph
partitioning algorithms for this setting are presented in works such as [16, 17]
and is also discussed in Chapter ??.

Finally, a full solution for a cloud-based large RDF store must include an
intelligent pricing model, reflecting the usage of cloud resources. In this work
we have outlined the monetary costs of the index, which are a first ingredient of
a comprehensive pricing scheme. Working in this direction, the ultimate goal
would be to formalize a cost model of di↵erent indexing and query answering
strategies that expresses the trade-o↵ between their e�ciency/performance
and associated monetary costs.
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