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Abstract. Model management addresses problems dealing with forms
of collaboration among heterogeneous databases. This collaboration may
include exchange of data, schema integration, synchronization, transla-
tion and, in general, any issue characterized by a data evolving scenario.
It provides a structured framework allowing standard solutions to data
programmability problems in terms of the application of some recurring
operators. The main mid-term target in this field is the definition of
a model management system, a software platform providing the data
architect with a complete set of tools addressing a wide spectrum of pos-
sible problems. In this paper we recall MIDST, a platform that works as
an applicator of schema transformations. It was firstly conceived to per-
form model-independent schema and data translation. Then it has been
extended to an applicator of general schema transformations including
model management operators. Leveraging on MIDST rich representation
of models, schemas and data based on a metalevel approach, we reason
about potentialities and possible developments of this platform with the
target of laying the basis for a real runtime model management system.

Keywords: model management, model management system, model-
independent schema and data translation, data programmability.

1 Introduction

The management of heterogeneous databases, in integrated or collaborative con-
texts, always involves the need for solutions to data programmability issues. In
general, data programmability addresses problems dealing with evolving scenar-
ios: changes in a database which collaborates in a heterogeneous environment
often implies a sequence of propagating changes in related databases at any level,
model, schema and data [8,13,14]. Heterogeneity means that on the one hand
systems are developed by different people, fostering different data models and
technologies; on the other hand it recalls problems involving different software
components using shared and interoperating data.
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Moreover, business requirements which guided the design of the data model
are not static but change in time, leading to an intensive refactoring, redefinition
and migration of data. This even complicates data programmability, opening to
a range of further problems including change propagation, synchronization, data
exchange, integrity constraint satisfaction, data provenance memorizing and so
on [7,6].

Model management provides a structured framework to encompass all these
problems and establishes standard solutions based on the application of a finite
set of operators [7].

There is the tendency to recognize the need for a model-independent solu-
tion to model management problems. Our approach had been pursuing model-
independent schema and data translation [3,5,22,24] and led to the platform
MIDST [3,4]. It was originally conceived only as an implementation of the
modelgen operator (the one responsible for schema translation), but to a wider
extent MIDST can be now considered as a general purpose applicator of schema
transformations. By proposing a model-independent but model-aware definition
and implementation of most common model management operators, we are work-
ing on a blueprint for standard solutions to recurring problems such as round-trip
engineering and forward engineering [1]. These solutions refer to an off-line ap-
proach and not to a real runtime environment in which they are actually needed.

In the perspective of turning MIDST into a real model management system
(MMS) [8], providing the data architect with a complete suite of tools to cope
with data programmability problems in a real runtime context, here we address
the main challenges in this migration.

We focus on the major scenarios where MIDST may be applied, as well as on
the complementary issues that such a change of perspective raises. We underline
how MIDST metalevel representation of models and schemas supports mean-
ingful potentialities. We show how the main challenges can be either directly
addressed by the platform, or faced through appropriate extensions that benefit
from the metalevel expressivity.

We discuss the application of MIDST to the handling of evolving scenar-
ios. Hence we explain possible approaches towards problems such as update
propagation, schema synchronization and data exchange: reasonings about how
model-independent solutions to simpler problems can be combined and success-
fully applied to these situations are provided. Complementary problems and
refinements providing the data with higher quality are described as well. Spe-
cial attention is devoted to data provenance treatment and integrity constraint
handling, where MIDST metalevel expressivity is particularly effective.

Reasonings dealing with a concrete and advanced application of the framework
to an object-oriented scenario is provided. We introduce a possible development
of the platform, enabling a transparent handling of object-oriented structures.

The remainder of the paper is organized as follows. In Section 2 we describe
the approach to data model handling used by MIDST; in Section 3 we outline the
fundamental challenges in turning MIDST into a real MMS; in Section 4 and 5
we introduce some data programmability issues that can be addressed exploiting
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MIDST metalevel potentialities; Section 6 illustrates an object-oriented scenario;
finally Section 7 concludes the paper.

2 Background

In previous papers [3,4] we proposed MIDST, a platform for model-independent
schema and data translation. The framework is based on the fundamental ob-
servation that any existing data model can be represented with a finite set of
constructs [17]. Therefore MIDST handles a metamodel allowing the definition
of general purpose constructs called metaconstructs. They are then used to as-
semble models, meaning that a model is thus defined as a collection (a subset) of
all the existing metaconstructs. Schemas are consequently defined with respect
to the model they belong to and have concrete constructs which inherit their
properties from the metalevel.

Metaconstructs are characterized by a unique identifier (OID), a defining
name, a set of properties coding details of interest and a set of references re-
lating them to one another. Graphs of interrelated constructs build a model.
For example we have a construct named abstract which models any “abstract”
conceptual entity, such as objects (of the object-oriented model), entities (of the
ER model), and so on. MIDST also manages aggregations which are constructs
representing table-like entities (like tables in the relational model). Instead a lex-
ical is a metaconstruct representing a lexical value independently of the model of
interest. Then, whereas an abstract is simply characterized by its name, a lexical
also has some defining properties such as whether it is identifier or not, whether
it is nullable or not and so forth. We emphasise that many constructs are re-
lated to other constructs: an example is the lexical which can be linked either
to an abstract (coding for example an attribute of entity) or to an aggregation
(representing a relational column) by means of typed references.

The metalevel is implemented by means of a multilevel relational dictionary
[2] which models all the mentioned concepts as relational tables: metaconstructs,
properties and references.

Another important concept in MIDST is that of supermodel : it represents the
most general model, including all the possible metaconstructs. Hence any other
model is a specialization of it. The supermodel is the component that actually
allows the model-independent schema translation that can be formulated in three
phases: the schema (instance of the source model) is copied into the supermodel;
a translation into the target model takes place in this environment; the result
schema is finally downcast into the destination model. Translations are specified
by means of datalog rules defined over MIDST metaconstructs.

3 Towards an MMS

3.1 Model-Independent Operators

MIDST was conceived in order to provide an implementation of modelgen, the
operator responsible for schema translation. More formally, given a schema S1
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of a model M1 and a target model M2, modelgen computes a schema S2 of
model M2 which corresponds to S1. The translation process may be divided into
two phases: the first one where the appropriate datalog translation rule is chosen
and the second one, where the manipulations are actually performed.

We are currently working on the extension of this platform [1] to implement
most important model management operators. In fact we can consider a datalog
translation rule as a general transformation that can be applied to schemas. As
a consequence, MIDST can be thought of as a platform capable of performing
transformations that are not necessarily translations, but general model man-
agement operators.

These operators are coded with datalog rules, expressingmanipulations directly
in terms of the metaconstructs. This implies that they do not depend on the spe-
cific model of application. In particular, these datalog rules can be written to im-
plement the diff and the merge operator: the first one computes the difference
between two given schemas, while the second one performs a set-oriented union.

The general datalog implementation of the operators is composed of two phases.
The first one works out the correspondences among the constructs of the source
schemas. Then the second performs the specific operations. The diff, given two
input schemas, copies into the target all the constructs belonging to the first, but
not to the second one on the basis of the computed correspondences. Similarly, the
merge copies into the target schema the constructs of both the source schemas;
it uses the correspondences in order to avoid duplicates in the result.

Moreover the operators can be automatically generated from the currently
available supermodel. We have a procedure that detects all the possible con-
structs and their relationships by interacting with the metalevel, and thus gen-
erates globally valid operators.

Solutions to most common model management problems can be expressed as
scripts composed of a sequence of operators. Indeed, MIDST can be currently
used to provide an off-line solution to some important problems such as forward
engineering and round-trip engineering. As for the former, given a specification
schema S1 and an implementation schema I1 which derives from S1, changes in
S1 leading to a modified specification S2 have to propagate to I1 in order to
obtain a coherently modified implementation I2. Instead, as for the round-trip
engineering: given a specification schema S1 and an implementation schema I1

which derives from S1, changes in I1 leading to a modified implementation I2

have to propagate backwards to S1 in order to obtain a coherently modified
specification S2.

Moving from Bernstein’s solving procedures [7], we can build scripts for the
cited problems in terms of the diff, merge, modelgen and in some sense
match operators.

3.2 Larger Scale and Complementary Issues

Solutions to model management problems are built in terms of scripts involv-
ing the application of several operators. Indeed, this is still a simplified ver-
sion of what is actually needed in a concrete application context. In that wider
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perspective, issues are composed of sets of elementary model management prob-
lems whose solutions have to be coordinated.

We may consider several levels of abstraction: model management operators
(such as diff and merge) belong to the lowest one, then we have simple prob-
lems (such as forward and round-trip engineering) with solutions in terms of
simple operators; the top level contains more complex scenarios, such as ETL
processes, whose solutions can be obtained only by coordinating procedures ad-
dressing simpler problems. Therefore, the ability to solve model management
problems by building scripts in terms of simple operators is only the first re-
quirement of an MMS, it is only the implementation of the lowest abstraction
level. A meaningful MMS must cope with every level and then allow for high-
abstraction environments that coordinate several model management problems.

This might seem only a change of scale issue, however it also raises collateral
requirements and complementary problems that must be separately faced. Some
examples of these issues include: the need for information about the provenance
of data; a coherent handling of integrity constraints; a fine-grained access control;
an efficient indexing mechanism for the data sources; triggers and business logic
integration.

Besides, there are several quality requirements a real MMS should also con-
sider: first of all runtime support but also availability, supportability, perfor-
mance, security. As far as quality requirements are concerned, we can assume
that in a research project they do not represent the riskiest element, in fact a
good architectural definition phase can cope with them, leading to the design of
the appropriate components.

However a simple off-line characterization of model management problems,
although within a well-designed architecture, is not functionally sufficient. In-
deed, MIDST currently implements the lowest abstraction layer, so it represents
the first phase of the development of a real MMS.

Our aim is to discuss the most meaningful issues in the process of turning
MIDST into a full-featured MMS. Hence in the following section we deal with
some larger-scale problems to exemplify our approach; moreover we give details
about possible directions to address complementary requirements.

4 Handling Evolving Scenarios

Evolving scenario problems [8] subsume issues dealing with changes performed
over some given schemas or instances. In general, changes imply a complex net
of propagations updating a set of interrelated databases.

Update propagation problems can be considered as a generalized and runtime
extension of the forward engineering, involving that a change on a given database
leads to modifications in another one. From a technological point of view, whereas
currently MIDST solves the round-trip and forward engineering with respect to
imported schemas (and hence off-line), this problem needs an on-line binding of
two schemas so as to propagate changes during the execution.

A more complete definition of such a problem is schema synchronization which
actually involves a propagation of the changes between two schemas in both
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directions. It may be worked out by MIDST either with a reversed application
of the forward engineering solving script, or through the application of it in the
one direction and by the use of round-trip in the other.

Peer to peer mappings define a net of databases whose schemas are inter-
related. Therefore changes on one schema induce a chain of possibly different
modifications in other schemas. This problem can be dealt with by MIDST as
well: the core point is the definition of relations between databases (mappings)
that can be directly applied to target schemas; it is important to point out that
MIDST already solves something similar when performs a chain of schema trans-
lations. Beacause of the general treatment of transformations, such an approach
may be suitable in this context as well.

Data exchange problem is aimed at transforming a mapping between two
schemas into a directly executable query actually moving data. With respect to
this problem, MIDST paradigm supports advantageous preconditions [8]: only
relational schemas are treated and the mappings are conjunctive queries. In
fact here a relational meta-representation of any model is possible due to the
dictionary generality, besides we use datalog mappings that are declarative rules
in the form of conjunctive queries.

However, some remarkable issues in facing these problems are still open. In
the general solution to round-trip and forward engineering provided by MIDST,
we assume a substantial coincidence between schema and data evolution. It
means that modifications between two different databases are mainly schema-
driven. The migration of instances is handled as a consequence of the evolution of
schemas. Datalog rules defining manipulations on the schemas are syntactically
translated into transformations on the corresponding instances.

It implies that if a logical coherence between them exists, then operators
correctly perform; otherwise the tight coupling between the two levels could
become a drawback. In addition there are problems, such as data exchange,
that are specifically instance-oriented. In both the cases we need to loosen that
coupling.

The schema-instance coupling problem is closely related to representing map-
pings. Many model management operators need information about schema corre-
spondences in order to operate on them. For instance a difference operator must
know those matches in order to correctly subtract constructs. In our platform,
we do not currently handle an explicit representation of mappings. We move
from a unique name assumption stating that metaconstructs with equal lexical
properties are equal themselves. Under this assumption, model management op-
erators perform a hierarchical comparison between input schemas in order to
correctly treat them.

Again, this outlines the fact that our operators are schema oriented. Certainly
it is a remarkable strength of the approach, providing generality thanks to the
model-independent approach. Yet when data-oriented problems are faced or the
treatment desired for instances differs from the one wanted for schemas, the need
for some kind of decoupling arises.
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One solution may involve the adoption of two different transformation lan-
guages: one for schemas and one for instances. It would involve a complete de-
coupling between the two layers, forcing the platform to separately deal with
two levels of abstraction and, as a consequence, with two types of transforma-
tion rules. The opposite strategy is the one currently adopted by MIDST (with
the cited drawbacks): one unified language for both schema and instances that,
actually, causes schema rules to be initially translated into instance rules.

The two extreme views can be reconciled in two ways: designing an inter-
mediate language allowing for greater expressivity on instances or modelling an
engineered representation for mappings.

The first branch of solutions can be again split in two different approaches.
One could think of an extension to schema transformations rules involving a set
of functions specifying expressive manipulations for instances. In this way a more
straightforward generation of data rules from schema rules would be allowed: it
would not be a merely syntactical translation anymore. Instead, due to these
functions, the semantics of data rules could be customized and strongly differ
from schema rules. In this way, data rules generated from the schema level ones
would be much more powerful.

It would be also possible to support two different languages for translations
in a framework where the one for instances is a lower level translation of the one
for schemas (in the specific case it would imply datalog being translated to SQL
for schemas, and straightly SQL for instances). Then the data architect would
be allowed to write specific SQL rules for instances whenever the automatically
generated ones are not detailed enough.

Adopting an engineered representation of mappings is the most standard so-
lution, since it guarantees a greater expressivity and flexibility. As dealt with
in the literature [8], defining an engineered mapping is an open problem and a
global approach has not been recognized yet. The main point is that of generat-
ing those mappings, hence the implementation of a sufficiently general match
operator. Many heuristic algorithms have been proposed in this field, also adopt-
ing sophisticated structures for mappings, however their weakness is the absence
of an explicit and rich representation of models. This both complicates the pro-
cess of similarity recognition and leads to model-dependent mappings. MIDST
metalevel approach, supporting a complete and extendible meta-representation
of models, can lead to simpler definitions of engineered mappings and to more
effective matching algorithms. For instance, let us consider the similarity flood-
ing algorithm [19,20], an advanced implementation of match. It compares two
graphs representing schemas and returns pairs of similar nodes. The similarity
of nodes is evaluated both on the basis of heuristic criteria and on a similarity
propagation assumption: if two nodes are similar, their neighbors also tend to be
similar. Finally a user-aided pruning phase allows to discard the false positives.

The first step of the similarity flooding is the translation of the schemas into
graph models. Currently some kind of generality in this field has been achieved
by means of SQL DDL to graph translating tools [19,20]. Then the nodes are
compared with one another independently of the logical function they have in the
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model of interest. MIDST rich representation of models and schemas would allow
for a less syntactical implementation of the algorithm. One would no longer need
to pass through the DDL specification of a given database in order to obtain the
graph version, since it is already explicitly managed in the metalevel. In addition
the graph model over which the algorithm operates could be enhanced with some
kind of model-awareness. For example, given a subgraph of the first schema, the
algorithm could perform a fake translation in order to isolate the correspondent
subgraph in the second schema. Then the similarity flooding comparison might
be limited to that portion and, therefore, yield less false positive pairs and involve
less user effort.

5 Data Provenance and Quality Problems

The growing number of heterogeneous data together with a uniform access mech-
anism tend to increase their availability, while inducing a potential decrease in
quality. Large and complex workflows involving the integration of pieces of in-
formation coming from different data sources present the need for provenance1

metadata [25]. They enhance data quality under several aspects: possibility to
verify whether the data meet the business requirements, establishing creational
context, protection of intellectual property and so on.

The shared and uniform access mechanism provided by modern infrastructures
makes data prone to losing quality and coherence. Therefore integrity constraints
acquire more and more significance in these environments.

A modern approach to these issues should be model-independent and operate
at runtime. Whereas there are many proposals for runtime provenance and in-
tegrity constraints handlers, to the best of our knowledge, MMS managing this
kind of issues model-independently are not currently available.

Here we argue that MIDST metalevel can be extended to cope with these
problems with a general approach. It is not worth analyzing possible strategies
in detail, however brief explanations should get the idea across.

5.1 Data Provenance

MIDST manages migration of data expressed with directly applicable datalog
rules. These rules are coded with respect to MIDST metaconstructs and define
manipulations over them. Here it would not be useful to pursue the details of
transformation rules, yet some concrete aspects are necessary to outline the main
ideas. We adopt a variant of datalog where the unique identifiers (OIDs) of meta-
constructs are generated by means of Skolem functions. For a given construct,
we define a set of Skolem functions generating OIDs for it from different sets
of strongly-typed parameters. These parameters may be other constructs identi-
fiers or constants. Skolem functions are bijective and, for a given construct, the
ranges of all the functions defined over it are disjoint. This approach allows to
1 In the literature data provenance is sometimes referred to as data lineage or data

pedigree [25].
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easily handle some kind of where-provenance. It means that for a given construct
occurrence we can track back the whole path leading to it. A construct occur-
rence is characterized by an OID which is the unique output of a specific Skolem
function defined over the construct itself. MIDST handles a global materializa-
tion including every function. It is then sufficient to query that materialization
to determine the parameters which generated the OID under examination. What
is more is that, even though several functions are defined for a given construct,
since their ranges are disjoint, one could infer which function has been applied
on the basis of the OID value.

A detailed description of the possible implementations of strategies for the
data provenance would not be noteworthy here. However the key point is that
MIDST handles strongly-typed functions and strictly relates every construct
instance to its specific OID. This supports the design of procedures capable of
exploring the whole provenance graph. This exploration proceeds as long as a
the construct under examination is derived from another construct. When a
construct has an OID which derives from the application of a Skolem function
to a constant value, the current branch of the exploration terminates.

This idea assumes that MIDST works as a runtime MMS managing the whole
net of data migration; in that case pieces of information about why and how
provenance might be useful as well. They convey domain information about the
reason why a piece of data is present in a database. In some sense this informa-
tion is already managed by means of constant parameters of Skolem functions,
meaning that they store domain-level notions about the provenance. Anyway
an extension to the multilevel dictionary might include a richer description of
Skolem functions allowing for an expressive characterization of the why and how
provenance given in a user-chosen language. The power of this approach lays
both in the relational representation of metadata and in the strong connection
between a metaconstruct and the generating function. While the former aspect
is fundamental to guarantee a model-independent handling of data provenance,
the second enables an increasingly rich ontological representation of domain in-
formation that will be inherently related to the appropriate construct.

So far we have been describing the approach towards data provenance with
respect to metaconstructs; in fact MIDST proposes a mechanism allowing for
a two-fold definition of transformations: they are valid both for schemas and
for instances. Coherently, the platform adopts Skolem functions to define the
OIDs of data which are treated alike. So we store a tuple of metadata for each
value of each metaconstruct. For example, take the lexical that describes any
string-like conceptual element such as entity attributes or table columns. We
have one tuple of metadata for each value of every lexical. This representation
may seem too fine-grained, yet here it allows for an extremely detailed recording
of data provenance based on instance-level Skolem functions that work as we
have described for schemas.

In addition, we are not bound to adopt a specific language for transformations,
nevertheless it has to guarantee two major points: it must support Skolem func-
tions and have rules acting on metaconstructs. For sake of simplicity we might



236 P. Atzeni et al.

choose to enrich the SQL language with the possibility of specifying functions
for the OID generation. Even its standard version could be used if we interpose
a query preprocessing phase applying Skolem functions to generate identifiers.

5.2 Integrity Constraints

In a model management system we may state that handling integrity constraints
mainly involves three aspects: definition, application and management. The def-
inition recalls the need to design a language and a metadata representation for
constraints; the application is the satisfaction verification, while the management
represents the need for an integrated handling in a heterogeneous environment.

It is clear that in a simple context which is usually model-dependent, a well-
defined constraint only needs mechanisms for its validation. By contrast, a more
complex environment, with translations and migrations among different data
models, needs further strategies.

MIDST currently allows for a syntactical definition of both internal and ex-
ternal2 constraints. As for the first ones, simple SQL CHECK conditions are
expressed in the metaconstructs by means of their properties. Since the met-
alevel describes what properties a construct has and potentially their structure,
more sophisticated and expressive internal constraints may be defined as well.

External constraints do not even need an explicit definition in terms of proper-
ties. For example, we handle a metaconstruct (foreign key) that connects lexicals
on the basis of a foreign key constraint. Thus, since lexicals belong to conceptual
entities, such as abstracts or aggregations, then the foreign key also models the
relationships (and the dependences) between them.

As for the constraint verification, currently MIDST does not offer any effec-
tive solution. A syntactical test on instances based on constraints defined over
schemas might be implemented, however it would not be the best choice. In-
tegrity constraints allow for an enduring data consistence that must be verified
at runtime. Thus, the architectural definition of a more complex MMS should
point out what software component is responsible for that verification. Probably,
if we consider an MMS as a mediator in a heterogeneous context, the responsi-
bilty for this test will belong to the client database management systems. Instead,
if the MMS concentrates the whole responsibility for the data management, it
will include a dbms performing integrity checks. Hence an expressive representa-
tion of models and effective strategies to import and export constraints should
be sufficient for our needs.

A real MMS deals with several models and performs translations among them.
One main feature is that of preserving integrity constraints in those transfor-
mations. Here the potentialities of MIDST are particularly remarkable since
constraints could be managed in a model-independent way. During translations
internal integrity constraints are treated as propositional formulas. For example,
consider a column of a relational table; in MIDST it is represented by a lexi-
cal. Suppose that a not-nullable constraint is defined over it. We have a datalog
2 Constraints are similarly classified as intra-relational or inter-relational according

to the relational terminology.
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rule that translates columns into attributes of ER entities. The lexical has the
property isNullable: false that models the constraint with a simple propositional
formula. Normally, before the creation of the new lexical the translation rule
does not need to alter the formula that is simply copied. Alternatively, if one
wanted to invert that constraint and allow null values in entity attributes, the
datalog rule would insert a negation.

In general it means that a datalog rule can involve a complex expression cod-
ing the translation of constraints when inter-model translations are performed.
Foreign keys work alike. Suppose a foreign key links two lexicals of two different
relational tables. When the schema is translated into the ER model, tables turn
into entities and specific rules support the translation of integrity constraints
into relationships.

This means that a possible direction is using MIDST for constraint definition.
Constructs coding them could be defined in the metamodel and would be inde-
pendent of the specific model. Translations for constraints could be written as
well as normal translations currently allowed by the platform and, in a long-term
perspective, could be even automatically generated from the metamodel.

6 An Object-Oriented Scenario

In object-oriented applications, the modern approaches towards persistence tend
to recognize the benefits of adopting object-to-relational mapping (ORM) strate-
gies [16,18,21,23,27]. Let us briefly define how an application can be considered
in terms of schema and instances. Classes define the general structure of the
objects: name, attributes and references. Then, the graph of the classes of an
application represents its schema. At runtime, on the basis of the definition of the
classes, a graph of objects is built. That graph is an instance of the class-based
schema.

ORM frameworks are based on the specification of mappings between the
object schema (the classes) and the relational schema (the one on the actual
database) by means of annotations or other mechanisms involving metadata.
In the software development process, the relational database and the software
components are not designed at the same time and change independently. These
frameworks, implementing a meet-in-the-middle approach [11,9], decouple the
lifecycles of the two layers by leveraging on mappings. In fact, when the ap-
plication logic or the database change, it is sufficient to redefine the mappings
between them. One research key point in this field is of course the efforts in
defining working solutions to the data exchange problem that makes the object
instances migrate into the database. Moreover the definition of sophisticated
mappings to correctly represent object structures (such as nested classes and
hierarchies [10]) is relevant.

An innovative scenario may arise by using MIDST in order to support simple
mappings between the object graph and the metalevel. In MIDST metamodel it
is possible to determine a set of metaconstructs which represents a complete
object-oriented model. Therefore the class schema of an application can be
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mirrored (imported) into MIDST supermodel and instances can be made to
migrate by adopting extremely simple mappings. Unlike traditional ORM, the
approach would not handle a static correspondence between two given schemas,
instead it would implement a simple import of the object graph into the appropri-
ate subset of the supermodel defining the object-oriented model. It is important
to point out that this imports both the schema and the data of the applica-
tion into MIDST metalevel and treats the result as a normal schema. Therefore
model management operations as well as translations can be applied to it.

This introduces a great flexibility allowing for model-independent persistence
handling. From another point of view, the described approach represents a so-
phisticated ORM where instances are memorized in an articulated relational
structure (the multilevel dictionary) modelling general object graphs.

What is remarkable is that the explicit representation of schemas leads to a
higher level of abstraction. Whereas in ORM we specify correspondences between
classes and relations, instance variables and columns, references and foreign keys,
here those very concepts are modelled in general in the metalevel and are equally
valid for any application.

With traditional ORM only data exchange problems can be used to man-
age the relationship between the object graph and the database schemas. It
also comes as a consequence of the strict pursuing of the meet-in-the-middle
approach. In a complete MMS, the adoption of such a strategy would be less
tight because of the availability of the whole spectrum of model management
solutions.

Besides, MIDST does not only address the meet-in-the-middle approach. If
the database is firstly developed (database-first), the application logic could ben-
efit from an object graph directly derived from it (export) with a simple (copy)
mapping. Conversely, if the application logic is an early activity (application-
logic-first) in the development process, persistence can be achieved by importing
meaningful entities. Finally if meet-in-the-middle is promoted, more sophisti-
cated interrelating mappings can be defined.

Moreover, we could exploit the potentialities of the solutions to model manage-
ment problems for complex tasks. Advanced relationships between the data model
and the program instance itself could be addressed: a change in the data model
induces changes in the memory object graph (forward engineering), while objects
modifications propagate backwards to the database (round-trip engineering).

Although the illustrated approach has a greater significance in a runtime sce-
nario, from many points of view, an off-line version is meaningful as well. Once an
object-oriented graph has been imported into MIDST metalevel, it can be used
for a wide variety of targets. First of all, possible applications involve the trans-
lation of these schemas into other models not only for persistence reasons, but
also to facilitate sharing, integration, migration of data. General purpose model
management operators (such as the ones already defined in MIDST) can be then
applied to the object schema in the metalevel and modified versions of it can be
obtained. The model-independent representation of an object-oriented applica-
tion could be also used for visualization [15], structural and behavioral analysis.
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Examples of specific applications of the structural analysis are anti-pattern de-
tection and dependence verification [26]. On the other hand, behavioral analysis
[12] could be based on the fact that an instance obtained from an object graph at
a given time is a snapshot of the execution of the process. Different snapshots of
an executing program allow to define a track of the execution states that could
be related to mappings, handled by means of model management operators and
used for debugging reasons.

7 Discussion

This paper, moving from MIDST approach towards schema and data transla-
tion, has recalled how the platform can be considered as a general applicator
of transformations to schemas. On this basis, reasonings about a possible de-
velopment of MIDST into a full-featured model management system have been
provided. Major problems and research directions for the main challenges have
been explained.
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