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Abstract: In the modern era, where the global energy sector is transforming to meet the decar-
bonization goal, cutting-edge information technology integration, artificial intelligence, and machine
learning have emerged to boost energy conversion and management innovations. Incorporating
artificial intelligence and machine learning into energy conversion, storage, and distribution fields
presents exciting prospects for optimizing energy conversion processes and shaping national and
global energy markets. This integration rapidly grows and demonstrates promising advancements
and successful practical implementations. This paper comprehensively examines the current state of
applying artificial intelligence and machine learning algorithms in energy conversion and manage-
ment evaluation and optimization tasks. It highlights the latest developments and the most promising
algorithms and assesses their merits and drawbacks, encompassing specific applications and relevant
scenarios. Furthermore, the authors propose recommendations to emphasize the prioritization of ac-
quiring real-world experimental and simulated data and adopting standardized, explicit reporting in
research publications. This review paper includes details on data size, accuracy, error rates achieved,
and comparisons of algorithm performance against established benchmarks.

Keywords: artificial intelligence; machine learning; energy conversion; energy management; multicriteria
evaluation

1. Introduction

Over the past decades, there has been a great effort to slow global warming. In 1992,
industrialized countries and transitioning economies pledged to capping and diminishing
greenhouse gases (GHG) by signing the Kyoto Protocol [1]. In 2015, climate change
mitigation, adaptation, and financing goals were set at the Paris Accord, the UN Climate
Change Conference in Paris (COP21), by 196 countries to restrict global temperature
increases lower than 2.0 ◦C, preferably to only 1.5 ◦C [2]. In 2021, at the UN Climate
Change Conference in Glasgow (COP26), 197 countries concurred to maintain the 1.5 ◦C
goal through the Glasgow Climate Pact; the resolution aimed to materialize the 2015 Paris
Agreement. Additionally, the Pact doubled the financial contributions and asked countries
to prepare increasingly ambitious climate commitments ahead of the COP27 in Egypt in
2022 [3]. Nonetheless, these Pacts are not ambitious enough to achieve the climate goals
in what is often referred to as the pivotal decade of 2020–2030 [3]. Some reports proclaim
that net zero emissions could be reached by 2070 if serious and extensive measures to ban
fossil fuels and promote renewable energy production are followed [4]. Achieving net zero
CO2 emissions goal requires faster progress in implementing new technologies for energy
conversion, distribution, and use [5–11]. There is also a need to accelerate the progress in
the hydrogen economy to ensure rapid technology adoption across countries [7].
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One of the significant technological improvements in the past decades, especially in
forecasting, prediction, optimization, description, and clustering, has been the development,
implementation, and improvement of artificial intelligence (AI) and machine learning (ML)
algorithms. According to McKinsey & Company (Chicago, IL, USA) research institute,
AI could potentially create a surplus of global economic activity of approximately USD
13 trillion by 2030. By 2030, it is predicted that 70% of firms will adopt at least one kind of
AI technology [12].

AI (including perception, neural networks, ML, knowledge representation, etc.) has
been driving revolutions in diverse areas; for example, autonomously driven vehicles,
robotic manipulators, image analysis, computer vision, art creation, natural language
processing, time series analysis, target online advertisement, etc. [13]. This has become
realistic because of the growth in the availability and storage of digital data [14]. As the size
of structured data increases, the ability of algorithms to perform better tends to increase. In
October 2022, the European Commission announced an action plan to digitize the energy
system to create data-sharing frameworks, data centers, and energy data space [15]. These
developments have made artificial intelligence algorithms/methods a promising tool for
modeling, forecasting, and optimizing energy conversion processes to improve the overall
effectiveness of the energy sectors.

From now on, we will slightly distinguish between AI and ML algorithms and meth-
ods. In this paper, ML algorithms are considered as a subset of AI algorithms. AI is defined
as any smart system or machine that conducts tasks that would typically need human su-
pervision or intelligence. ML is a subset of algorithms under AI that use statistical methods
to learn from data and can make decisions based on observed patterns. Deep learning
(DL), which will be spoken about in further detail later, is a subset of ML, where the main
distinction arrives from the use of artificial neural networks (ANNs) to have smart systems
train themselves through large amounts of data and perform various complex tasks.

This paper includes a bibliographic study on AI and ML approaches in the energy
sector and a review of AI algorithms and methods in the context of energy conversion.
The VOSViewer software is used for the visualization of obtained data via keywords.
The generated clusters are described and analyzed in detail. “Hot” research topics are
discovered based on the horizontal timeline clustering from CiteSpace [16].

All in all, this paper aims to answer questions related to the use of AI and ML in
energy conversion and management, as well as discuss the observable popularity and
trends of particular AI algorithms. After the introduction, in Section 2, the reader will find
the details of the Materials and Methods taken to carry out this bibliometric analysis. In
Sections 3 and 4, the following main guiding questions are answered:

• Are AI techniques being applied in energy conversion and management fields? If so,
which algorithms and for what tasks (Sections 3.1 and 3.2)?

• What kind of data and data size are researchers in this field using? Are they relying
on simulated data or using real-life data to train and test their AI models? Are papers
doing a good job at reporting their data? What tools are they using to conduct these
studies? What are the data and algorithms’ memory requirements (Sections 3.3–3.5)?

• What are the trending AI algorithms? How effective or accurate are they? What are
their strengths and limitations (Section 4)?

By providing this review, this paper aims to inform energy conversion and manage-
ment researchers on AI and ML techniques that may be applicable to their fields of study. A
second aim is to promote interdisciplinary collaboration between energy and data science
researchers, as AI and ML techniques may offer ways to improve energy conversion tasks
and ultimately improve the changes to reach net zero emissions.

2. State of the Art
2.1. Bibliographic Study

The evaluated publications are ranked based on selected criteria, and the most used
algorithms in the top rankings are discussed thoroughly. The data and algorithms used in
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the documents are compared quantitatively; the benefits and limitations of the AI methods
and approaches are addressed and explained. The systematic research process consists of
three phases, shown in Figure 1.
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Figure 1. The methodology approach in this research.

The research in energy conversion (systems and processes) is growing continuously.
It relates to fast progress in the following subfields: renewable energy, alternative fuels,
hydrogen economy, decarbonization, energy storage, application of new and advanced
thermodynamic cycles, etc.

From approximately 120 thousand documents identified in Scopus using the keywords
“machine learning”, “artificial intelligence”, “supervised learning”, “unsupervised learn-
ing”, “deep learning”, “reinforcement learning”, and “neural network” (95% are written in
English), the authors selected the energy-related papers (35%). Further, this list was limited
to around 600 publications where the application to energy conversion and energy manage-
ment is discussed intensively. The use of AI in energy conversion first appeared in 1994 [17].
However, there is still a lack of standardization in writing data science terms in conjunction
with different fields of application, including energy conversion and management.

The following publications that reviewed the application of AI in some energy sectors
should be mentioned explicitly. Artificial neural network, support vector machine (SVM)
regression, and k-nearest neighbors (KNN) algorithms were used to predict and model
bioenergy production from waste and optimize biohydrogen production [18]. A global
study on oil and gas wells revealed that ML is a significant cluster in the literature and is
utilized in all aspects, with research directions focusing on crude oil intelligent exploration,
intelligent drilling, and smart oil fields [19]. Feature and pattern recognition algorithms are
successfully applied to the fault diagnosis of wind turbines with 100% accuracy and a fault
diagnosis improvement of approximately 90% [20]. Optimizing electrochemical energy
conversion devices, such as fuel cells, requires using a variety of algorithms, including
image recognition convolutional neural networks, to identify the optimal ink structures of
catalyst layers [21]. Artificial neural networks have intensively emerged in wind energy
conversion systems (WECS) applications, specifically in wind speed forecasting, wind
power control, and diagnosis classification [22]. One comprehensive study [23] identified
the role and progress of AI in renewable energy-related topics, for example:

• Wind Energy: backpropagation neural networks were effective for wind farm opera-
tional planning;

• Solar Energy: modeling and controlling photovoltaic systems using backpropagation
neural networks;

• Geothermal Energy: artificial neural networks are key tools for geothermal well drilling
plans, their control, and optimization;

• Hydroenergy: hydropower plant design and control implement fuzzy, ANN, adaptive
neuro-fuzzy inference system (ANFIS), and genetic algorithms for optimization;

• Ocean Energy: ocean engineering and forecasting rely heavily on ANFIS, back propa-
gation neural networks, and autoregressive moving average models;
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• Bioenergy: categorization of biodiesel fuel using KNN, SVM, and similar classification
algorithms, as well as a hybrid system, combining the elements of a fuzzy logic and
ANN, is employed to enhance the heat transfer efficiency and cleaning processes of a
biofuel boiler;

• Hybrid Renewable Energy: ANFIS is utilized in hybrid AI techniques to enhance the
performance of hybrid photovoltaic–wind–battery systems and ultimately reduce pro-
duction costs, as well for the modeling of biodiesel systems, solar radiation, and wind
power analysis and wavelet decomposition; ANNs and autoregressive methods are
used in solar radiation analysis; SVR+ARIMA ( autoregressive integrated moving aver-
age) for the tidal ongoing analysis; improved and hybrid ANNs in photovoltaic system
load analysis; and data-mining method-based systematic energy control system.

The graphical bibliometric analysis of Scopus database data was performed using
the VOSViewer Software 1.6.18 [24]. This software enables the assembly of data for con-
ducting comprehensive bibliometric map analyses. By utilizing an intelligent local shifting
algorithm designed for community detection based on large-scale modularity, VOSViewer
generates a cluster map that facilitates the interpretation of research categories and the
connections between documents [25]. Figure 2 shows the interconnections between the
keywords associated with AI and ML in the field of energy conversion and management.
To create this map in the VOSViewer, the CSV file downloaded from Scopus, based on the
final query chosen by the authors of this paper, which searched for research work with
keywords related to energy conversion, AI, and ML, was loaded into the system. Then,
the type of analysis was chosen to be co-occurrence-based on the authors’ keywords. The
minimum number of co-occurrences threshold was chosen to be three. The results show
that keywords are interconnected by seven clusters. The center clusters (ANN, ML, deep
learning cluster, optimization algorithm, and the neural network) are the most intercon-
nected and relate to overarching broad machine learning topics. ANNs form their own
cluster not only because it is the most widely used algorithm but also due to its ability
to perform various tasks with reliably high accuracy. The remaining clusters deal with
particular energy conversion systems. Wind energy is the most abundant application in the
set of the selected publications, as it holds its cluster. Wave energy also forms its own cluster
with a relatively minor representation. It is seen that the wind and wave energy conversion
utilize different approaches, as there is not much direct overlap between their clusters. It is
evident from these initial maps that research topics are divided into energy topics, tasks
within those topics, and the algorithm being applied. Upon closer inspection, energy tasks
and topics are connected by different algorithms. Further, the most appropriate algorithm
and showcases better data quality and performance for specific energy topics and task pairs
will be evaluated.

2.2. Document Information Extraction

In this review paper, the authors used PDFMiner of Python to extract the text from the
selected publications (around 600 PDF files), and analyze the text to extract key data points
using their version of a named entity recognition algorithm. However, the intricacies of
this algorithm go beyond the scope of this paper. Nevertheless, a brief explanation follows.
The extraction of each category was performed by the iterative creation of a hierarchical
dictionary that captured at least 90% of the features automatically. Then, the extracted
features for each paper were confirmed manually through a double pass to ensure the
reduction in errors. The extracted key data points include the following:

• Algorithm: the highlighted algorithm used in the publication;
• Energy Topic: the energy conversion domain the publication relates to (i.e., different

kinds of renewable energy, nonrenewable energy, energy conversion systems, etc.);
• Energy Task: the specific task highlighted within an energy-related topic (i.e., forecast-

ing, optimization, etc.);
• Energy Domain: the primary energy resource the publication relates to (i.e., wind, solar,

natural gas, etc.);
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• Data Size: the number of total observations in the dataset used in the publication;
• Data Type: the origin and nature of the data used (i.e., real data (panel data), simulated

data (data created through mathematical and computer simulators), time series (data
with dates and/or time), images, etc.);

• Performance Measure: the score of accuracy, error, or percentage improvement achieved
by the algorithm;

• Performance Measure Type: the name of the performance measure (i.e., root-mean-square
error (RMSE), mean squared error (MSE), mean absolute error, R-squared, etc.);

• Comparative Benchmark Performance: the percentage improvement achieved by the
highlighted algorithm either over the traditional non-AI method or the next-best
AI method;

• Tools Used: the programming language or software applied to achieve the reported
results (i.e., MATLAB, Python, etc.);

• Device Memory: the number of GB in the RAM (random-access memory) of the device
used to produce numerical data in the publications.
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2.3. Overview of ML and AI Algorithms

AI is intelligence demonstrated by machines and computers and is marked by its ability
to perceive, synthesize, and infer patterns from images, data, and other types of structured
or unstructured information. Artificial intelligence takes on various forms, encompassing
speech recognition, computer vision, language translation, categorizing datasets, and other
transformations of input-to-output relationships. The Oxford English Dictionary of Oxford
University Press describes AI as “the theory and development of computer systems able to
perform tasks that normally require human intelligence, such as visual perception, speech
recognition, decision-making, and translation between languages” [26].

Although artificial intelligence and machine learning are often used synonymously, ML
is recognized as a component within the broader domain of AI. ML algorithms construct a
model using sample data, referred to as training data, in order to make predictions. These
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predictions can involve classification, regression, or decisions regarding new and unseen
data, which are typically referred to as test data. In 1959, Arthur Samuel first introduced
the expression machine learning [27], with his famous question: “How can computers learn
to solve problems without being explicitly programmed?”

2.3.1. AI: Beginning, Winter, and Revival

The origins of artificial intelligence are frequently associated with Alan Turing’s con-
cept of computation. This theory proposed that a machine, capable of manipulating symbols
as basic as 0 and 1, could replicate any possible form of mathematical reasoning. This idea
eventually gave rise to the Turing machine computational model [28]. AI was established
as a field of research in 1956 at a workshop at Dartmouth College. Small successes followed
this workshop, as its leaders and their students began developing computer programs that
managed to learn game strategies for checkers, solve word problems in algebra, provide
logical theorems, and speak English. By the mid-1960s, research in the United States was
receiving substantial funding from the Department of Defense, and research facilities had
been set up on a global scale [29].

However, AI momentum began to slow down around 1974 because of Sir James
Lighthill’s critical stance [30], which disparaged AI researchers for not addressing the
anticipated combinatorial explosion when solving real-world problems. Moreover, pressure
escalated from the U.S. Congress to fund more fruitful projects. Frustrated, the U.S. and
U.K. governments stopped investigative research in AI. The following few years would be
known as the “AI winter”, a period when subsidy for AI undertakings was scarce [17].

In the early 1980s, the commercial success of expert systems revived exploratory inter-
est in AI research, which simulated human experts’ knowledge and analytical skills [31].
In 1985, the AI market had surpassed a billion U.S. dollars in value. Concurrently, the
fifth-generation computer project in Japan served as a catalyst, prompting the govern-
ments of the United States and the United Kingdom to reinstate funding for AI research
in academia [29]. However, in 1987, the Lisp machine market experienced a collapse,
leading to another extended period of stagnation for the field of AI, often referred to as a
“winter” [29].

Gradually, AI rebuilt its reputation in the late 1990s by uncovering specific solutions to
specific problems. This enabled scientists to generate confirmable findings, utilize a broader
range of mathematical approaches, and engage in interdisciplinary cooperation [29]. As of
the year 2000, the solutions created by AI experts had gained extensive adoption [32].

These modest advances began to multiply significantly as more powerful computers,
enhancements in algorithms, and increased access to extensive datasets paved the way for
substantial progress in machine learning and perception, yielding remarkable outcomes [33].
Jack Clark from Bloomberg believes 2015 was a landmark year for artificial intelligence due
to the increase in cloud computing infrastructure and increased research tools and datasets
that made neural networks and other AI implementations increasingly affordable [34].
Research into AI increased by 50% between 2015 and 2019 [35].

The following subsections discuss the different groups of AI algorithms currently available.

2.3.2. Supervised and Unsupervised Learning Algorithms

Machine learning revolves around the development of algorithms that enable a com-
puter to acquire “intelligence”. Learning involves identifying statistical patterns or other
data-related regularities. The initial two categories of machine learning algorithms include
the following:

• Supervised learning produces a function that maps inputs to estimated outputs by
providing the algorithm input–output pairs during training. Supervised learning
algorithms are also mainly used for regression problems [36]. These include, but are not
limited to, decision trees, random forest, linear and logistic regression, support vector
machine, ANN, and other neural network algorithms that use a labeled training set.
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• Unsupervised learning algorithms analyze a dataset comprising solely inputs and dis-
cern data structures by examining shared characteristics among data points. Unsuper-
vised learning algorithms are commonly used for grouping or clustering data points.
Summarizing and explaining data features are other tasks for these algorithms [36],
which include, but are not limited to, k-means clustering, principal component analy-
sis, and hierarchical clustering. There also exists semi-unsupervised learning, where
only a small part of the training dataset is labeled.

2.3.3. Reinforcement Learning Algorithms

The third paradigm of ML is reinforcement learning (RL). This group of algorithms is
quite different from others. RL was inspired by the psychological principle of how animals
learn by interacting with the environment. RL algorithms have three main components: an
agent, an environment, and a goal. The agent will choose from a set of possible actions,
which will then cause a new state and reward from the environment, which is then shown
to the agent. Based on this information, the agent will learn whether its action successfully
achieved its goal. After a sufficient amount of iterations and trial-and-error events, the agent
should become intelligent in relation to the action it chooses in this specific environment
by maximizing/minimizing the rewards; this final framework of acting learned is called
the policy. Unlike supervised learning, RL does not need input–output pairs or explicitly
told directions on how to behave. Instead, RL algorithms learn independently by balancing
exploration (of uncharted options) and exploitation (of currently successful strategies). In
other words, a good RL algorithm will learn a policy that is prepared for all scenarios. A
good RL algorithm will do its best to explore the space of possible strategies and learn how
to act. The environment is typically specified as a Markov decision process, with some RL
algorithms also including dynamic programming approaches [37].

Different RL algorithms take different approaches to calculating the states and rewards
over time, known as the state-value function, sometimes prioritizing newer information
over earlier information, and also have different approaches to how agents choose actions,
some allowing for more exploration based on a coefficient at the beginning than the end,
as well as different approaches to policy definition. These include, but are not limited to,
Monte Carlo, Q-learning, state–action–reward–state–action, soft actor critic (SAC), and
deep deterministic policy gradient.

2.3.4. Other Types of Algorithms

Not all AI algorithms fall under the abovementioned paradigms and may have note-
worthy characteristics. The dimensionality reduction decreases the number of features
under consideration by narrowing the set of features to the ones that explain the majority
of the variance in the output variable, ultimately reducing the complexity or noise of the
dataset. The most commonly known algorithm is principal component analysis [38].

Moreover, optimization algorithms (genetic algorithm, grey wolf optimizer, gradient
descent algorithm, etc.) also have their paradigm. These algorithms use stochastic and
heuristic principles to search a plausible space for the solution that optimizes a particular
function, with or without constraints.

Machine learning also has fields such as natural language processing, which deals with
analyzing, treating, and predicting text and graph-based algorithms, and neural networks,
which transform data into network graphs, which can be analyzed based on centrality,
similarity, etc.

Deep learning involves neural network algorithms that increase the number of layers
within the “hidden ers” of artificial neural networks to achieve deeper learning, as opposed
to shallow networks with a minimum amount of layers [29]. These tend to vary in structure
and will be discussed further.
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3. Machine Learning and Artificial Intelligence in Research on Energy Conversion

To around 600 sources that were selected using the Scopus database, the authors
applied additional filters to review the different facets of sources thoroughly; for example,
double submissions to different journals, review papers, paywall documents, etc. Five
hundred thirty documents were identified for further evaluation. Around 40% of them
relied on simulated or numerical data. The complexity of an algorithm can only be fully
realized when the data available are sufficiently large and representative of the environment
ultimately meant to be studied. Simulated and numerical models are an effective way to
test out new algorithms or concepts and generate as much data as possible. These data
could be considered as “low-quality” because they may fail to capture all the intricacies of
the inherent model in nature; relying on synthetic data could lead to failures when scaling
a model into reality [39].

Other important attributes collected for each paper were the data size, performance
measure, and benchmark performance measure of the main algorithm being used. This
paper notes data size as the number of rows in a frame, that is, the total number of samples
used for training, validation, and/or testing. Performance measures were collected in the
form that each individual document presented to them. For instance, papers related to
forecasting usually used RMSE as an error measure of the proposed algorithm. Lastly,
benchmark performance measures were considered as the percentage improvement pro-
vided by the algorithm in comparison to either a non-ML traditional approach or the
next-best ML or traditional model; this depended on what each individual paper reported,
which at times would be explicitly reported and other times had to be manually calculated
by the authors. The benchmark performance measures are an effective way to compare
across papers. From the 530 selected documents, approximately 65% explicitly demon-
strated the data size of the utilized dataset and a performance measure; approximately
47% also explicitly reported a calculated benchmark performance measure. In 36% of the
sources, a real dataset has been explicitly mentioned or made possible to find or calculate
it, a performance measure of the proposed algorithm, and a benchmark comparison of the
proposed algorithm.

The authors tried to develop the interconnection of keywords for the set of the publi-
cations with real data, indicate a performance measure, and compare against a benchmark.
Unfortunately, this attempt was unsuccessful because the keywords (used by the authors
of the evaluated publications) tend not to be very specific.

The six clusters were generated to have a more accurate picture (Figure 3). As ANN is
the most popular algorithm used over the years, it has the largest node in cluster “red” with a
total of 76 inter-occurrences. ANNs are used for forecasting, load control, and optimization
tasks in wind and wave energy, photovoltaic systems, solar energy conversion systems,
mixed renewable energy, and energy storage. This nonlinear learning algorithm is the widest
applied due to its relatively accurate learning capabilities, performance, and accessibility to
nonexperts [40,41]. The popularity of ANNs took place between the years 2014 and 2020,
with works on photovoltaic systems and wind speed forecasting more in the past, while
works on wave height and energy and overall solar energy conversion forecasting more
recently. The adoption of ANNs to energy conversion tasks follows two years after the
groundbreaking performance of AlexNet (a convolutional neural network presented by the
Canadian team in the ImageNet competition 2012). This event allowed deep learning to be
widely adopted and attractive due to its outstanding learning capability and low error [42].

Cluster “green” surrounds the use of convolutional neural networks (CNNs), recurrent
neural networks (RNNs), backpropagation neural networks (BPNNs), and SVMs. With
26 occurrences, these advanced deep learning algorithms, architectures, and support vector
machines are applied for forecasting the effectiveness of solar panels, wave height and
wave energy conversion, and the effectiveness of windmills. The interest in wave height
forecasting is recent, as of 2020–2022. This is evident with more advanced deep learning
algorithms (for example, CNNs, RCNNs) and backpropagation neural networks.
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The ANFIS is the central node of cluster “blue”, alongside other algorithm nodes, such
as feedforward neural network, big data techniques, and radial basis function network.
ANFIS, the one with 13 out of 18 occurrences, is utilized for doubly fed induction generator
control for wind energy conversion, prediction of oscillating water columns, and maximum
power point tracking for photo voltaic cells. The ANFIS algorithm brought about high
performance in some instances, and its popularity among these publications was seen from
2016 to 2018. More creative uses of algorithm techniques are being applied. For instance,
big data techniques are being used to predict and forecast wave energy converters [43].

Cluster “yellow” has 16 occurrences dealing with solar radiation forecasting (which
began recently), fault diagnosis for photovoltaics, energy management for solar power, and
estimation of the storage options using lithium-ion batteries. The main algorithm node of
this cluster is the long short-term memory (LSTM) algorithm. A hint at the direction of
prediction tasks is the use of the LSTM algorithm.

Optimization tasks comprise most of the nine occurrences in cluster “purple”. The
genetic optimization algorithm is used for optimization problems related to biomass con-
version and forecasting in wave energy systems. The other part of the cluster is the extreme
learning machine, a form of a feedforward neural network used for optimization in energy
harvesting and renewable energy forecasting tasks. Most of these publications date to the
period 2018–2020.

Cluster “turquoise” is the smallest, with only two occurrences. This cluster stands
alone as it is related to energy management in energy markets using a reinforcement
learning algorithm called Q-learning. Reinforcement learning algorithms have been the
algorithms of choice in recent studies related to energy management and smart grids.

All in all, clusters “red”, “green”, and “blue” represent a majority of the publica-
tions that use real data and direct measures. While clusters “yellow”, “purple”, and
“turquoise” provide insights into newer algorithms being explored for different tasks and
topics than before.

Publications have different aims and are at different stages of research. Documents
that do not report either a performance measure or a benchmark measure may be aiming
to explain a new theoretical approach; these tend to declare that the next steps would be
to conduct empirical research on the proposed method framework. Such studies may be
at an early theory exploration stage of a topic. A publication that reports a performance
measure but does not mention a benchmark performance measure could aim to explore the
plausibility of a new method; these papers tend to cite in their limitations that the next step
would be to benchmark. These studies have begun the implementation phase. Nonetheless,
a study that explicitly reports data size, the origin of the quality of the data, a performance
measure of the primary algorithm, and a benchmark algorithm means this study is at the
end of its cycle, at the confirmation phase. These publications are particularly interesting, as
they discovered the capabilities of ML/AI algorithms within the field of energy conversion.

3.1. Most Researched Topics, Tasks, and Domains

The top topics reported in the evaluated publications are shown in Figure 4. For
almost 30 years (Figure 4a), maximum power point tracking in wind energy has been the
most popular topic, followed by other wind energy-related topics such as forecasting and
doubly fed induction generator optimization and management. The wave energy domain
consists of forecasting for wave height and wave energy converters. The third most popular
domain is solar energy forecasting and optimization. The most explored topics in recent
years (Figure 4b) are dedicated to estimating and predicting lithium-ion battery storage.
Wind, wave, and solar energy topics remain relevant.
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3.2. Most Popular Algorithms

The most widely used AI and ML algorithms applied to energy conversion are reported
in Figure 5. The standard artificial neural network is the most popular, followed by the
adaptive network-based fuzzy inference system (ANFIS) algorithm, genetic algorithm, long
short-term memory (LSTM), recurrent neural network (RNN), Q-learning, and convolu-
tional neural network (CNN). These algorithms are mostly deep learning algorithms, except
for genetic algorithms and Q-learning, which are optimization and reinforcement learning
algorithms, respectively. Their popularity is not surprising as they offer remarkably high
accuracy, low error rates, and vast overall improvement to traditional methods.
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The emergence of the LSTM and CNN algorithm popularity in recent years is evident
(Figure 5b). Moreover, more complex forms of reinforcement learning, such as deep
deterministic policy gradient (DDPG) algorithms, are being applied. ML algorithms such as
SVM, random forest, and Gaussian process regression are being explored as well. Machine
learning offers high computation speed and little memory requirements with the accuracy
similar to that of its deep learning counterparts.
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3.3. Simulated Data vs. Real Data

Of the already mentioned selected papers, 42% reported simulated data, 18%—data
size, 22%—benchmarked performance measures, and 11% reported both.

The distribution of data sizes in the publications with simulated data (Figure 6a) has
high outliers in comparison to the publications with real data, especially when noting that the
maximum data size for simulated works was 10 million samples. Both sets seem to have similar
medians, means, and deviations, with the real dataset having on average 2000 more samples.
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The distribution of benchmarked performance measures in the publications with real
data (Figure 6b) has higher outliers than the publications with simulated data, especially
when noting that the maximum for improvement provided by a publication using real data
was 92 times the status quo. Overall, it seems that studies with real data manage to provide
a more significant percentage improvement than simulated data studies.

3.4. Tools

Here, the authors analyzed the programming languages or the software used. Table 1
shows that the most used are MATLAB/SIMULINK and Python. MATrix LABoratory,
better known as MATLAB, created by MathWorks, is a versatile programming language
and numeric computation environment. It facilitates operations on matrices, visualiza-
tion of functions and data, algorithm implementation, development of user interfaces,
and integration with programs in different languages. As a widely adopted platform in
the field of AI, particularly for implementing optimization algorithms. MATLAB enjoys
significant popularity in academic settings. As of 2020, it has more than 4 million users
globally [44]. Most publications that mentioned the use of MATLAB also mentioned MAT-
LAB’s SIMULINK a programming environment for simulating multidomain dynamical
systems [44]. Almost every paper that reports the simulation results makes use of this envi-
ronment. Python stands as a high-level, versatile programming language characterized by
a design philosophy that prioritizes code readability and independent library development.
With 8.2 million worldwide developers using Python, it has gained popularity recently and
wide adoption in industry [45]. However, it was observed that most publications do not
provide information about used software and/or programming languages.
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Table 1. Frequency of programming languages and range of years of usage.

Programming Languages or Software Frequency Years

MATLAB 157 1999–2022
Python 35 2017–2022
SIMULINK 20 2012–2021
Mathematica 1 2020
Java 1 2020
R 1 2017
C++ 1 2011
Not mentioned 387 -

3.5. Memory Requirements

As algorithms grow in complexity, and data become larger, with data availability
increasing over time, the discussion of the memory requirements is essential. The memory
requirements of a data science project, measured in GB RAM, can be broken down into
two main components: the inherited complexity performed by the algorithm and the size
of the data, that is, the length and width of the dataset. Random-access memory (RAM)
is a type of computer memory that is dynamically read and modified in any sequence,
commonly employed for the storage of operational data and machine code, and often
becomes problematic when algorithms are complex and/or data are too big. Only 4% of
the publications mentioned the GB RAM capacity of the device or online platform used.
If the memory requirement was not mentioned explicitly, then the authors assigned a
default memory requirement based on the type of algorithm applied. For instance, for
reinforcement learning and supervised machine learning algorithms, it is recommended to
have at least 8 GB RAM, and for deep learning algorithms, typically 16 GB RAM.

3.6. Research Hotspots and Direction

A clustering analysis was also conducted using the CiteSpace software (Basic version
6.2.R6, 2022). Figure 7 shows the 13 main clusters, sorted in descending relevance, based
on the number of member references. The modularity of this network is 0.5594, and the
mean silhouettes are 0.8045, according to the agglomeration cluster. It indicates that the
research direction of energy conversion and artificial intelligence application is defined
well enough.

The following research clusters were formed using the highest frequency of the keywords:

• Wind Energy Conversion Systems (#0, #4). These two clusters were merged in the analy-
sis as they both describe wind energy conversion. The highest frequency keywords
include wind power (141 sources), controller (64 sources), wind turbine (57 sources),
maximum power point tracker (41 sources), and neural network (284 sources). In
2016, using MATLAB simulations, a new control technique was introduced using
neural networks and fuzzy logic controllers applied to a grid-connected doubly fed
induction generator to maximize turbine power output. Based on the simulation
findings, the neuron controller significantly reduced the response time while con-
straining and surpassing peak values compared to the fuzzy logic controller [46].
Moreover, a novel combined maximum power point tracking (MPPT)-pitch angle
robust control system of a variable-speed wind turbine using ANNs was reported;
the simulations showed a 75% improvement in power generation in comparison to
typical controllers [47]. Following this work, others discussed the merge of adaptive
neuro-fuzzy controllers and their improved performance on MPPT in WECS [48,49].
Soft computing approaches using optimization were and continue to be explored for
MPPT problems. For instance, particle swarm optimization (PSO) tracks the maximum
power point without measuring the rotor speed, reducing the controller’s computation
needs [50]. As for forecasting, 6400 min of wind measurement arrays were used to
achieve a 14% improvement in the accuracy of wind power 12-step ahead forecasting
using RNNs [51]. Later, ANNs were used to forecast 120 steps ahead, achieving 27%
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higher accuracy than the benchmark [52]. Forecasting for WECS and other systems
heavily relies on neural networks, as they are robust and accurate. The continuous
growth in this field is evident by the consistent links throughout the years of this field.
Interest in this cluster continues to grow and be active. However, research on wind
power forecasting has become scarce since 2009.
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• Wave Energy Conversion Systems (#1). The highest frequency keywords include forecast-
ing (116 sources), wave energy (42 sources) and converters (33 sources), deep neural
network (24 sources), and significant wave height (4 sources). Influential data science
works in wave energy began catching attention in 2015. Due to the computational
complexity associated with analyzing wave energy converter arrays and the escalat-
ing computational demands as the number of devices in the system grows, initial
significant research efforts focused on finding optimal configurations for these arrays.
For instance, a combination of optimization strategies was applied. The suggested
methodology involved a statistical emulator to forecast array performance. This was
followed by the application of a novel active learning technique that simultaneously
explored and concentrated on key areas of interest within the problem space. Finally,
a genetic algorithm was employed to determine the optimal configurations for these
arrays [53]. These methods were tested on 40 wave energy converters with 800 data
points and proved to be extremely fast and easily scalable to arrays of any size [53].
Studies focused on control methods to optimize energy harvesting of a sliding-buoy
wave energy converter were reported in [54], using an algorithm based on a learning
vector quantitative neural network. Later, the optimization approach became more
popular in publications on forecasting for wave energy converters. A multi-input
convolutional neural network-based algorithm was applied in [55] to predict power
generation using a double-buoy oscillating body device, beating out the conventional
supervised artificial network and regression models by a 16% increase in accuracy.
It also emphasized the significance of larger datasets, pointing out that increasing
the size of the dataset could capture more details from the training images, resulting
in improved model-fitting performance [55]. More recent works on forecasting fo-
cus on significant wave height prediction using experimental meteorology data and
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hybrid decomposition and CNNs methods, ultimately achieving 19.0–25.4% higher
accuracy [56,57]. Interest in this cluster continues to grow.

• Integrated Renewable Energy System Management (#2). This cluster combines the publica-
tions related to the management of integrated renewable energy systems [58], power
generation using the organic Rankine cycle [59] and power systems outage outages [60],
biomass energy conversion [61,62], and hybrid systems [63] using knowledge-based
design tools, mixed-integer linear programming, genetic algorithm, decision support
systems, and ANNs. These topics were abundant in the late 1990s and 2005–2015.
However, more recent publications on these topics are scarce.

• Solar Power Generation (#3). Containing keywords related to photovoltaics and their
systems (29 sources), general solar power (29 sources), and solar–thermal energy
conversion (44 sources), this cluster is consistently growing and active. Early works
in this cluster focused on power forecasting for photovoltaics since insolation is not
constant and meteorological conditions influence output. Ref. [64] reports the choice
of the radial basis function neural network (RBFNN) for its structural simplicity and
universal approximation property and RNN for it is a good tool for time series data
forecasting for 24-hour ahead forecasting with RMSE as low as 0.24. As the solar cells
market grew favorably in 2009, publications also explored the feasibility of ANNs
for MPPT of crystalline-Si and non-crystalline-Si photovoltaic modules with high
accuracy, MSE as low as 0.05 [65,66]. It also explored temperature-based modeling
without meteorological sensors using gene expression programming for the first time
and other AI models such as ANNs and ANFIS. The ANNs reduced RMSE error
by 19.05% compared to the next-best model [67]. Similar studies were conducted
using a hybrid ANN with Levenberg–Marquardt algorithm on solar farms with a 99%
correlation between predictions and test values [68]. Other than forecasting tasks,
publications also range on topics like smart fault-tolerant systems using ANNs for
inverters [69] to MPPT of a three-phase grid-connected photovoltaic system using
particle swarm optimization-based ANFIS [70]. More recent papers focus on using
more attribute-rich data to perform short-term forecasting of solar power generation
for a smart energy management system using ANNs [71], gradient boosting machine
algorithms [72], and a more complex multi-step CNN stacked LSTM technique [73]
with great accuracy. The emergence of complex boosting techniques is interesting
because these algorithms tend to learn faster and in a computationally less costly way
than NNs but with similar accuracy.

• Deep Learning Algorithms (#5, #6, #8). These clusters were grouped into one because of
the popular deep learning algorithms. The artificial neural network (#5) showcases
many vertical links; ANNs are popular across almost all energy conversion tasks
and domains for their ability to learn and model nonlinear relationships. In [74],
ANN algorithms are used to model a diesel engine with waste cooking biodiesel
fuel to predict the brake power, torque, specific fuel consumption, and exhaust emis-
sions, ultimately achieving an MSE as low as 0.0004. An application of an ANN
with Levenberg–Marquardt learning algorithm technique for predicting hourly wind
speed was reported in [75]. ANNs were popular in the early years of adoption until
2015. Recent studies, where ANNs are the highlighted algorithm, tend to be newer
areas of exploration in energy conversion and data sciences. For instance, using
36,100 experimental data points of combustion metrics to control combustion physics-
derived models, a 2.9% decrease in MAPE was achieved using ANNs. [76]. However,
in most recent studies, ANNs are used as the benchmark of comparison for a more
complex or efficient method.

The second most recent cluster is #6, convolutional neural networks (CNNs). This
deep neural network algorithm has recently gained consistent momentum in energy con-
version publications. In 2018, in induction motor bearing fault diagnosis, a CNN structure
increased accuracy by 16.36% compared to SVM, random forest, and K-means cluster-
ing using 448 data samples [77]. CNNs are used across different topics, evident by their
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vertical links across clusters. For instance, a CNN structure achieved 98.95% accuracy
using 960 data points as a detection algorithm for inter-turn short-circuit faults, demag-
netization faults, and hybrid faults (a combination of both) in interior permanent magnet
synchronous machines [78]. CNNs are powerful tools in the wave energy conversion
prediction field, one of the most promising renewable resources [55]. Ref. [79] explored
a constant frequency control algorithm based on a deep learning prediction model to
improve the steady-state accuracy of the hydraulic motor speed. This paper proposed a
prediction model based on empirical wavelet transform LSTM-CNN, which improved the
prediction accuracy by 12.26% compared to the short-term memory neural network. CNNs
consistently outperforms its predecessor algorithms, such as ANNs, LSTM, and ANFIS.

As for cluster #8, RBFNN and ANFIS algorithms are used across domains. RBFNNs
are ANNs that use radial basis functions as the activation functions of the neural network,
which is modeled after the Takagi–Sugeno fuzzy inference system [80]. Studies used
RBFNNs to optimize the control of power with a stable voltage at the generator terminals
using two controllers [81,82] and to improve the accuracy of the predicted output I–V and
P–V curves [83], with MSE score reduction as low as 10%. As for the adaptive neuro-fuzzy
inference system algorithms, they are used across domains. For instance, ANFIS is used for
a controller for static VAR compensator, used in power networks integrated with WECS, to
address the torque oscillation problem, which achieved 20% efficiency over the benchmark
approach [84], for short-term wind power forecasting and enhanced by particle swarm
optimization [85], and as an adaptive sliding mode controller to regulate the extracted
power of wind turbine at its constant rated power [86]. The publications in this cluster
heavily overlap with clusters #5 and #6. These algorithms were intensively applied from
2002 to 2016. However, RBFNN and ANFIS algorithms seem to have been overtaken by the
interest in CNNs, since their convolutional nature allows them to automatically detect the
important features inherent in the data without any human supervision, which leads to
higher accuracy or optimization.

• Electric Power Transmission (#7). This cluster contains research related to the stabil-
ity and management of unified power flow controllers (UPFC), electrical grids, and
transmission lines. In 2008, IEEE held a conference titled “Conversion and Delivery of
Electrical Energy in the 21st Century”; several noteworthy publications are included
in this cluster. A Lyapunov-based adaptive neural network UPFC was applied to
improve power system transient stability [87]. Outage possibilities in the electric
power distribution utility are modeled using a para-consistent logic and paracon-
sistent analysis nodes [60]. Linear matrix inequality optimization algorithms were
used to design output feedback power system stabilizers, which ultimately improved
efficiency by 68%, compared to the standard controller [88]. A first look at the utility
of reinforcement learning was explored by applying a Q-learning method-based on-
line self-tuning control methodology to solve the automatic generation control under
NERC’s new control performance standards, which achieved all proposed constraints
and achieved a 6% reduction in error compared to the traditional controller [89]. After
a gap of inactivity in this cluster, a resurgence of these topics began in 2020, focusing
heavily on reinforcement learning for smart grid control and more thorough agent,
environment, and state definition. A Q-learning agent power system stabilizer is
designed for a grid-connected doubly fed induction generator-based wind system
to optimize control gains online when wind speed varies, amounting to a nine-time
more stable controller [90]. The use of an advanced deep reinforcement learning ap-
proach is applied to energy scheduling strategy to optimize multiple targets, including
minimizing operational costs and ensuring power supply reliability of an integrated
power, heat, and natural-gas system consisting of energy coupling units and wind
power generation interconnected via a power grid using a robust 60,000 data points
and achieving 21.66% efficiency over particle swarm optimization and outperforming
a deep Q-learning agent [91]. As energy systems become increasingly integrated with
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more complex sourcing and distribution, the interest in this field of publications will
continue to grow.

• Battery/Charging Management System (#9). This cluster relates to electric vehicle charg-
ing, scheduling, and lithium-ion battery management. In dynamic wireless power
transfer systems for electric vehicle charging, the degree of LTM significantly affects
energy efficiency and transfer capability. An ANN-based algorithm was propositioned
to estimate the LTM value; i.e., the controller would have the ability to establish an
adjusted reference value for the primary coil current, offsetting the decrease in en-
ergy transfer capacity due to LTM, thus leading to a 32% increase in the value of the
transferred energy [92]. A neural network energy management controller (NN-EMC)
is designed and applied to a hybrid energy storage system using the multi-source
inverter (MSI). The primary objective is to manage the distribution of current between
a Li-ion battery and an ultracapacitor by actively manipulating the operational modes
of the MSI. Moreover, dynamic programming (DP) was used to optimize the solution
to limit battery wear and the input source power loss. This DP-NN-EMC solution
was evaluated against the battery-only energy storage system and the hybrid energy
storage system MSI with 50% discharge duty cycle. Both the battery RMS current
and peak battery current have been found to be reduced by 50% using the NN-EMC
compared to the battery-only energy storage system for a large city drive cycle [93].
Battery/ultracapacitor hybrid energy storage systems have been widely studied in
electric vehicles to achieve a longer battery life. Ref. [94] presents a hierarchical energy
management approach that incorporates sequential quadratic programming and neu-
ral networks to optimize a semi-active battery/ultracapacitor hybrid energy storage
system. The goal is to reduce both battery wear and electricity expenses. An industrial
multi-energy scheduling framework is proposed to optimize the usage of renewable
energy and reduce energy costs. The proposed method addresses the management of
multi-energy flows in industrial integrated energy systems [95]. This field borrows
from a diverse set of algorithms.

• Induction Machine, Digital Storage, and Control System (#10, #12, #13). These three
clusters have lost momentum and become unexplored in recent years. Regarding the
induction machine, a sensorless vector-control strategy for an induction generator
operating in a grid-connected variable speed wind energy conversion system was
presented using an RNN, offering a 4.5% improvement upon the benchmark [96].
Cluster #12 combines the publications related to the accurate modeling of state-of-
charge and battery storage using ANNs and RNNs [97–99]. Cluster #13 includes the
publications related to maximum point tracking in wind energy conversion systems
using neural network controllers [100–102] and energy maximization using neural
networks, such as learning vector quantitative neural networks, on a sliding-buoy
wave energy converter [54].

• Genetic Algorithm (#11). This cluster deals primarily with the application of the ge-
netic algorithm to various energy conversion systems, as well as other optimization
techniques. A genetic algorithm solves both constrained and unconstrained optimiza-
tion problems, similar to how genetics evolve in nature through natural selection
and biological evolution. The genetic algorithm revises a population of individual
solutions as it explores different solutions. [103]. Evident on the timeline of this cluster
is the consistent use of this optimization technique throughout the years; optimization
techniques are often part of a typical data science project pipeline, where the data
science algorithm transforms inputs into outputs, and the optimization tools can be
used to optimize the inputs, outputs, or algorithm itself. Thus, ANNs or other neural
networks are often paired up with the genetic algorithm. A review of how the genetic
algorithm is often used to optimize the input space of ANN models and investigate the
effects of various factors on fermentative hydrogen production was reported in [104].
A multi-objective genetic algorithm was employed to derive a Pareto optimal collec-
tion of solutions for geometrical attributes of airfoil sections designed for 10-meter
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blades of a horizontal axis wind turbine. The process utilized ANN-modelled objec-
tive functions and was discussed in [105]. Ref. [106] reported the high performance
and durability of a direct internal reforming solid oxide fuel cell by coupling a deep
neural network with a multi-objective genetic algorithm, improving the high-power
density by 190% while significantly reducing carbon deposition. A similar approach
was undertaken to maximize the exergy efficiency and minimize the total cost of a
geothermal desalination system [107].

4. Strengths and Weaknesses
4.1. Ranking Publications

Table 2 shows a ranking matrix. The rankings were determined based on the average
score of the publications on each criterion. A score of “5” indicates excellence in particular
criteria, whereas “0” indicates that a publication did not excel in specific criteria; integer
scores between 0 and 5 were assigned based on this scale of excellence, where a higher
score indicates higher performance in that criteria.

Table 2. Ranking matrix.

Criteria Weight
Rankine

0 1 2 3 4 5

Data size
(number of samples) 25% 0–1000 1000–9000 9000–12,500 12,500–16,000 16,000–20,000 +20,000

Data information 25% Not mentioned – Simulation
data – – Real data

Performance achieved by
an algorithm 25% Not mentioned Objective

achieved 0–10% 10–30% 30–100% +100%

Year of publication 10% . . .–1999 2000–2010 2011–2013 2014–2016 2017–2019 2020–2022
Number of citations

(status end 2022) 10% 0–5 5–10 10–15 15–50 50–100 +100

Algorithm type 2.5% –
Deep

learning and
graph-based

– Reinforcement
learning

Supervised
machine

learning and
optimization

Supervised
machine

learning and
optimization

Memory requirement (GB
of RAM) 2.5% – 64, 50, 48,

or greater – 16 8 4 or less

A discussion of the algorithms used in the publications ranked as top 40, a total of
88 publications (since there were publications with the same total score) or approximately
the top 10% of the publications, based on the ranking matrix criteria in Table 2, follows with
an in-depth look at the strengths and weaknesses of each algorithm. These publications
represent the publications with the largest datasets, use of non-simulated real data, quan-
tifiable performance achieved, recent publication date, high number of citations, preferred
algorithm types, and without much memory limitations. Based on the weights of the
ranking matrix, it is clear that the quality of the data and the performance of the model
were the most important criteria.

4.2. Artificial Neural Networks

Artificial neural networks (ANNs) are computational modeling algorithms that have
emerged recently and have become a staple in many disciplines for modeling complex
real-world nonlinear problems. Twenty-two publications were identified among the five
hundred thirty. ANNs consist of intricately connected adaptable basic processing elements
known as artificial neurons or nodes. They are proficient in executing highly concurrent
computations for data processing and knowledge representation, drawing inspiration from
the functioning of the human brain [40,41]. The general structure of an ANN is shown
in Figure 8. The input to the ANN is each row of data with its diverse columns fed as
individual inputs into the neurons of the input layer. Neurons are the basic building blocks
of ANNs. They act like tiny decision makers. Let us assume that all data points consist
of five columns (features or explanatory variables); then, there would be five input layer
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neurons. If our input consisted of 28 × 28-pixel images, with a total of 784 pixels per picture,
then there would be a total of 784 input layer neurons. Neurons in the input layer are
connected to neurons in the next layer through weights. Weights are like knobs that adjust
the strength of the connection between neurons. The network learns to adjust these weights
during training. Each input neuron’s value is then multiplied by the initial weights, which
are initialized randomly, and summed, adding to the numerical bias initially assigned to the
hidden layer neurons (i.e., X1 ∗ w1 + X2 ∗ w4 + . . . = B1). The hidden layers are the layers
in between the input and output layers. There can be one or more hidden layers. These
layers are where most of the computation happens. Neurons in the hidden layers take input
from the previous layer, apply mathematical operations, and pass the result to the next
layer. Subsequently, these computed values undergo evaluation by activation functions,
commonly referred to as threshold functions. Each neuron also has an “activation function.”
This function determines whether the neuron should fire or not based on the information it
receives. Common activation functions include the sigmoid and ReLU (rectified linear unit)
functions. This assessment governs the activation status of the neuron, and the cumulative
result influences either the subsequent hidden layer or, in the cases where there is only one
hidden layer, the final output. The final layer is the output layer. It produces the network’s
prediction or classification based on the information processed in the hidden layers. This
process called forward propagation, is repeated until the final weights determine the initial
output (i.e., y). The network will then measure the error of the prediction based on the
expected output, in a supervised way, that is, by comparing it to the provided real output
value. A “loss function” calculates the difference between the network’s predictions and
the actual answers to measure how well the network is performing. The goal is to minimize
this difference. The choice of a loss function depends on the type of problem you are trying
to solve. Mean squared error (MSE) is a popular choice for regression problems where
the outcome variable is a continuous value. Cross-entropy is to classification as MSE is to
regression, with two types for binary and multi-class classification problems. There are
plenty more loss functions that can be chosen based on the specific task. These steps are
repeated, and by continuously training on the remaining training dataset, the network will
adjust its weights until it reaches a strong level of prediction, a minimized loss function;
this training process of adjustment is called backpropagation [108]. This overall process is
what is sometimes defined as learning. Lastly, the trained ANN will be applied to unseen
data, typically referred to as test data, to judge its performance. Several evaluation metrics
are commonly used. The choice of evaluation metrics depends on the type of task your
ANN is designed for (e.g., classification or regression).

Within artificial systems, learning is conceived as the process of adapting the neural
system in reaction to external inputs aimed at accomplishing a particular task, such as
classification or regression. This adaptation entails alterations to the network’s structure,
encompassing adjustments to link weights, the addition or removal of connection links,
and modifications to the activation function rules of individual neurons. Learning in
ANNs takes place through an iterative process as the network encounters training samples,
mirroring the way humans acquire knowledge through experience. An ANN-based system
is considered to have learned when it can effectively manage imprecise, ambiguous, noisy,
and probabilistic data without exhibiting significant performance degradation and can
apply its acquired knowledge to unfamiliar tasks [40]. ANNs can be used for pattern
recognition, clustering, function approximation or modeling, forecasting, optimization,
association, and control. Some standardized pre-processing of data before the application
of ANNs or other algorithms includes, but is not limited to, noise removal, reducing input
dimensionality, and data transformation [109,110], treatment of nonnormally distributed
data, data inspection, and deletion of outliers [111,112]. It is advisable to employ data
normalization to avoid the dominance of larger values over smaller ones and the premature
favoring of hidden nodes, which can impede the learning process [113].
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Within the studied publications, ANNs are most notably used in the modeling of pho-
tovoltaic modules [115], short-term wind power forecasting [116], and real-time electricity
price prediction [117], providing between 20.0 and 99.5% improved performance on the
benchmark method using between 63,000 and 262,000 real data samples.

4.2.1. Strengths

The appeal of ANNs stems from their distinctive information processing attributes,
including nonlinearity, extensive parallelism, resilience, tolerance to faults and failures,
learning capabilities, adeptness in managing imprecise and fuzzy data, and their capacity
to generalize. In other words, ANNs, and other deep learning algorithms do not require
the data to undergo human pre-processing, which could introduce many issues, including
bias [118]. These characteristics are desirable because

• nonlinearity allows for a great fit to almost any dataset,
• noise-insensitivity provides accurate prediction in the presence of slight errors in data,

which are common,
• high parallelism allows for fast processing and hardware failure-tolerance,
• the system may modify itself in the face of a changing environment and data by

training the neural network once again, and
• its ability to generalize enables the application of the model to unlearned and new data.

ANNs achieve nonlinearity through the use of the nonlinear activation functions (e.g.,
sigmoid, ReLU, tanh) within their neurons. These activation functions introduce nonlinear-
ity into the network, allowing ANNs to capture complex and nonlinear relationships in the
data. ANNs are inherently robust to noise to some extent due to their architecture. During
training, the network learns to assign different weights to input features and connections.
These weighted averages can help to mitigate the impact of noisy data points during predic-
tion. Moreover, ANNs leverage parallelism efficiently. Neurons in the hidden layers of the
network can perform computations independently, allowing for high parallelism. Lastly,
ANNs are great at generalization thanks to their dropout and weight decay techniques
which avoid overfitting. These regularization methods encourage the network to focus on
the most important features and reduce sensitivity to noise in the data [118].

4.2.2. Weaknesses

As discussed, ANNs are powerful tools with wide-ranging applications. However,
ANNs have important limitations that should be considered.

These include the following:

• ANNs’ success depends on both the quality and quantity of the data;
• A lack of decisive rules or guidelines for optimal ANN architecture design;
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• A prolonged training time, which could extend from hours to months;
• The inability to comprehensibly explain the process through which the ANN made a

given output, often criticized for being black boxes;
• There are parameters that require optimizing, which are at times not intuitively appar-

ent [119].

While there are common architectural choices (e.g., the number of layers and neurons),
there is no one-size-fits-all guideline for designing an optimal ANN architecture. Deter-
mining the right architecture requires empirical experimentation and domain expertise,
which can be time-consuming and resource-intensive. Training deep ANNs, especially for
complex tasks, can be computationally expensive and time-consuming. Training on large
datasets with deep architectures may require significant computational resources, including
GPUs or TPUs, and can take hours or even days to complete. ANNs can be seen as “black
box” models, making it challenging to understand and interpret their internal workings.
This lack of explainability can be a significant drawback, especially in applications where
transparency and interpretability are crucial. To mitigate these weaknesses, researchers and
practitioners are actively working on developing techniques and tools for data-efficient
learning, automated architecture search, model explainability, and transfer learning [119].

4.3. Ensemble Learning: XGBoost, Random Forest, Support Vector Machine, Decision Trees

Ensemble learning involves the utilization of multiple learning algorithms in tandem
to enhance predictive performance beyond what can be achieved individually by each
constituent of the ensemble method [120]. Six publications out of the five hundred thirty
were identified. For instance, a popular ensemble algorithm is the random forest algorithm,
which can be used for classification and regression problems. Random algorithms are
constructed by a multitude of decision trees at training time. Decision trees are a flowchart-
like structure in which each internal node represents a “decision” on an attribute (e.g.,
whether a dice will roll an odd or even number, marked at times by probability), each
branch represents the outcome of the decision, and each leaf node represents a class label
(the decision taken or label assigned to those samples at the leaf after computing all
attributes). The decisions can be represented by inequality or equivalent tests. The paths
from root to leaf represent classification rules. For classification purposes, the random
forest algorithm’s output corresponds to the class favored by the majority of trees. In
regression tasks, the output represents the average prediction derived from the individual
trees [120]. Random decision forests correct for decision trees’ habit of overfitting to their
training set [121]. Overfitting is a major concern in supervised learning tasks. It occurs
when the model learns the data in the training process too closely, yielding a great accuracy
or low error rate, but then the model runs the risk of performing poorly with unseen
data. Random forest algorithms generally outperform decision trees, but their accuracy
tends to be lower than that of gradient-boosted tree algorithms, such as the regularized
gradient-boosting frameworks provided by the XGBoost software library(Extreme Gradient
Boosting, ver.2.0.2). Boosting algorithms aim to incrementally build an ensemble by training
each following model instance to emphasize the training instances the previous models
classified or predicted poorly [122]. Gradient boosting algorithms aim to use stochastic
gradient descent or similar optimization algorithms to reduce the overall prediction error
of the iterative models. It is achieved by adding a new estimator, a residual, to the previous
model to attempt to correct the predecessor’s errors. This estimator is calculated from the
negative gradient of the loss function, which tends to be MSE for regression problems and
cross-entropy loss/log loss for classification problems [121]. XGBoost, unlike other gradient
descent algorithms, uses a second-order Taylor approximation in the loss function to make
the connection to Newton–Raphson method, which is a root-finding algorithm. XGBoost
provides an excellent approximation of the residuals iteratively, ultimately creating a strong
ensemble learner [123].

Lastly, the SVM algorithm is sometimes a great candidate as a replacement for decision
trees in ensemble methods where multiple SVM learners are used. SVMs are supervised
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learning models used for regression and classification problems. In summary, a linear SVM
attempts to classify a training set by trying to find a maximum-margin hyperplane that
divides the training vectors into classes, most notably in binary classification problems.
Different SVM variations exist, including nonlinear SVMs [124].

Within the selected publications, SVMs are most notably used in conjunction with
deep neural networks to estimate the lithium-ion battery state [125], wind turbine event
detection [126], and short-term wind speed forecasting [127], providing between 33 and
77.37% improved performance on the benchmark method. RFs were used for intelligent
fault diagnosis for photovoltaic units using array voltage and string currents [128] and
explaining the hydrogen adsorption properties of defective nitrogen-doped carbon nan-
otubes [129], with an average of 99% accuracy. Lastly, XGBoost and other adaptive boosting
and deep learning hybrid techniques were used for intra-day solar irradiance fore casting
in tropical high variability regions [130] and for wave energy forecasting [131], achieving
between 25 and 29.3% improved performance compared to the benchmark models using
between 25,000 and 52,000 real data samples.

4.3.1. Strengths

The ensemble learning methods are solid tools for linear and nonlinear classification
and regression problems. RFs and XGBoost algorithms provide high accuracy or low error
rates. Ensemble learning methods are able to accomplish such performance by combining
predictions of multiple individual models (decision trees for RFs and XGBoost) to make
more accurate predictions. The base model of these two models are Decision Trees (DTs),
which are usually prone to high variance because they are sensitive to small variations
in training data. RFs and XGBoost mitigate this by averaging or combining the results
of multiple trees, which reduces variance bias and ultimately makes predictions more
stable. By combining multiple trees, RFs, and XGBoost can approximate complex decision
boundaries, that is, nonlinearity in the data, allowing them to model a wide range of
data patterns effectively. Gradient boosting algorithms, such as XGBoost, reduce bias
and variance while increasing accuracy compared to RFs [122]. SVMs are often the linear
regressor or classifier of choice for binary problems, as they provide high accuracy with low
computation costs. Ensemble methods of SVMs build on this strength to tackle nonlinear
problems. Compared to ANNs, ensemble methods are computationally less costly and
have faster training and prediction times.

4.3.2. Weaknesses

Ensemble methods require extensive parameter tuning to discover the best rendition
of the ensemble NING method. Algorithms do exist to tackle this issue, such as GridSearch,
which is often built into the ARY and packages that house these algorithms in software [123].
While all algorithms risk overfitting, and ensemble methods are not an exception, XGBoost
borrows some concepts from bootstrap aggregating algorithms to reduce overfitting. Boot-
strap aggregating, often referred to as bagging, generates m samples, from large enough
datasets these subsamples, known as bootstraps, tend to be 63.2% the size of the original
dataset from a given training set by sampling with replacement; this ensures that each
bootstrap is independent of its peers. Then, m total models are fit to the m bootstraps, one
model for each, and their outputs are then averaged. This process minimizes overfitting
thanks to the multiplicity of the samples and their independence. With these methods is the
necessity for manual featurization, which is not necessary in neural network frameworks.

While ensemble methods are less computationally costly than deep neural networks,
ensemble methods have lower accuracy than deep neural networks. Thus, when researchers
seek higher accuracy than that provided by ensemble methods, they often fall back on deep
neural networks and use ensemble methods as the benchmark.
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4.4. Long Short-Term Memory

A recurrent neural network (RNN) is a type of ANN characterized by the presence
of cyclic connections, which enable the information from certain nodes to impact the
subsequent input received by those very nodes. As such, RNNs exhibit temporal dynamic
behavior, which makes RNNs distinctly applicable for a time series analysis [132]. RNNs
are said to have both short-term and long-term “memory”. Built upon the foundation of
feedforward neural networks, RNNs harness their internal memory to effectively handle
input sequences of varying lengths [133].

Long short-term memory (LSTM) networks feature an enhanced iteration of the RNN
architecture, meticulously engineered to capture temporal sequences and their extended
relationships with greater accuracy compared to conventional RNNs. In a sense, the LSTM
architecture stores short-term memory longer than that of RNNs. In some instances, this is
crucial; long-term dependencies are sometimes required to predict the current output. Thus,
an ideal algorithm dealing with problems that require long-term dependencies can decide
which parts of the context need to be carried forward and how much of the past needs
to be “forgotten”. This vanishing gradient problem is one that the LSTM tries to address
and almost remove completely by applying a hidden layer known as a gated unit or gated
cell. The gated cell comprises four layers that interact with one another to produce both a
numerical output of the cell and the cell state. These two outputs are then passed onto the
next hidden layer. While RNNs have only a single neural net layer of tanh, a classification
function with two outputs, LSTM networks have three logistic sigmoid gates and one tanh
layer. These gates act as filters, selectively regulating the passage of information through
the cell. They decide what portion of the data is relevant for the subsequent cell and what
should be disregarded. Typically, the output falls within the 0–1 range, where 0 signifies
the exclusion of all information, while 1 signifies the inclusion of all information.

Each LSTM cell has three inputs ht−1, Ct−1, and xt and two outputs ht and Ct. For
a given time t, ht is the hidden state, Ct is the cell state or memory, xt is the current data
point or input. The first sigmoid layer inputs are ht−1 and xt. This component is referred
to as the forget gate because its output determines the extent to which information from
the previous cell should be retained. The output of the forget gate is a value between 0
and 1, which is then element-wise multiplied with the previous cell state Ct−1. As for the
second sigmoid layer, it is the input gate, which chooses what new information makes
it to the cell. It takes two inputs ht−1 and xt, the previous hidden state and the current
data point. The tanh layer creates a vector Ct of the new candidate values. These second
sigmoid layer and the tanh layer determine the information to be stored in the cell state.
Their point-wise multiplication determines the amount of information to be added to the
cell state. The outcome of the input gate is combined with the outcome of the forget gate,
which is multiplied by the previous cell state, resulting in the generation of the current cell
state Ct. Subsequently, the cell’s output is computed by utilizing the third sigmoid layer
and the tanh layer. The former determines the portion of Ct that will be incorporated into
the output, while the latter adjusts the output within the [−1, 1] range. Finally, these results
undergo point-wise multiplication to produce the final output ht of the cell [134–136].

LSTM networks were designed to be even better suited than RNNs for classifying,
processing, and making predictions based on time series data. In recent years, notable
publications revealed that using the LSTM algorithm for the prediction and evaluation of a
solid oxide fuel cell (SOFC) system’s operating state [137], learning the congestion level of
a power distribution system which designates the loading of a distribution feeder [138],
and fouling prediction in heat exchangers to avoid inefficiencies and shutdowns [139],
provided improved performance compared to the benchmark autoregressive integrated
moving average and regression algorithms by between 19.1 and 200% using 629,873, 86,400,
and 23,040 real data samples, respectively.
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4.4.1. Strengths

LSTM networks are particularly adept at tasks involving the classification, analysis,
and prediction of time series data, as they can effectively handle situations where significant
events within the time series may have variable and unanticipated time intervals between
them. Moreover, LSTM networks are well-suited for tasks requiring the importance of
long-term dependencies. Relative insensitivity to large gaps is the distinguishing advantage
of LSTM networks over RNNs, achieved by dealing with the vanishing gradient problem
almost completely [136].

4.4.2. Weaknesses

All in all, LSTM networks are one of the best options for tackling problems that require
long-term dependencies. However, the LSTM architecture fails to remove the vanishing
gradient completely. The primary factor is that data transfer between cells remains a
necessity for their processing. Future research for the enhancement of RNNs may focus
on addressing this challenge, as there is a quest among developers for a model capable of
retaining past information over extended durations beyond what LSTM networks currently
provide. Moreover, LSTM networks also require substantial resources and time to train and
become implementation-ready. It is due to the high memory-bandwidth required because
of the linear layers present in each cell. Thus, LSTM networks may become relatively
inefficient because of their high bandwidth. Thirdly, LSTM networks become affected by
different random weight initialization, preferring small weight initialization instead. This
parameter does make finding the best LSTM model complex. Lastly, LSTM networks are
prone to overfitting. The dropout method is typically used in RNNs to solve overfitting; it
makes the model generalize more by probabilistically excluding the activation and weight
updates of input and recurrent connections to LSTM units while training the network.
However, this method is difficult to apply successfully [134–136].

4.5. Convolutional Neural Network

Convolutional neural networks (CNNs) represent a specific category of ANNs that
employ a mathematical operation known as convolution instead of the conventional matrix
multiplication in at least one of their hidden layers. Five publications were identified.
These networks are purposefully crafted for the manipulation of pixel information and
find application in tasks like image identification and manipulation. However, their
utility extends beyond this domain, encompassing various other functions like prediction,
modeling, clustering, and data analysis [140]. Similar to ANNs, CNNs have input, hidden,
and output layers. The main distinction comes in the ability of the hidden layers to
perform convolutions.

Usually, convolution entails the dot product between the convolution kernel and the
input matrix of the layer. The activation function frequently employed for this product is
ReLU. While the convolution kernel moves across the input matrix, it produces a feature
map that subsequently feeds into the next layer. Subsequent layers may include pooling
layers, fully connected layers, and normalization layers, among others [141]. Pooling layers
reduce the data dimensions by combining the outputs of neuron clusters at one layer into a
single neuron in the next layer. Local pooling combines small clusters, while global pooling
acts on all the neurons of the feature map [142]. There are primarily two types of pooling
in practice: max pooling selects the highest value within each local group of neurons in the
feature map, whereas average pooling calculates the mean value [143]. Fully connected
layers link every node in one layer to every node in another layer [141]. Between 2018 and
2022, the most notable publications in energy conversion used CNNs to forecast fuel cells
power generation accurately [144], ocean wave power prediction [145], and solar panel
output forecasting [146], which provided an 11–60% improvement on the benchmark using
between 17,000 and 77,000 real data samples.
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4.5.1. Strengths

CNNs share all the same advantages as ANNs, but their main distinctive advantage
is their superior capabilities related to the 2D structure of an input image. It is achieved
through its neighboring connections and tied weights coupled by diversity in convolutional,
pooling, fully connected, and normalizing layers, which enables further translation of
variant characteristics.

4.5.2. Weaknesses

CNNs share similar limitations with ANNs. These include the following:

• CNNs’ success also depends on both the quality and quantity of the data;
• A lack of decisive rules or guidelines for optimal CNN architecture design, although

different architectures have been studied and show promising results;
• A prolonged training time, which could extend from hours to months;
• The explainability of CNNs outputs is also limited;
• There are parameters and choices in layers that require optimizing, sometimes leading

to trial and error until the desired accuracy or error rate is reached.

4.6. Adaptive Network-Based Fuzzy Inference System

Developed in the early 1990s, the ANFIS algorithm is a kind of ANN that is based on
Takagi–Sugeno fuzzy inference system [147]. Only four publications were identified. In
juxtaposition to Boolean logic, which categorically assigns truth values to variables as either
1 or 0, a fuzzy logic constitutes a variant of a many-valued logic wherein the truth value of
variables can manifest as any real number falling within the continuous interval between 0
and 1. Through this mechanism, the notion of partial veracity becomes viable, wherein the
veracity level is capable of encompassing a spectrum that extends from absolute verity (1)
to absolute falsity (0). These come in many forms, including IF-THEN clauses [148]. Thus, a
fuzzy logic allows models to recognize, represent, manipulate, interpret, and use data and
information that can be vague and lack certainty [80]. ANFIS amalgamates neural network
and fuzzy logic paradigms, thereby endowing the ANFIS algorithm with the prospect of
harnessing the advantages inherent in both paradigms within a unified framework. The
inference system comprises a collection of fuzzy “if-then” rules, equipped with the capacity
for learning and approximating nonlinear functions. [149]. ANFIS is considered a universal
estimator for these capabilities [150]. The ANFIS algorithm may be optimized by pairing it
with the best parameters obtained by a genetic algorithm [151].

The architecture of the ANFIS model is made up of five layers. The initial layer plays
a distinctive role in distinguishing an ANFIS network from conventional neural networks.
Within the fuzzification layer, the input values are processed to ascertain their respective
membership functions. The computation of membership degrees for each function is
achieved through the utilization of the premise parameter set, thereby transforming the
inputs into fuzzy values. In regular neural networks, the first sigmoid layer normalizes
inputs to values between 0 and 1 to pre-process the data. An ANFIS neural network does
not use a sigmoid function to pre-process the data. Instead, the fuzzification layer performs
the pre-processing by turning the inputs into fuzzy values [152].

Between 2019 and 2022, the most notable publications in energy conversion used
ANFIS to create probabilistic wind turbine power curve models to quantify the uncertainties
of energy conversion and highly scattered relationships of actual wind speed to power [153],
investigate the effectiveness of proton exchange membrane fuel cell historical behavior and
their operating mode on future performance at both static and nonstatic conditions [154],
and predict the whole range of graphene oxide nanoparticle data [155], which provided a
24–163% improvement on the benchmark using 50,256, 1100, and 10,530 real data points.

4.6.1. Strengths

The ANFIS algorithm has several advantages [149–152]:

• Capability to capture the nonlinear structure of a process;
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• Strong adaption capability;
• Rapid learning capacity, thanks to its parallel computation capabilities;
• Fewer adjustable parameters than ANNs;
• Universal application.

ANFIS captures nonlinear structures by combining the adaptability of neural networks
with the interpretability of fuzzy logics. It adjusts membership functions, rule weights, and
neural network parameters during training to fit the data’s nonlinear patterns. The “adap-
tive” aspect of ANFIS comes from its ability to adjust the parameters of its membership
functions and fuzzy rules using a learning algorithm. Commonly used learning algorithms
include gradient descent or least-squares methods. These algorithms iteratively update
the parameters to minimize the error between the actual and predicted output. ANFIS can
also incorporate a neural network component, which is typically a single-layer feedfor-
ward neural network. This neural network takes the intermediate fuzzy outputs from the
fuzzy inference step and further processes them. Neural networks are inherently capable
of approximating nonlinear functions, and this component enhances ANFIS’s ability to
capture complex nonlinear relationships. This hybrid approach allows ANFIS to effectively
model complex relationships in processes or data while maintaining transparency and
interpretability through its fuzzy rule base. These features make ANFIS a consistently used
algorithm in the energy field, most notably in energy system management, thanks to its
easy integration with other control design methods [149–152].

4.6.2. Weaknesses

Given that the ANFIS algorithm is efficient, accurate, and adaptable, its main potential
disadvantage is the potentiality of overfitting. Another consideration is that an ANFIS
network may not achieve as high accuracy due to its universal application as a CNN with
images or an LSTM network with time series. Thus, ANFIS networks come in handy as
a first-choice exploration and a benchmark, as well as for problems with difficult-to-map
nonlinear processes.

4.7. Reinforcement Learning: Q-learning, Deep Deterministic Policy Gradient, Actor Critic

The top-ranked reinforcement learning algorithm publications utilized Q-learning,
SAC, and DDPG agents in the energy conversion set of documents collected. As mentioned
earlier, reinforcement learning algorithms concern a learning agent and its environment
and the set of actions taken by the agent per a set of states, which yield different rewards.
The ultimate goal of the agent is to finalize the final total reward. Estimation of the expected
value of the total rewards from particular actions at particular states is where reinforcement
learning algorithms differentiate. Only four publications were identified.

Q-learning is a subset of reinforcement learning algorithms that aims to learn the value
of an action in a particular state. The agent will initialize a table of actions and potential
states at 0. Through the training, the agent will update the expected value of every action
in each particular state, known as Q values. This table ultimately determines how an agent
acts given a certain state and its set of actions to maximize its total reward. At the heart
of the method for computing these Q values lies a Bellman equation, which involves a
straightforward update process known as value iteration. This update combines the current
value with new information using a weighted average. Q-learning algorithms are capable
of addressing challenges involving uncertain transitions and rewards in a problem domain,
all without necessitating extensive adjustments or adaptations [156].

A fundamental contrast between Q-learning and DDPG (deep deterministic policy
gradient) agents lies in the nature of their state and action spaces. Specifically, DDPG agents
navigate within continuous state and action spaces, while Q-learning agents operate in
discrete counterparts. Furthermore, DDPG employs a dual learning paradigm wherein
it simultaneously trains a Q-function and a policy. This training process is reliant on off-
policy data and the application of the Bellman equation, with the Q-function serving as a
foundation for informing the policy learning process and vice versa. Presuming that the
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Q-function is differentiable concerning the action argument allows for a gradient-based
learning approach. Thus, the DDPG tends to be an excellent option for problems with
continuous spaces [157].

Developed in collaboration between Google and UC Berkeley, the SAC algorithm is an
off-policy RL algorithm based on a maximum entropy approach. The maximum entropy
reinforcement learning framework aims to achieve the optimal policy by maximizing the
expected return and the expected entropy itself [158]. In other words, a primary distinction
between the Q-learning/DDPG and SAC algorithms is that the former consists of a critic,
which aims at updating state-action values; in contrast, the SAC algorithm consists of a
critic and an actor who takes action and explores the space based on the critic’s insights,
which ultimately also informs the critic.

From 2018 to 2022, prominent research works in the realm of energy conversion to a
rage extent employed Q-learning to oversee the efficient energy management of a hybrid
energy storage system that incorporates supercapacitors and undersea storage. These
systems were designed for the purpose of integrating wave energy conversion into the
electrical grid [159]. DDPG was employed to develop a dynamic energy conversion and
management model for an integrated electricity and natural gas system [160]. The soft actor
critic algorithm was applied in the context of energy scheduling strategy with the aim of
optimizing various objectives. These objectives encompassed the reduction in operational
expenses and the guarantee of a dependable power supply [91], which provided a 21–69%
improvement on the benchmark.

4.7.1. Strengths

Q-learning algorithms are greatly adaptive to stochastic changes in states and re-
wards [156]. DDPG agents adopt the remarkable adaptability and predictive power of
Q-learning algorithms and apply them to continuous spaces, which leads to DDPG algo-
rithms having wider adaptability across problems [157]. SAC agents provide improved
stability concerning the hyperparameters and outperform prior on-policy and off-policy
methods in sample efficiency and asymptotic performance. Therefore, real-world applica-
tions of SAC are more stable. By avoiding parameter tuning and having sample efficiency,
the SAC algorithm tends to have a computational efficiency advantage over the Q-learning
and DDPG agents [158].

These algorithms have potential in areas where an intelligent system controller or
manager is being implemented, for instance, in a smart electrical grid management strategy.

4.7.2. Weaknesses

As foreshadowed earlier, Q-learning and DDPG are computationally very expensive,
especially in comparison to the SAC algorithm. A weakness of reinforcement learning
algorithms is their currently limited application space. For these algorithms to be used, the
specific problem task must be one where the environment must be modeled or fit into the
paradigms of states, actions, actors, critics, and environment.

4.8. Other Algorithms Worth Mentioning: Graph Neural Networks and Regression Methods

Other algorithms were also present in the top-rated publications but with only one
or two publications. The authors wanted to highlight two. Twenty-one publications were
identified out of the five hundred thirty.

The first is a graph neural networks (GNNs). In the realm of artificial intelligence and
machine learning, where innovation continually reshapes our understanding of complex
data structures, GNNs have emerged as a powerful tool. These networks represent a
pioneering paradigm shift, enabling us to harness the latent insights within interconnected
data, such as social networks, molecular structures, recommendation systems, etc. Graphs,
a versatile data representation, inherently describe relationships and dependencies among
entities. By 2021, GNNs have garnered increasing attention due to their remarkable
performance. GNNs exhibit the capability to capture intricate dependencies within various
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data modalities, such as graphs, images, and structural data, by facilitating information
propagation through message passing among the nodes of the graphs. Notably, unlike
CNNs, GNNs preserve a state that encapsulates information derived from their local
neighborhood, allowing for arbitrary depth of information retention. Moreover, no other
neural networks can handle graph input data like GNNs [161]. Thus, unique problems
can sometimes be solved by GNNs. For instance, within the set of the energy conversion
publications of this paper, a graph convolutional neural network (GCNN) is used in
92,219 entries of inorganic crystal data to chart lattice thermal conductivity, with a R2 of
0.85; in comparison to random forests, GNNs did not require any ad hoc physics-based
featurization, rendering more robust outcomes [162].

The second is regression methods. While standard regression models typically do not
achieve as high performance as neural networks, especially on nonlinear processes where
featurization does not work, regression methods are sometimes enough for particular
problems or crucial components of a more complex algorithm, such as neural networks.
Moreover, regression models are extensively less computationally expensive than neural
networks. In the context of the energy conversion studies detailed in this paper, the lasso
regression model was applied to discern the associations among wave parameters. It was
employed to identify and opt for the most suitable approach for transforming wave param-
eters in coastal Irish Waters. This endeavor culminated in the attainment of a remarkably
low RMSE value, specifically amounting to 0.17 [163]. Also, a multivariate polynomial
regression model is implemented to produce a light-dependent resistor-based solar tracker
that can learn and improve its action from daily interaction with the environment, which
achieved a 0.0806 RMSE score [164]. Regression is a classic model that researchers should
not neglect, as this tool is efficient and sometimes sufficient.

The synergy between advanced computational techniques and developments in the
energy sector is supposed to ignite promising success in energy efficiency, sustainability,
and reliability in the production, distribution, and sustainable use of energy resources.

5. Conclusions

Machine learning and artificial intelligence algorithms have found application in
specific tasks within the domain of energy conversion and management.

Research in this field reveals that the ratio of publications utilizing real-world data
to the publications utilizing simulated data is 3:2. As expected, papers relying on real
data exhibit superior algorithm performance compared to established benchmarks and
often involve larger datasets. Researchers must prioritize the use of real data and exert
creative ways to build datasets. A model may only be deemed reliable if it was trained
or developed through the use of real-world data. While simulated datasets are great for
exploratory research, true advancements in any field will only be achieved through findings
and models from large and real datasets. Moreover, the authors recommend adopting
standardized and transparent reporting practices regarding data size, accuracy, error rates,
and benchmark performance in research papers. All papers that are empirical should
explicitly state the origin of the dataset, dimensions, and features of the dataset, chosen
models, coding environment used, memory requirements of the process, loss function,
performance metric, and achieved performance improvement relative to a benchmark.
Such practices enable other researchers to comprehend the findings’ implications better and
facilitate adopting, comparing, replicating, and implementing favorable algorithms. The
authors found it shocking to discover that 29.37% of the studied works did not publish their
performance metrics, 38.94% did not provide a benchmark within their study to compare
the algorithm implemented, 32.01% did not report the size of the data, and the majority did
not mention the coding program used or the memory requirement of their process.

While MATLAB is a comfortable choice for implementing coding programs, energy
researchers should consider the adoption of Python as a preferred coding language. Python
has wider adoption and community support, a rich ecosystem of high-performance libraries,
ease of use and readability, and wider industry adoption.
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Top-ranked papers and a timeline clustering analysis illustrate continuous growth
in the publications related to wind energy conversion systems, wave energy conversion
systems, solar power, and electric power transmission. These publications frequently
delve into the application of convolutional neural networks, hybrid approaches using
genetic algorithms, ensemble learning, reinforcement learning, long short-term memory
algorithms, hybrid models incorporating regression methods, and graph neural networks
for various tasks, such as classification, regression, optimization, or system management.
Widespread adoption and utilization of these techniques hinge on integrating mathematical
and computer science expertise into the energy field. The application of artificial intelligence
techniques has demonstrated exponential growth in recent years and holds significant
potential for the future.

In conclusion, artificial intelligence is poised to become an integral part of research
in energy conversion systems and the entire energy sector, offering numerous opportuni-
ties to enhance their energetic, economic, and environmental performance and, therefore,
contribute to the goals of sustainability. As shown in this body of work, AI can provide sig-
nificant benchmark performance improvement compared to traditional or non-AI methods
for various tasks in energy conversion; the authors encourage energy researchers to make it
standard practice to reach out or collaborate with their institution’s data, computer science,
and mathematics experts when performing any task to see if there is room to include AI
methods. The authors hope to convince energy research departments about the beneficial
possibilities of increasingly adopting the use of Python, trending AI methods, large and
real datasets, and analogous standard reporting practice, as the one described above.
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ANN artificial neural network
ANFIS adaptive neuro-fuzzy inference system
ARIMA autoregressive integrated moving average
BPNN backpropagation neural network
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DDPG deep deterministic policy gradient
GNN graph neural network
LSTM long short-term memory
LTM lateral misalignment
ML machine learning
MPPT maximum power point tracking
MSE mean squared error
NN-EMC neural network energy management controller
RAM random access memory
RBFNN radial basis function neural network
RL reinforcement learning
RMS root mean square
RMSE root-mean-square error
RNN recurrent neural network
SAC soft actor critic
SVM support vector machine
UPFC unified power flow controller
WECS wind energy conversion systems
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