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Université Paris-Saclay, CentraleSupélec, MICS, 9 rue Joliot Curie, 91192 Gif-sur-Yvette, France
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Abstract—In this paper, we explore point-cloud based deep
learning models to analyze numerical simulations arising from
finite element analysis. The objective is to classify automatically
the results of the simulations without tedious human intervention.
Two models are here presented: the Point-Net classification model
and the Dynamic Graph Convolutional Neural Net model. Both
trained point-cloud deep learning models performed well on
experiments with finite element analysis arising from automotive
industry. The proposed models show promise in automatizing
the analysis process of finite element simulations. An accuracy of
79.17% and 94.5% is obtained for the Point-Net and the Dynamic
Graph Convolutional Neural Net model respectively.

Index Terms—Deep Learning; Classification; Point-Clouds;
PointNet; Dynamic Graph Convolutional Neural Net; Finite
Element Analysis; GPU;

I. INTRODUCTION

Finite element methods (FEM) are extensively used to

simulate real world physical phenomenon by solving the

associated partial differential equations [1], [2]. FEM have

been applied to various fields including computational me-

chanics, fluid dynamics, and heat transfer for instance. In

FEM, the mathematical equations are reformulated with a

variational formulation which is discretized in time and space.

Discretization is performed on a mesh, and the quality of

the elements of the mesh impacts directly the approximated

solution. Several techniques exit to ensure high quality of

the approximated solution, including for instance Streamline-

Upwind Petrov-Galerkin (SUPG) [6], stabilized finite elements

[4], bubble elements [3]. The FEM solution is then obtained

by solving a linear system of equations, whose size is propor-

tional to the number of discretization points composing the

mesh. Simulations generated by FEM are then usually verified

manually following visual inspection and preliminary checks.

This is a tedious process and requires human intervention.

The motivation behind this paper is to automate the process

of analyzing the simulation results generated by FEM without

human intervention. We explore the application of deep learn-

ing models to automatically analyze the simulations generated

by FEM process. This paper focuses on the task of classifying

the generated FEM results based on a small number of human

generated labels of so called ’normal’ and ’abnormal’ results.

In FEM, a mesh represents a domain into a discrete number

of elements for which the solution can be calculated. A mesh

consists of geometrical information (nodes coordinates), a

topology information (connectivity between nodes and ele-

ments), and field data stored on the mesh. Opposite, Point-

Clouds are simply a set of data points containing spatial coor-

dinates and point features. If only the nodes of the mesh and

the fields on the mesh are considered, we can define a mapping

between the mesh and a point cloud object. Both mesh and

Point-cloud objects share the property of permutation in-

variance. Learning on point-cloud objects is researched by the

scientific community and several deep learning models have

been developed for several tasks including object classification

and object segmentation [22], [23]. Point-Net and Dynamic

Graph Convolutional Neural Networks (DGCNN) [20] [21]

are standard models for learning on point-cloud objects.

Finite element simulation of acoustic noise inside a car

compartment has been used in this paper. Depending on

interior and exterior excitations sources, simulations show

regions of high acoustic pressure near the front windows of

the car compartment. The results are divided into two classes:

(i) class of results which have high noise level near the front

windows, and (ii) class of results which have low noise level

near the front windows. The results are divided into classes by

visual inspection by humans and a small dataset of 72 meshes

with labels has been generated. The dataset is subdivided into

training and testing sets on which the model is built and

tested. Point-Net and DGCNN models will be trained on the

training meshes and labels. After which, the trained models

are evaluated using the accuracy metric on the test set.

This paper shows that the state-of-the-art point-cloud clas-

sification models perform well for the task of classification of

the FEM generated simulation. The Point-Net model achieved

an accuracy of 79.17% while the DGCNN model was able to

achieve an accuracy of 94.5% on the test set. As the models

perform well, the point-cloud deep learning models can be

used for automatic analysis of FEM generated simulation.

This paper is organized as follows, In section II, we present

state-of-the-art models for the task of classification on point-

cloud objects. In section III, we present the methodology

followed including framing the problem, exploring the dataset,

evaluation methods. Model architectures and results are pre-

sented in section IV. In section V, we present the findings of

the study.



II. RELATED WORKS

Classification is the problem of identifying which of a

set of categories an object belongs to. There are different

types of algorithms to create a classification model, see for

instance [9] and references therein. The most popular of

which are Support Vector Machines (SVM) [7] [10], Multi-

layer perceptron, Convolutional Neural Networks, recursive

deterministic perceptron (RDP) Neural Network, and Deep

Learning Methods.

SVMs construct a hyperplane that separates the objects with

the maximum possible margin. Taking advantage of the Kernel

Trick, we are able to project the data into higher dimensions

which allows for non-linear margins [11].

Multi-layer perceptrons (MLP), Convolutional Neural Net-

works (CNN) [8], Deep Learning models all are made up of

neurons. MLPs are stacked fully connected layers where a

neuron of a layer is connected to every neuron in the other

layer. In CNNs, instead of matrix multiplications, convolu-

tional operation is employed. Due to increase in compute

power, deeper models with millions of parameters are able

to be trained by the computer which resulted in an increase

in performance of the model.

Several works in the research community study deep learn-

ing on point sets. Point-Net [19] is a highly efficient and

effective point-cloud learning model and has been used as

baseline for several point-sets learning research projects. Be-

fore point-net, researchers used to transform point-cloud data

into ND voxel grids or collections of images which renders

data unnecessarily voluminous [24]. Point-Cloud models have

been tested on the industry standard dataset for point clouds

known as the ModelNet40. The Point-Net model achieved an

accuracy of 89.2% on the ModelNet40 dataset.

However, by design Point-Net does not capture local struc-

tures induced by the metric space points live in, limiting its

ability to recognize fine-grained patterns and its generalization

to complex scenes. The DGCNN model [21] allows the

model to learn local level features by taking into account,

the local neighbourhood using the K-Nearest Neighbours

method. The novel approach of edge-convolution and taking

into advantage the local level features, the DGCNN model is

much more powerful than the Point-Net model. The DGCNN

model achieved an accuracy of 92.9% on the ModelNet40

dataset. The DGCNN model involves computation of K-

Nearest Neighbours after every layer, which makes the model

time exhaustive and slows model training significantly com-

pared to Point-Net model.

These models are very efficient in learning the patterns of

point-cloud objects. These models have been employed in this

paper to create the binary classification model of point-clouds

generated from FEM meshes.

III. METHODOLOGY

Problem statement: We are interested by a function F that

takes the input point-cloud object as input and returns class

label of the point-cloud object, where F is a Binary Classifica-

tion function of the form F : N×(d+C) → Y . A point cloud

is represented as a set of N points {Pi|i = 1, . . . , N}, where

each point Pi is a vector of (x, y, z)-coordinates plus extra

feature channels such as acoustic pressure, etc. The point-

cloud is represented as a matrix N × (d + C), where d is

the dimension of the spatial coordinates and C denotes the

additional feature channels. Quantity Y denotes the class of

the point-cloud object.

Dataset: The dataset is generated using FEM method. An

example of a finite element mesh is illustrated in Figure 1 (left)

and the pressure obtained from the finite element method with

Lagrange elements is represented in Figure 1 (right). A total

of 72 results have been generated and labels are given to each

of them manually through visual inspection. The dataset is

subdivided into training and testing sets as follow: 66.6% of

the dataset is used for training and 33.3% of the dataset is

used for testing.

Fig. 1. Example of a finite element mesh (left) and acoustic pressure in Pa
(right).

Evaluation metric: Binary Classification in deep learning

is evaluated generally using the Categorical Cross Entropy

loss function. In every iteration, the loss on the training set

is computed and gradient descent is performed to modify

the weights of the model in the direction of minimizing the

Categorical Cross Entropy Loss, i.e.,

−
M∑

c=1

yo,c log(po,c)

where M denotes the number of classes, in this case it is

equal to 2, y denotes binary indicator (0 or 1) if class label

c is the correct classification for observation o and p denotes

the predicted probability observation o is of class c.

Image classification models: The point-cloud data can be

converted into ND voxel grids or collections of images. The

given data consists of 2D spatial coordinates and 1D additional

pressure feature channel. This data object can be converted

into 2D gray-scale image following Algorithm 1.

Algorithm 1 Point Cloud to Projected Image on a plane

pointcloudToImage(PC(pointcloud), fields, plane)
NDIM = DIM(plane)

NPOINTS = LENGTH(PC)

IMG = ZEROARRAY(NDIM)

for point = 1 to NPOINTS do
IMG[PC[point][plane]] += fields[point]

end for
return IMG



Now, the images can be directly used to train a Convo-

lutional Neural Network (CNN). A CNN model with three

Convolutional Layers is defined for this model and the model

is trained for 20-30 epochs on Categorical Cross Entropy Loss.

The model requires defining the data in ND voxel grid. For 2D

point-clouds, this is feasible in local memory. For 3D point-

clouds with high resolution, this model is infeasible to store in

memory as the ND voxel image will require a lot of memory.

In order to convert the 3D point-cloud to a 2D image, the 3D

point-cloud should be projected on a plane which will be later

considered for CNN model training. The main drawback is

to obtain the image, since it depends on the angle of view.

Figure 2 presents 3D point-cloud projection onto two planes,

i.e., the XY and the Y Z plane.

Fig. 2. Image processing based on cutting plane.

Point-cloud classification models: The models explored

here are all belonging to the deep learning framework. Deep

Learning models are trained using Stochastic Gradient Descent

where the weights are updated in the direction that minimizes

the loss. Algorithm 2 details the training algorithm considered,

where f represents the deep learning model, y represents the

actual class of the object.

Algorithm 2 Training algorithm

train model(f, dataloader, EPOCHS)
Randomly initialize model weights w
for epochs = 1 to EPOCHS do

for (pc, y) in dataloader do
input pc(Point-Cloud) object in the input layer

forward propagate to get predicted result ŷ
compute e = CategoricalCrossEntropy(y, ŷ)
back propagate e from right to left through layers

update w
end for

end for

Point-Net model: Point-Net model comprises of 1D con-

volution layers which project the point features into higher

dimensions through the layers to learn features of the point-set.

The model also comprises of 1D batch normalization layers as

well as Re-LU activation layers. The last layer of the model is

modified for the task of binary classification, i.e., the last layer

of the model is a fully connected layer which outputs a vector

of size 2. The point-net model architecture is represented in

Figure 3.

Fig. 3. Point-net model architecture.

Dynamic Graph Convolutional Neural Network: Instead of

working on individual points like PointNet, however, Dynamic

Graph Convolutional Neural Network (DGCNN) exploit local

geometric structures by constructing a local neighborhood

graph and applying convolution-like operations on the edges

connecting neighboring pairs of points. The local neigh-

bourhoods are constructed using the K-Nearest Neighbours

approach where the top K-Nearest Neighbours based on the

euclidean distance are considered as local neighbourhood of

a point, and edges are drawn from the point to all the points

in the local neighbourhood. The higher the K, the more edge

dense the graph is. The KNN connections are computed after

every layer. This is is why the model is referred to as dynamic.

The DGCNN model architecture is represented in Figure 4.

Fig. 4. Dynamic Graph Convolutional Neural Network (DGCNN) model
architecture.

IV. RESULTS AND EVALUATION

We consider an acoustic problem within a car compartment.

The objective is to analyze the frequency response function

issued from various excitation from the engine. The results

obtained correspond to an acoustic map within the car com-

partment. When the noise level becomes too high around the

driver, the attention of the driver slow down increasing the risk.

The objective is thus to be able to classify the results into two

class: (i) the results where the noise around the driver ear is

low; (ii) the results where the noise around the driver is too

high.

The acoustic problem is governed by the Helmholtz equa-

tion inside the car compartment and boundary conditions

defined on the boundary. Robin boundary conditions modeling

absorbing material are defined on the seat of the car and on the

roof. Neumann boundary conditions are defined on the glass

of the car. Dirichlet boundary conditions are defined along

the firewall. The problem is discretized with P1 finite element

with stabilized parameter obtained from [5], and the associated

linear system of equations is solved with the Alinea library

[16]. The problem is reformulated with a domain decomposi-

tion method [17] and is solved on Graphics Processing Unit

(GPU) [15] [13]. The local solver inside each subdomain is



performed with the conjugate gradient method [14] involving

a auto-tuning of the GPU memory [18]. The deep-learning

models is implemented with Tensorflow library on GPUs. The

deep-learning models are trained on the dataset divided into

train (66.6%) and test (33.3%). A batch size of two objects

has been used for the training process for both the models.

The models are trained for 20 epochs each and the accuracy

of the model is computed after training on the test set.

The DGCNN model requires a hyper-parameter, i.e., the

K-value in K-Nearest Neighbours algorithm to be tuned. To

find the most optimal Kvalue, experiments are run on different

values of K and reported Table I. This hyper-parameter tuning

step can make a significant difference in final performance of

the model. After considering various values of K, the most

optimal one is observed to be equal to ten with an accuracy

score of 94.5% and is chosen for the final DGCNN model.

Value of K parameter Accuracy

5 91.67%
10 94.50%
15 73.61%
20 80.56%
30 80.56%

TABLE I
SENSITIVITY ANALYSIS OF DGCNN MODEL.

We can see in Table II, that the DGCNN model performs

well with a classification accuracy of 94.5%. The pointnet

model, even though it is able to classify the FEM results to

certain extent, are out-performed by the DGCNN model. This

might be because of DGCNN’s ability to capture local level

features much better than the Point-Net model.

Name of the model Accuracy

CNN(xy projection) 70.84%
CNN(yz projection) 80.00%
Point-Net model 79.17%
DGCNN model 94.50%

TABLE II
COMPARISON OF DEEP-LEARNING MODELS.

V. CONCLUSIONS

The point-cloud classification models are here considered to

classify simulation results arising from finite element analysis,

namely the point-net model and the DGCNN model. Both

models work well to automatically analyze the results, and

excellent accuracy is obtained using the DGCNN model.
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