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Abstract. The definition of effective strategies for graph partitioning
is a major challenge in distributed environments since an effective graph
partitioning allows to considerably improve the performance of large
graph data analytics computations. In this paper, we propose a multi-
objective and scalable Balanced GRAph Partitioning (B-GRAP) algo-
rithm to produce balanced graph partitions. B-GRAP is based on Label
Propagation (LP) approach and defines different objective functions to
deal with either vertex or edge balance constraints while considering edge
direction in graphs. The experiments are performed on various graphs
while varying the number of partitions. We evaluate B-GRAP using sev-
eral quality measures and the computation time. The results show that
B-GRAP (i) provides a good balance while reducing the cuts between the
different computed partitions (ii) reduces the global computation time,
compared to Spinner algorithm.

Keywords: Large graph partitioning, vertex balance, edge balance, par-
allel processing.

1 Introduction

In recent years, large-scale graph analytics and mining have been widely used
in various domains such as communication network, urban transportation, bio-
logical data and social networks. In this context the efficient processing of large
graphs becomes a new challenging task. Many research works focused on graph-
based parallel computation algorithms in distributed systems [?,?,?]. The distri-
bution of the workloads on several machines helps to reduce the overhead compu-
tation time. However, this distribution requires multiple exchanges of messages
between the machines with a typically high cost.

Graph Partitioning (GP) algorithms have taken a lot of attention in recent
decade as a key prerequisite for an efficient processing and many works focused
on this problem [?,?,?,?]. An efficient partitioning algorithm allows to minimize
the total computation cost while a good balanced load makes better leverage of
the entire system. The GP problem aims to divide the graph into a given number
of partitions while minimizing the number of their inter-connecting edges (called
cuts) and balancing their sizes w.r.t. the number of vertices or the number of
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edges. An edge-balanced GP divides the edges of the graph into nearly equal sized
partitions. In contrast, a vertex-balanced GP divides the vertices of the graph into
equisized partitions. Each objective has its own advantage. For a graph analysis
task that needs few communications between vertices, the vertex-balanced GP is
more beneficial. On the contrary, for task where the vertices exchange messages
frequently, balancing the number of edges has more advantage.

Different GP partitioning strategies approaches have been studied in the
literature. Multilevel GP approaches [?] defined a well vertex-balanced partition-
ing algorithm which shown high quality in terms of cuts. But it requires high
resource usage and computation time and it does not scale with large graphs.
Streaming GP methods [?,?] used an online graph partitioning, by considering
vertex-balance or edge-balance constraints which reduces the overhead computa-
tion comparing to multilevel approaches. But on the other hand, the results of
such methods are of less quality and depend on the order of vertex or edge pro-
cessing. Moreover the partitioning is not adaptive to the graph’s changes. Recent
works have taken advantage of the lightweight mechanism of Label Propagation
(LP) approach to improve the partitioning process [?,?,?]. In [?,?], the authors
used LP to coarsen the graph in a multilevel partitioning approach while balanc-
ing the vertices. [?] extended LP to compute the entire partitioning basing on
Giraph [?] programming model, while considering only edge-balance constraint.

In this paper we propose a new multi-objective and scalable Balanced GRAph
Partitioning algorithm (B-GRAP), based on LP approach, to produce balanced
graph partitions. Our main contributions are:

– An optimized partitioning initialization that helps to improve the propaga-
tion of labels and to reduce the computational overhead comparing to similar
approaches.

– A new scalable and parallel partitioning algorithms B-GRAPVB and
B-GRAPEB that respectively address the vertex balance and the edge bal-
ance problems on both directed and undirected graphs.

– We implement our algorithm on top of the open source distributed graph
processing system Giraph [?]. This allows us to take advantage from the
parallel processing architecture in order to effectively parallelize B-GRAP.

– The evaluation of B-GRAP, using different measures (quality and time) on
heterogeneous real-worlds and synthetic graphs, shows good performance
while scaling with the number of partitions and size of a graph.

This paper is structured as follows. In Section 2, we detail some approaches
related to graph partitioning problem. In Section 3, we present LP approach and
B-GRAP main notations. In Section 4, we define B-GRAP, its initialization, the
propagation functions for vertex or edge balance, then the measures we use to
evaluate the quality of the partitioning are presented in Section 5. In Section 6,
we provide the experimental study conducted in order to evaluate B-GRAP.
Finally, in Section 7, we give our conclusions and future perspectives.
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2 Related Work

During the last decade, research communities working on graph datasets have
given a lot of interest to the definition of new strategies for large graph parallel
computing and analytics in a distributed environment. This context opened up
new challenges to define efficient graph partitioning algorithms [?,?,?,?,?]. One
of the main challenges consists in defining graph partitioning algorithms that
allow to balance the workload among the nodes of a distributed computing
environment and to reduce, at the same time, the communication load over
the network.

A common strategy in large graph partitioning is to use multilevel approaches
[?]. The idea is to generate a first partition on the basis of a reduced view of
the graph in which a vertex represents many vertices of the original graph. For
example a triangle of three vertices can be reduced to one. The algorithms then
expands the graph taking into account the whole initial graph. This family of
approaches alternates three main phases: (i) coarsen the graph by collapsing
adjacent vertices satisfying some matching criteria, (ii) partition the coarsened
graph using any partitioning algorithm, (iii) the un-coarsening or refinement,
which means generalizing the partition from last phase by mapping back the
results to the original graph. METIS [?] is one of the multilevel graph partitioning
algorithm family. This algorithm is known for its ability to produce partitioning
with high quality w.r.t. the number of cuts, but with the disadvantage of the
high computation time to obtain several intermediate results. Another known
multilevel graph partitionner is Scotch [?] which deals with the graph changes
and does not require to start the partitioning from scratch, in contrast to METIS.
The parallel version of both algorithms, ParMETIS [?] and Pt-Scotch [?], show
good cuts quality but their performance scales poorly with respect to the number
of processors as shown in [?].

During the last years stream graph partitioning has been proposed in order
to reduce the complexity [?] of multilevel approaches, since they take into ac-
count the entire input graph during the whole computation. These algorithms
assign edges and vertices to various partitions by running a single pass through
the whole graph. The goal, of the most part of these algorithms, is to guarantee
the edge balance [?,?] and to find a partitioning that reduces the usage of the
resources and the computation overhead. These methods are faster than multi-
level algorithms but they build partitioning with lower quality, in term of cuts,
due to the sensitivity to the stream order. Moreover, it’s generally difficult to
parallelize streaming algorithms.

Other works have used the label propagation approach (LP) [?] to partition
large graphs. LP was mainly used for community detection in social networks
[?,?]. Making use of LP for the graph partitioning problem was motivated by
the lightweight mechanism that uses the network structure to guide its progress.
LP partitioning methods generate less intermediary results than multilevel ap-
proaches, which need to store many intermediate results such as the coarser
graph, and run with a lower complexity. Furthermore, LP method is semantic-
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aware, given the existence of local closely connected substructures, a label tends
to propagate within such structures.

The authors of [?] propose ParHIP, a distributed memory parallel partition-
ing algorithm, that takes advantage of both multilevel and LP approaches. The
authors adapt and parallelize LP technique for both coarsening and refinement
step, using the Message Passing Interface (MPI), while considering the vertex-
balance constraint. Their experimental results show that ParHIP is more scalable
and achieves higher quality than existing state of the art methods like ParMETIS
and PT-Scotch.

Finally, in [?] the authors define a distributed partitioning algorithm called
Spinner that considers only edge balance. Spinner is based on LP approach
and runs on the top of Giraph API [?]. Compared to the previous work, Spinner
supports the parallelism and can adapt an existing partitioning to consider graph
updates by adding or removing vertices and edges and changing the number of
partitions. The algorithm divides N vertices across K partitions, while trying to
keep similar the number of edges in each partition.

In this paper we present a new algorithm for balanced graph partitioning
based on LP approach and using Giraph programming model. Compared to
the literature, our algorithm B-GRAP deals with edge-based or vertex-based
balanced partitioning while decreasing the number of cuts and computation time.
Moreover, B-GRAP defines an initialization heuristic which allows to improve
the propagation of labels across the graph and to accelerate the convergence of
the algorithm on large graphs.

3 Preliminaries

Given a number of partitions K, a directed graph G = 〈V,E, ω〉, where V is a
set of vertices and E a set of weighted edges with ω : E → R+. Let L = {l}Kl=1

be a set of partition labels defined by a labeling function φ : V → L such
that φ(v) = l means that v belongs to the partition with label l. The naïve
LP algorithm proceeds as follows. Initially, a unique label lv is assigned to each
vertex v. Then, the label of each v ∈ V is propagated and updated iteratively
to its neighborhood N(v) = {u ∈ V |(v, u) ∨ (u, v) ∈ E} and is updated until a
given convergence criteria is reached. The label updating is done by taking into
account the most frequent label among N(v) labels. More formally, let FLP(v,l)

be the frequency of a label l in the neighborhood of v, defined by:

F
LP(v,l)=

∑
u∈N(v) ω(v,u)δ

(
φ(u),l

)
(1)

where φ(u) gives the current label of u and δ is the Kronecker delta function,
which equals 1 if φ(u) = l, and 0 otherwise. The label of vertex v is replaced by
the label that maximizes the frequency function:

lv = argmax
l

FLP(v,l)(2)
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Fig. 1: Vertex-balanced and edge-balanced 2-partitioning graph example

If many maximal labels exist and do not include the current label of v, one of
them is randomly chosen. LP algorithm stops if

∑
v∈V

∑
l∈L FLP(v,l) converges

according to a given threshold ε.
We note that naïve LP algorithm does not take into account the directions of

edges. To consider directed graphs, virtual edges are added such that: ∀(v, u) ∈
E,ω(v, u) = 2 and if (u, v) /∈ E, (u, v) is added with ω(u, v) = 1 which we call
virtual edge. Note that the Giraph data model is a distributed directed graph,
where every vertex is aware of its outgoing edges only, but not of the incoming
ones. Adding virtual edges in this case, allows to a vertex to discover its entire
neighborhood N(v), while the weight allows to consider the direction as well as
to distinguish these virtual edges added.

4 B-GRAP algorithm

Our goal is to define a K-balanced and LP-based partitioning algorithm that
decreases the total cuts while considering the vertex balance or the edge balance
constraints in directed graphs.

To illustrate our objectives we consider the example provided in Figure 1.
This example presents a small graph of 10 vertices and 16 directed edges. We
would divide the graph into two balanced partitions, using either a vertex-
balanced partitioning or the edge-balanced partitioning. First, we note that
the best 2-partitioning that minimizes the edge cuts is P1 = {v1, v2, v3, v4}
and P2 = {v5, v6, v7, v8, v9, v10}, where the cuts (v4, v5), (v4, v10), (v10, v4). To
achieve a vertex-balanced partitioning, a vertex from P2 should be moved to P1,
while caring about the cuts. In this case, moving v10 to P1 is the most advanta-
geous because it introduces less edge cuts. For the edge-balanced partitioning,
no change is needed. Indeed, both partitions holds |E|/2 directed edges and the
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number of edge cuts is minimized. Note that if the directness of edges is ignored,
this partitioning remains unbalanced. In fact, in an undirected graph, each edge
is considered to be bidirectional, as a result the number of edges in P1 is 12 and
16 in P2.

In the following, we present in detail B-GRAP algorithm. First, we present
the initialization strategy, then we define the update functions F to build vertex
(or edge) balanced partitions, and finally we present the measures used for the
evaluation of partitioning quality.

4.1 Initialization optimization:

To improve the performance of propagation approach in our algorithm, we define
an initialization strategy, called B-GRAPinit, which considers only hub vertices
having a high outgoing degree d+(.). The intuition behind this choice is that
the higher d+(v), the more φ(v) will be propagated and considered as frequent
label. This differs from LP approach that considers all the vertices. As a result,
the candidates to be considered as frequent labels (i.e. the labels with high
probability to be the most frequent) are propagated faster at the first partial
propagation iteration. The initialization we defined should guarantee a faster
label propagation and smaller number of exchanges between vertices given the
fact that the nodes having the higher probability to be selected to propagate
their label have been already initialized.

B-GRAP is described in Algorithm 1. Let τ be a given minimum out degree
threshold to consider that a vertex v as a hub vertex. The algorithm proceeds
as follows. First, we initialize the set of labels L (Line 1). Then, each v ∈ V ,
such d+(v) > τ is assigned a random label ∈ L and those labels are propagated
to neighbors (Line 2). Then, the label of these neighbors are updated and prop-
agated iteratively using an update function (Lines 4-7). The vertices are then
checked and those not reached by the update/propagation step are initialized
randomly, to ensure that all vertices are assigned a label (Line 9). The algorithm
repeats the update/propagate step until convergence (Line 10).

4.2 Balanced partitioning:

In the basic LP partitioning, the label update is done without caring about the
size of the partitions. Consequently, this can lead to an unbalanced partitioning.
Moreover the update function of LP (Eq. 1) has a trivial optimal solution that
consists of assigning all vertices to a single label, i.e. to a single partition. A
standard resolution approach to deal with such a problem is to integrate the
balance constraints to the update function via a penalty function. The LP update
function becomes:

F =FLP+λP (3)
where P represents penalty terms and λ is a weight parameter. In B-GRAP
algorithm, we define two update functions FVB and FEB which respectively deal
with vertex and edge balance constraints.
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Algorithm 1 B-GRAP
input G = 〈V,E,w〉, K, τ , ε
output a partitioned graph G = 〈V,E,w, L〉
1: Initialize the set of labels L = {l}Kl=1

2: for
(
v ∈ V, d+(v) > τ

)
initialize φ(v) randomly from L and propagate to N(v)

3: repeat
4: {Search frequent labels}
5: for (v ∈ V, l ∈ L) get the set of frequent labels w.r.t an update function
6: {Update and propagate}
7: Update and propagate φ(v) to N(v)
8: {Check unassigned vertices}
9: for

(
v ∈ V, φ(v) = ∅

)
initialize φ(v) randomly from L and propagate to N(v)

10: until ∆
(
F

LP(G,L)
)
≤ε

11: return G = 〈V,E,w, L = {φ(v)}v∈V 〉

Vertex balance: Given a directed graph G = 〈V,E, ω〉, a vertex-balanced
partitioning divides the vertices into disjoint partitions of nearly equal size, while
minimizing the number of edge cuts between partition. Let size(V, l) be number
of vertices having l as label, size(V, l) = |{v ∈ V | φ(v) = l}|.

In a perfect balanced partitioning, the size of each partition should be equal
to |V |/K. In other words, the distribution of vertices in the partitions should
be close to a uniform distribution U = 〈1/K, . . . , 1/K〉, where 1/K is called the
balance factor. To handle the balance between the partitions, we define vertex-
balance PVB penalty function that penalizes F when trying to assign a vertex
to a partition violating the balance constraints as follows:

PVB(l)= 1
K − size(V,l)

|V | (4)

This function measures the difference between the balance factor 1/K and the
ratio of vertices assigned to l label. The larger the ratio of vertices with label l
is, the higher the penalty to update the vertex label with l is.

At this stage, the number of edge cuts between the partitions is not con-
sidered. Thus, a vertex could move to a partition that increases the edge cuts.
Given a vertex v and label l, we define a second penalty function as follows:

PEC(v,l)=
|cut(v,l)|

d+(v)
(5)

where cut(v, l) = {(v, u) ∈ E | φ(u) = l} is the set of edges outgoing from v
to vertices in a partition with label l. This function measures the ratio of cuts
which penalizes a vertex v to move to a partition with l label if the number of
its outgoing edges to this partition is low (normalized to the out degree of v).
Thus, when a vertex has more connections to a partition than to the others,
the penalty gives more advantage to move to this partition and vice versa. By
considering the penalty functions defined in Eq. 4 and Eq. 5, the vertex balance
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update function is defined in the following equation:

FVB(v,l)=nF
LP+λ

(
κPEC(v,l)+(1−κ)P

VB(v,l)

) (6)

where n is a normalization constant equal to 1∑
u∈N(v) ω(v,u) . The balance factor 1

K

could be omitted as it is constant, in this case PVB variate ∈ [0..1]. The parameter
κ is a weight ranging between 0 and 1 which gives more or less importance to
balance penalty against the edge cuts penalty. We set κ to 0.5 by default.

Edge balance: An edge-balanced partitioning divides the graph into disjoint
partitions holding nearly equal number of edges, while minimizing the number of
edge cuts between partition. Let size(E, l) be the number of outgoing edges from
a partition with label l, size(E, l) =

∑
v∈V,φ(v)=l |d+(v)|. Similarly to the vertex-

balance partitioning, we define the following edge-balance penalty function:

PEB(l)= 1
K − size(E,l)

|E| (7)

This function discourages a vertex move to a partition with l label, when
the ratio of edges in the partition l is closer or larger than the balance factor.
Comparing to vertex balance, edge balance maximizes the edge locality in each
partition, which contributes to minimizing the edge cuts. Thus, there is no need
to add additional penalty to the update function as defined in Eq. 6. The edge-
balance update function is formulated as follows:

FEB(v,l)=nFLP+λP
EB(l)(8)

We note that Spinner algorithm [?] (see Section 3) uses the normalized un-
balance as penalty function. Comparing to Eq. 7, the edge-size of a partition is
normalized by the size of a perfect balanced partition, i.e. |E|

K . Moreover, their
penalty function that measures the edge balance for each partition, considers
both virtual and real edges. The function we defined in Eq. 8 considers only real
edges.

5 Partitioning Evaluation Measures

To evaluate the quality of the partitioning produced by our algorithm B-GRAP,
we use two standard measures: the ratio of edge cuts EC and the Jensen Shannon
divergence (JSD) [?].

The edge cuts ratio is the ratio of edges connecting each two vertices in
two different partitions w.r.t the total number of edges.

EC =

∑
v∈V

∑K
l=1 |cut(v, l)|
|E|

(9)
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The Jensen Shannon divergence (JSD) is the symmetric version of
the KullbackLeibler divergence known as a standard measure to compute the
divergence between two distributions. This is a symmetric measure varying in
the interval [0 . . . 1], where a value close to 0 indicates that the distributions are
similar. Let P = 〈p1, . . . , pK〉 and Q = 〈q1, . . . , qK〉 two distributions with the
same size. The JSD divergence is computed as follows:

JSD(P||Q) =
1

2

(
DKL(P‖M) +DKL(Q‖M)

)
(10)

with DKL(P‖Q) =

K∑
l=1

pl log(
pl
ql
) and M =

1

2

(
P+Q

)
In our case, P represents the distribution of vertices (or edges) on the parti-

tions, where pl is the ratio of vertices (or edges) in the partition with label l, and
Q equals to the uniform distribution U. The JSD considers the balance of the
whole partitioning, comparing to other measures such the maximum normalized
unbalance metric (MNU) [?]. This last used to measure unbalance and repre-
sents the percentage-wise difference of only the largest partition from a perfectly
balanced partition.

MNUVB =
max(|Vl|)
|V |/K

, (11)

MNUEB =
max(|El|)
|E|/K

, with l ∈ L.

Finally, it is important to notice that for EC, JSD, and MNU we con-
sider the directed edges in the original input graph. The virtual edges added for
neighborhood discovery (see Section 3) are note taken into account.

6 Experiments

We achieve different experiments on different graph data sets in order to evaluate
the quality of edge and vertex-balanced partitioning using EC, JSD and MNU
measures defined previously. We compare our approach to Spinner [?] because it
has shown better results comparing to some existing algorithms. Moreover, since
both B-GRAP and Spinner are developed using Apache Giraph environment, we
can also provide an evaluation in the same system conditions.

In the following, we first describe the data sets and the experiment settings.
Then, we present in detail the results of B-GRAPVB and B-GRAPEB, compared
against Spinner, and achieved on nine graphs.

6.1 Data sets description and experiment settings:

All the experiments are done on a Hadoop cluster of 8 machines, with 64GB RAM
and 8 compute cores. B-GRAP algorithm is implemented in Java using Apache
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Graph WikiTalk BerkeleyStanf Flixster DelaunaySC Pokec LiveJournal Orkut Graph500 SK-2005
(W) (B) (F) (D) (P) (L) (O) (G) (S)

Directed yes yes yes yes yes yes yes no yes
|V | 2.4M 0.7M 2.5M 8.4M 16M 4.8M 2.7M 4.6M 50.6M
|E| 5M 7.6M 7.9M 25.2M 30.1M 69M 117.2M 258.5M 1.9B
Source [?] [?] [?,?] [?,?] [?] [?] [?] [?] [?]

Table 1: Data sets description

Giraph environment [?]. Giraph is an open source implementation of distributed
programming framework Pregel [?], designed for Google cluster architecture,
with several performance improvement like multi-threading and memory usage
optimization. It’s built on Hadoop infrastructure to make distributed graph pro-
cessing and can work with many data storage system supporting graph data
(Neo4j, DEX, RDBMS, etc.). In Giraph, the graph is randomly partitioned on
several workers (machines)after a complete in-memory load. As in Pergel, Gi-
raph uses a vertex-centric approach to deal with large scale graph processing.
In their approach, the computation of the user defined function is done locally,
i.e. on each vertex, and in parallel. A vertex contains information about itself
and its outgoing edges, it can change its state and the state of these edges by
exchanging messages with other vertices at the same iteration, called super-step.

In our experiments, we use nine graph data sets of different degree distri-
butions and different sizes in terms of edge and vertex number as summarized
in Table 1. Wikitalk (W), Pockec (P), Flixster (F), LiveJournal (L) and Orkut
(O) are social online networks graphs. BerkeleyStanf (B) is the berkely.edu and
stanford.edu web graph, SK-2005 (S) is hyperlinks on ’.sk’ web. DelaunaySC (D)
and Graph500 (G) are synthetic graphs. Notice that only (G) is an undirected
graph.

Experimental setting: We evaluate our algorithm over all the graphs presented in
Table 1, by varying the number of partitions K from 2 to 32. More precisely, we
execute 10 runs of B-GRAPVB and B-GRAPEB for each graph and each value
of K to ensure the significance of the results. For all experiments, we compute
the average variation of the following measures with respect to the number of
partitions K and over the runs:

– The maximum normalized unbalance of vertices (MNUVB) and of edges
(MNUEB).

– The divergence between the distribution of vertices (respectively of edges)
and the uniform distribution JSDVB (respectively JSDEB).

– The edge-cuts ratio (EC).
– The computation time saving ratio (∆Time) of B-GRAP w.r.t Spinner1.

This ratio is computed using the total CPU time in seconds spent to execute
the algorithm, from the initialization until the convergence.

1 ∆Time = Time(Spinner)−Time(B-GRAP)
Time(Spinner)

.
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Fig. 2: Variation of the average scores of MNUVB, JSDVB, EC, and ∆Time
for the partitioning obtained with B-GRAPVB and Spinner, w.r.t. K

Note that ∆Time > 0 means a better performance of our algorithm and a value
close to 0 means similar performances with Spinner.

For all experiments, we set ε = 10−3 as a threshold stop value and we set
τ average out degree d̄+ = |E|

|V | . The penalty term weight parameter λ in the
update function F is set to 1. This gives an equal importance to the penalty
term P and to FLP according to the update functions defined in Section 4.2.

6.2 B-GRAP Vertex balance:

The experiments presented in this section consider the vertex balance constraints
to partition a graph. The main objective is to evaluate the ability of our algo-
rithm B-GRAPVB to produce balanced partitions with respect to the number
of vertices, while improving the quality of cuts, using the vertex-balance update
function defined in Eq. 6.

For this aim, using the experimental protocol described in Section 6.1, we
compare the balance and the cuts quality of B-GRAPVB partitioning with
Spinner partitioning.

Results: The results are presented in Figure 2. This figure shows, for each graph
and algorithm, the average variation of the MNUVB, JSDVB, EC, and ∆Time
according the number of partitions K.

We analyze first the variation of the unbalance degree MNUVB and the
total balance of the partitioning JSDVB. As shown on the Figure 2, B-GRAPVB
produces generally a low unbalance degree for the most part of graphs (seven over



12 A. El Moussawi et al.

nine w.r.t. MNUVB) while varying the number of partitions K. On the other
side, the results of Spinner show a high unbalance degree MNUVB (> 1.1) when
scaling with K, in particular for K ≥ 4, except for (D) graph. We notice only
two exceptions for B-GRAPVB on (B) and (W) graphs, when K ≥ 24. However,
the MNUVB of B-GRAPVB is still lower then Spinner for (B) graph.

Similarly, the results of JSDVB show that B-GRAPVB performs generally
better than Spinner. The value of JSDVB is very close to 0 over all graphs
and for all K. This means that B-GRAPVB produces high balanced partitions.
B-GRAPVB gives better results for 6 graphs over 9 (with 5 significant differences
for (B), (D), (P), (O), and (S) and similar results for the others). We note that
for the exceptions on (W) and (B) noticed previously for MNUVB, the JSDVB
values are very close to 0 which means that the partitioning has a high global
balance degree.

We compare the quality of cuts for both algorithms. Figure 2 shows similar
quality of EC. B-GRAPVB shows significant better results on BerkeleyStanf and
WikiTalk graphs.

Finally, the ∆Time curves show that B-GRAPVB improves significantly the
computation time on all graphs. The time saving percent ∆Time is higher than
10% for all the graphs and all K values, except of (O) graph, where the the
results are better but less significant.

6.3 B-GRAP Edge balance:

Now we compare the performance of our algorithm B-GRAPEB with Spinner,
using the edge-balance update function defined in Eq. 8.

Results: We present the results of this experiment in Figure 3. For each graph
and algorithm we show the average variation of the following measures w.r.t. K:
MNUEB, JSDEB, EC, and ∆Time.

Figure 3 shows that the partitioning produced by B-GRAPEB has a low edge
unbalance degree for all graphs under analysis. In fact, the average MNUEB is
generally less than 1.05, except in the case of WikiTalk for K = 28 and K = 32
where the average MNUEB is equal to 1.12 and 1.13, respectively. However, if
we analyze the results obtained from running Spinner, we see that we obtain
an unbalance degree MNUEB generally higher than 1.05 and MNUEB shows
bad values while increasing the number of partitions K. On the contrary, the
variation of MNUEB for B-GRAPEB shows that it scales with K with a stable
balance quality.

The behaviour of JSDEB shows that B-GRAPEB generally scales up with
K while maintaining a good global balance, with few exceptions. Furthermore,
B-GRAPEB obtains better performance than Spinner over five graphs and gives
similar JSDEB scores for the others.

The quality of cuts is generally close for both algorithms (Figure 3), with
only one significant better result on WikiTalk.
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Fig. 3: Variation of the average scores of MNUEB, JSDEB, EC and ∆Time
for the partitioning obtained with B-GRAPEB and Spinner, w.r.t. K

Finally, ∆Time variation shows significant better results for B-GRAPEB on
(W), (B), (F) and (G) graphs. The computation time is slightly better for other
graphs. In fact, this is only with few exceptions on (G) for K ≤ 4 and for (S).

Summary: B-GRAPEB algorithm computes higher edge balanced partitioning
without impacting the quality of cuts and while showing generally faster compu-
tation time. Moreover, the results on the undirected graph Graph500 show that
the initialization step is efficient for the time execution of the algorithm. Finally,
the results given for the JSDEB and MNUEB show that a better balance can
be obtained if we consider the directness of edges for a directed graph.

7 Conclusion and Perspectives

In this paper we proposed two scalable and parallel partitioning algorithms
B-GRAPVB and B-GRAPEB, based on LP, that address the vertex balance and
the edge balance problems respectively on both directed and undirected graphs.
We defined the initialization strategy of our algorithm that allows to speed up
the convergence and two update functions to produce either vertex balanced or
edge balanced partitioning.

Our results show good performances of B-GRAP on various graphs and with
different scales. We show that B-GRAP produces high vertex balanced and high
edge balanced partitioning with a good cuts quality comparing to Spinner al-
gorithm (significant values for 5 graphs and slightly better values for others),
on either directed and undirected graphs. Moreover, the computation time of
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B-GRAP is better than Spinner, with few exception for B-GRAPEB on two
graphs.

The additional experiments we conducted to study the initialization step
B-GRAPinit show that the selection of the seed vertices has an impact on the
quality of the partitioning and the computation time. We would study more
deeply this step in order to optimize our method.

We would also study the impact of the partitioning on algorithms of graph
analytics with respect to the balance strategy, such as Shortest Path Computa-
tion, PageRank, and Community Detection.
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