
A runtime approach to model-independent
schema and data translation

Paolo Atzeni∗, Luigi Bellomarini, Francesca Bugiotti, Giorgio Gianforme†
Università Roma Tre

atzeni@dia.uniroma3.it, bellomarini@yahoo.it, franbugiotti@yahoo.it, giorgio.gianforme@gmail.com

ABSTRACT
A runtime approach to model-generic translation of schema
and data is proposed.

It is based on our previous work on MIDST, a platform
conceived to perform translations in an off-line fashion. In
the original approach, the source database is imported into a
dictionary, where it is stored according to a universal model.
Then, the translation is applied within the tool as a composi-
tion of elementary transformation steps, specified as Datalog
programs. Finally, the result is exported into the operational
system.

Here we illustrate a new, lightweight approach where the
database is not imported. The tool needs only to know the
model and the schema of the source database and generates
views on the operational system that transform the under-
lying data (stored in the source schema) according to the
corresponding schema in the target model. Views are gener-
ated in an almost automatic way, on the basis of the Datalog
rules for schema translation.

1. INTRODUCTION
The problem of translating schemas between data models

is acquiring progressive significance in heterogeneous envi-
ronments and has received attention in many works [3, 5,
7, 13, 15, 18]. Applications are usually designed to deal
with information represented according to a specific data
model, while the evolution of systems (in databases as well
as in other technology domains, such as the Web) led to the
adoption of many representation paradigms.

For example, many database systems are nowadays object-
relational (OR) and so it is reasonable to exploit their full
potentialities by adopting such a model while most applica-
tions are designed to interact with a relational database.
Also, object-relational extensions are often non-standard,
and conversions are needed. The explosion of XML, with
all its applications (for example, as a format for information

∗Partially supported by MIUR and an IBM Faculty Award
†Partially supported by a Microsoft Research Fellowship

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

exchange or as the language for the semantic Web), has in-
creased the heterogeneity of representations. In general the
presence of several coexisting models introduces the need for
runtime translation techniques and tools.

We have recently proposed MIDST [3, 5], a platform for
model-independent schema and data translation in order to
provide a paradigm to face issues of this kind. MIDST
adopts a metalevel approach towards translations by per-
forming them in the context of a universal model (called the
supermodel), which allows for the management of schemas
in many different data models. In fact, the set of models
that can be dealt with is large and extensible. The current
version handles relational, object-oriented, object-relational,
entity-relationship, XML-based, each in many different vari-
ants, and new metaconstructs can be added, if needed for
handling features not covered by the current ones. Trans-
lations in MIDST are organized according to the following
pattern. First, the source database is imported into the tool
and described according to the metamodel. Then, transla-
tions are performed by means of elementary transformation
steps; finally, the obtained database is exported into the
operational system.1 MIDST approach provides a general
solution to the problem of schema translation, with model-
genericity (as the approach works in the same way for many
models) and model-awareness (in the sense that the tool
knows models, and can use such a knowledge to produce
target schemas and databases that conform to specific tar-
get models). However, as pointed out by Bernstein and
Melnik [8], this approach is rather inefficient for data ex-
change. In fact, the necessity to import and export a whole
database in order to perform translations is out of step with
the current need for interoperability in heterogeneous data
environments.

Here we propose a runtime approach to the translation
problem, where data is not moved from the operational sys-
tem and translations are performed directly on it. What the
user obtains at runtime is a set of views (the target schema)
conform with the target model. The approach is model-
generic and model-aware, as it was the case with MIDST,
because we leverage on MIDST dictionary for the descrip-
tion of models and schemas and also on its key idea of having
translations within the supermodel, obtained as composition
of elementary ones, each dealing with a specific aspect (con-
struct or feature thereof) to be eliminated or transformed.
The main difference is that the import process concerns only
the schema of the source database. The rules for schema

1We use the term operational system to refer to the system
that is actually used by applications to handle their data.

275

translation are here used as the basis for the generation of
views in the operational system. In such a way data is man-
aged only within the operational system itself. In fact, our
main contribution is the definition of an algorithm that gen-
erates executable data level statements (view definitions)
out of schema translation rules.

A major difference between an off-line and a runtime ap-
proach to translation is the following. For an off-line ap-
proach, as translations are performed within the translation
tool (MIDST in our case), the language for expressing trans-
lations can be chosen once, for all models. A significant
difficulty is in the import/export components, which have
to mediate between the operational systems and the tool
repository, in terms of both schemas and data. In fact, in
the development of MIDST, a lot of effort was devoted to
import/export modules, whereas all translations were devel-
oped in Datalog. In a runtime approach, the difficulties with
import/export are minor, because only schemas have to be
moved, but the translation language depends on the actual
operational systems. In fact, if there is significant hetero-
geneity, then stacks of languages may be needed (involving
for example, SQL, SQL/XML, XQuery). Also, different di-
alects of the various languages may exist, and our techniques
need to cope with them.

In order to cope with the heterogeneity of the involved
languages, we propose an approach that, after a preliminary
abstract representation, first generates views organized ac-
cording to the constructs in the target model, but indepen-
dent of the specific languages, and then actually concretizes
them into executable statements on the basis of the specific
language supported by the operational system.

In this paper we provide a general solution to the language
independent step, whereas for the final one we concentrate
on SQL, with respect to a set of models that include many
variations of the object-relational and of the relational one.
As a running example, we will see how relational views can
be generated to access an object-relational schema with ref-
erences and inheritance.

Section 2 is an overview of the work and the organization
of the rest of the paper is described at the end of it.

2. OVERVIEW
The goal of a tool for schema and data translation is to

provide support to the adoption of a wide family of hetero-
geneous data models. In a runtime perspective, this means
that application programs, designed to interact with a spe-
cific data model Mt, would be allowed to work with an-
other data model Ms in a transparent way. The tool we
propose supports this feature by translating the schemas of
Ms (which actually contain the data of interest for the pro-
grams) in terms of views of model Mt. Then, the application
programs would use these views to access data organized ac-
cording to Ms.

The starting point for this work is MIDST [3, 5], a plat-
form for model-independent schema and data translation
based on a metalevel approach over a wide range of data
models. In MIDST the various data models are described
in terms of a small set of basic constructs. Schemas of the
various models are described within a common model, the
supermodel, which generalizes all of them, as it involves all
the basic constructs. Translations refer to the basic con-
structs and are performed within the supermodel. In the
current implementation, they are specified in Datalog.

Figure 1: The runtime translation procedure

As we said in the introduction, in the previous work on
MIDST, translations are dealt with in an off-line fashion,
meaning that the import of both schema and data into
MIDST is needed as well as an export of the result. In
this paper we describe an enhanced version of our platform
that enables the creation of executable statements generat-
ing views in the operational system.

Let us illustrate our approach, by following the main steps
it involves, with the help of Figure 1:

1. given a schema Ss (of a source model Ms) in the oper-
ational system, the user (or the application program)
specifies a target model Mt;

2. schema Ss (but not the actual data) is imported into
MIDST, and specifically in its dictionary, where it is
described in supermodel terms;

3. MIDST selects the appropriate translation T for the
pair of models (Ms, Mt), as a sequence of basic ones
available in its library;

4. the schema-level translation T is applied to Ss to ob-
tain the target schema St (according to the target
model Mt);

5. on the basis of the schema-level translation rules in
T , the tool generates views over the operational sys-
tem, in three phases: first it generates an abstract
description of views that specify schema St (and so
conform to model Mt) in terms of the elements of the
source schema in Ss; then, it translates these abstract
descriptions into system-generic SQL-like view defini-
tions; finally, it compiles statements that define the
actual views in the specific language available in the
operational system.

Let us observe that steps 1-4 appear also in the previous
version of MIDST, whereas 5 is completely new, in all its
phases, and clearly significant.

As a running example, consider the following. Assume
we have an environment where application programs are de-
signed to interact with relational databases while we have
an actual database on the operational system based on the
object-relational (OR) model, with the following features:2

2This is just a possible version of the OR model, and our
tool can handle many others.

276

tables, typed tables, references between typed tables and
generalizations over typed tables. In this scenario, our tool
generates relational views over the object-relational schema,
which can be directly used by application programs.

A concrete case for this example involves the OR schema
sketched in Figure 2. The boxes are typed tables: employee
(EMP) is a generalization for engineer (ENG) and depart-
ment (DEPT) is referenced by employee.

Figure 2: A simple object-relational schema

The goal of the runtime application of MIDST is to obtain
a relational database for this, such as the one that involves
the following tables:3

EMP (EMP OID, lastname, DEPT OID)
DEPT (DEPT OID, name, address)
ENG (ENG OID, school, EMP OID)

Given the schema in Figure 2, our tool first imports it in
its dictionary. Then, given the specification of the target
model (the relational one), it selects an appropriate schema-
level translation, which is a sequence of basic translations,
each specified by means of a Datalog program. In this case,
the schema-level translation should perform the following
tasks: it first eliminates the generalizations (in the example,
the one between ENG and EMP) and then transforms the
typed tables (all tables in the source) into value-based ta-
bles. As we will see in the next section, in MIDST this would
be done in four steps, with a first Datalog program for the
elimination of generalizations and a fourth one for the trans-
formation of typed tables into value-based ones, preceded by
two auxiliary ones, for the introduction of keys and the re-
placement of references with foreign keys. The major task
of our new version of the tool is the generation of a set of
view statements for each of these Datalog programs.

The following is a sketch of a view definition generated in
the first step.

CREATE VIEW ENG_A ...

AS (SELECT ... SCHOOL, ... EMP_OID

FROM ENG

);

It extends ENG (denoted as ENG A to distinguish the
new version from the original one) with a supplementary
attribute, EMP OID. It implements a strategy for the elim-
ination of generalizations, where both the parent and child
typed tables are kept, with a reference from the child to the
parent. In the technical sections of the paper we will see how
we produce views of this kind and we will show the missing
details.

The remainder of the paper is organized as follows. In
Section 3 we briefly present the original version of MIDST,
3As it is well known, there are various ways to map gener-
alizations to tables, and this is one of them.

specifically we introduce some useful details on how schema-
level translations are performed within the platform. In Sec-
tion 4 we illustrate the whole process of runtime translation,
explaining how views are generated out of schema-level rules
by describing concrete cases of application. Then, in Sec-
tion 5 we formally present the algorithm for the generation
of views from schema-level translations. In Section 6 we
discuss some related work; finally in Section 7 we draw our
conclusions.

3. TRANSLATIONS IN MIDST
Let us now introduce some of MIDST main features, as

needed for the subsequent discussion. MIDST is based on
the idea that the constructs of the various models correspond
to a limited set of types of constructs and it is therefore pos-
sible to define a “universal model”, called the supermodel,
that includes, up to renaming, all the constructs of interest.
Each model, then, is a specialization of the supermodel, and
each schema in any model is also a schema in the super-
model. Therefore, translations from a model to another can
be performed within the supermodel.

Figure 3 (taken, with minor variations, from [5]) reports a
list of MIDST generic constructs and shows examples of their
use in most common models. Each construct has a name,
a set of properties (which allow the specification of variants
and details) and a set of references (which allow constructs
to refer to one another). Each construct is provided with
a unique identifier and references are then based on these
identifiers.

Let us illustrate the main constructs by means of the run-
ning example, the object-relational schema of Figure 2. Each
of the typed tables (EMP, ENG, and DEPT) is seen as an
Abstract in the supermodel. Then, each column of the typed
tables (school for ENG, lastName for EMP, name and ad-
dress for DEPT) is a Lexical and is related to the corre-
sponding Abstract. Something similar happens for reference
fields, so dept is an AbstractAttribute of EMP, and for gen-
eralizations, where we say that ENG is a child of EMP.

Each translation in MIDST is encoded as a Datalog pro-
gram, which is a set of Datalog rules. For example, the
following rule translates an Abstract (a typed table in an
OR model) into an Aggregation (a simple table):

Aggregation (OID: SK1(oid),

Name: name)

<- Abstract (OID: oid,

Name: name);

Notice the adoption of the Skolem functor, denoted by
“SK” in the example, which, given the OID of an Abstract,
yields a corresponding OID for an Aggregation. We use
Skolem functions to generate new identifiers for constructs
given a set of input parameters as well as for referring to
them whenever needed, given the same set of parameters.
Skolem functions are injective. For a given target construct
many functors can be defined (denoted by numeric suffixes
in the examples), each taking different parameters in depen-
dence on the source constructs the target one is generated
from. As a consequence, in order to guarantee the unique-
ness of the OIDs, for a given construct the ranges of the
Skolem functions defined over it are disjoint.

Indeed, complex translations require several Datalog pro-
grams to specify the transformation of each construct. In

277

Metaconstruct Relational Object-relational ER XSD
Abstract - typed table entity root element
Lexical column column attribute simple element

BinaryAggregationOfAbstracts - - binary relationship -
AbstractAttribute - reference - -

Generalization - generalization generalization -
Aggregation table table - -
ForeignKey foreign key foreign key - foreign key

StructOfAttributes - structured column - complex element

Figure 3: Simplified representation of MIDST metamodel

MIDST we provide translations among every model of Fig-
ure 3 [5].

We adopt a modular approach and decompose transla-
tions into simple steps. MIDST includes an inference engine
that, given a source and a target model, detects the needed
translation steps.

Each step is encoded by a Datalog program and repre-
sents an elementary transformation that must be performed.
This keeps the level of detail relatively simple and supports
significant reuse of rules. Therefore we can concentrate on
simple steps. It is important to point out that each step
returns a coherent schema as a result; that schema is then
used by other steps to perform further phases of the whole
translation.

With reference to our running example, let us take into
account the translation from the version of the OR model
we are considering towards a classical relational model. In
MIDST [3, 5] this could be done as a process in four main
phases: elimination of hierarchies (step A), generation of
identifiers for the typed tables without them (step B), elim-
ination of reference columns (step C) and transformation of
typed tables into tables (step D).

The general approach to translation is that of copying,
with a simple “copy rule,” all the constructs that are not
modified. For example, in order to copy an Abstract, we
need to specify the copy-abstract rule (r1):

r1 Abstract (OID: SK0(oid),

Name: name)

<- Abstract (OID: oid,

Name: name);

When actual transformations are needed, rules are more
complex.

As for step A, there are various ways to eliminate gener-
alizations. Let us refer to the one that maintains both the
parent and the child typed tables and connects them with a
reference. This requires that we copy all typed tables with
their columns and then add a new column for each child
typed table with a reference to the respective parent typed
table.

In terms of MIDST constructs, this means that for each
Generalization between two Abstracts, an AbstractAttribute
(a reference column) referring to the parent Abstract must
be added to the child Abstract. The Datalog rule imple-
menting this last step is the following (in the following de-
noted as r4, or elim-gen):

r4 AbstractAttribute (

OID: SK2(genOID, parentOID, childOID),

Name: name,

isNullable: "false",

abstractOID: SK0(childOID),

abstractToOID: SK0(parentOID))

<- Generalization (OID: genOID,

parentAbstractOID: parentOID,

childAbstractOID: childOID),

Abstract (OID: parentOID,

Name: name);

In order to obtain a coherent schema we also need to copy
all the constructs in the schema, other than generalizations.
This is done by the copy-abstract rule (r1) we have seen
above, together with similar ones for the other constructs,
copy-lexical (r2) and copy-abstractAttribute (r3).

Step B is needed because, as opposed to what happens
for relational tables, it is not guaranteed that typed tables
(in the OR model) have key attributes. However, in or-
der to transform references into value-based correspondences
(subsequent step C), keys are a precondition. The following
Datalog rule (where the “!” character denotes a negation)
implements this strategy: for each Abstract without any
identifier, it generates a new key Lexical for it (r5).

r5 Lexical (OID: SK3(absOID),

Name: name + "_OID",

IsNullable: "false",

IsIdentifier: "true",

type: "integer",

abstractOID: SK0(absOID))

<- Abstract (OID: absOID,

Name: name),

! Lexical (

IsIdentifier: "true",

abstractOID: absOID);

As in the previous step, we need copy rules for the various
constructs in the model (the same as above, r1, r2, r3).

Step C replaces reference columns with value-based ones
and connects them to the target table with a referential in-
tegrity constraint. The following rule specifies this: for each
AbstractAttribute (reference) it replicates the key Lexicals
of the referred typed table into the referring one (r6).

r6 Lexical (OID: SK4(oid,lexOID),

Name: lexName,

isIdentifier: "false",

Type: type,

abstractOID: SK0(absOID))

<- AbstractAttribute (OID: oid,

abstractOID: absOID,

278

abstractToOID: absToOID),

Lexical (OID: lexOID,

Name: lexName,

abstractOID: absToOID,

IsIdentifier: "true",

Type: type);

Here we just need the application of two copy rules (r1

and r2).
Finally, in step D, typed tables are eliminated and this

is simply performed by two Datalog rules. The first trans-
lates Abstracts into Aggregations (r7), the second trans-
forms LexicalOfTypedTables into LexicalOfTables (r8).

With respect to the running example of Figure 2, we have
the following: step A eliminates the hierarchies, hence con-
nects ENG to EMP with a reference. Step B creates an iden-
tifier for each of the typed tables, EMP, ENG and DEPT.
In step C references are translated into value-based corre-
spondences: the identifier of EMP is copied into ENG and
the identifier of DEPT is copied into EMP. Finally step D
performs the actual translation of EMP, ENG and DEPT
into tables. The final result is indeed the relational schema
we have already seen in Section 2:

EMP (EMP OID, lastname, DEPT OID)
DEPT (DEPT OID, name, address)
ENG (ENG OID, school, EMP OID)

4. GENERATING VIEWS
In this section, we discuss the major ideas of our approach

to the generation of views for runtime translations. Then,
in the next section we will discuss the details in terms of a
complete algorithm.

4.1 The general approach
The core goal of the procedure is to generate executable

statements defining views. This is obtained by means of an
analysis of the Datalog schema rules. The analysis gives a
system-generic statement. A system-generic statement is a
view defined by means of a SQL-like language that could
be translated into another language (e.g. SQL, SQL/XML,
XQuery) in order to be executed by the operational system.

A key idea in the procedure is a classification of MIDST
metaconstructs according to the role they play. There are
three categories: container constructs, content constructs
and support constructs. Containers are the constructs that
correspond to sets of structured objects in the operational
system (i.e. Aggregation and Abstract corresponding to
tables and typed tables respectively). Content constructs
represent elements of more complex constructs,4 such as
columns, attributes or references: usually a field of a record
(i.e. Lexical and AbstractAttribute) in the operational sys-
tem. Support constructs do not refer to data-memorizing
structures in the system, but are used to model relation-
ships and constraints between them in a model-independent
way. Examples are Generalizations (used to model hierar-
chies) and ForeignKeys (used to specify referential integrity
constraints).

Our Datalog translation rules, in turn, can be classified
according to the construct their head predicate refers to.

4For the sake of simplicity in the examples we will refer
only to flat models and hence we do not consider contents
of contents.

Therefore we have container- (for example, rules r1 and r7

in Section 3), content- (all other rules in Section 3) and
support-generating rules.

Exploiting the above observations, the procedure defines
a view for each container construct, with fields that derive
from the corresponding content constructs. Instead, as sup-
port constructs do not store data, they are are not used to
generate view elements (while they are kept in the schemas).
More precisely, given a Datalog schema rule H ← B, if H
refers to a container construct, we will generate one view
for each instantiation of the body of the rule. If H refers to
a content, we need to define a field of a certain view. The
head predicates of content-generating rules handle one OID,
while the heads of container-generating ones deal with more
OIDs. In fact, the role corresponds to an intrinsic structural
difference between constructs. While containers have only
one OID (which identifies the construct), contents have at
least two OIDs: one identifying the field itself and one re-
lating it to the owner container (other OIDs may be needed
when fields refer to complex construct, as it happens for
AbstractAttribute).

Two major issues in the procedure are the provenance
of data (that is, where to derive the values from or how
to generate them) for the single field and the appropriate
combination of the source constructs (which, from a rela-
tional point of view, is equivalent to a join). In Subsec-
tion 4.2 we describe possible approaches to the former and
conclude the illustration of the informal procedure by pre-
senting examples of SQL statements in case we only deal
with one source construct (all attributes refer to it); then we
will abandon this assumption and comment on more general
cases in which several source constructs must be combined
(Subsection 4.3).

We will show the procedure informally with reference to
the running example while technical details will be dealt
with in Section 5.

Let us discuss step A in the example. The only container-
generating rule is r1, which copies all the typed tables, hence
we generate a view for each typed table of the operational
system: EMP A, ENG A and DEPT A.5

The other rules are content-generating. Rules r2 and r3,
copy Lexicals (simple fields) and AbstractAttributes (refer-
ences), respectively. From rule r2, the procedure infers the
owner view, name, and type for each field. For Abstrac-
tAttributes the procedure works likewise (rule r3) with the
addition that it has to handle the values encoding the refer-
ences between constructs in an object-oriented fashion.

The goal of step A is the elimination of hierarchies; rule
r4 maintains both the parent and the child and connects
the constructs with a reference. Here the problem of data
provenance for fields is evident: while in rules r2 and r3

the values are copied from the source fields, in rule r4 an
appropriate value that links the child table with the parent
one has to be generated.

Let us now extend the same reasonings to the non-copying
rules of the other steps.

In step B we generate a key attribute for each typed table
using rule r5. It is a content-generating rule since it gener-
ates a key Lexical for every Abstract without an identifier.
Hence we add another field to the views that correspond to
those Abstracts.

5We use the suffix to distinguish the versions of tables and
views in the various steps.

279

Once step B has guaranteed the presence of a key, in step
C we translate references into value-based (foreign-key) cor-
respondences.6 Rule r6 recalls the need to copy the iden-
tifier values of the referred construct into the referring one
in order to allow for the definition of value-based correspon-
dences. It implies the addition of a new field to the view
that corresponds to the referring Abstract.

Step D is simpler, the only transformation involves turn-
ing typed tables into tables once they do not have any gen-
eralizations nor references and the presence of identifiers is
guaranteed. The issue is then limited to the internal repre-
sentation of views handled by the operational system. Many
systems distinguish between views and typed views, then all
we need is to handle this distinction.

This procedure does not depend on the specific constructs
nor on the operational system or language. It is not re-
lated to constructs because we only rely on the concepts of
container and content to generate statements. Other con-
structs may be added to MIDST supermodel without affect-
ing the procedure: it would be sufficient to classify them
according to the role they play (container, content, sup-
port). Moreover, it is not related to the operational sys-
tem constructs or languages since the statements are de-
signed as system-generic. A specification step, exploiting
the information coming from a negotiation between MIDST
and the operational system, will be then needed to gener-
ate system-specific statements. Furthermore, this approach
is extensible because we might also consider (as we will see
shortly) adding annotations to functors whenever conditions
get more complex and in order to handle specific cases. The
procedure is not bound to a single language and the gen-
eration of statements could involve the integration of sev-
eral dialects fetching data from heterogeneous sources. This
would not increase the complexity of the analysis nor the
system-generic statements.

4.2 The provenance of field values
In this subsection we consider the problem of the data

provenance of the single field. It means that the procedure
needs to know either a source field to derive a value from or
a generation technique. We devised an automatic procedure
that, for a given rule, collects information about the prove-
nance of values by analyzing the parameters of the Skolem
functor used in the head of the rule.

In case it has only one parameter, the OID of another
field, then the value comes from the instance of the con-
struct having that OID. This is what happens in steps A, B
and C whenever a Lexical is copied (rule r2). Similarly, if
the Skolem functor has more than one parameter and one
of them refers to a field, then a source construct can be
individuated as well.

Instead, if none of the functor parameters refers to a con-
tent (it only deals with container or support constructs), the
result value has to be generated somehow. This is exactly
what happens in steps A, B and C with rules r4, r5 and r6

respectively.
These cases can be handled automatically as well. We

introduced solutions that are based on annotations which
specify value generation techniques. Here we present an in-
formal description of this approach to give an intuition of

6Notice that we refer to foreign-key values, as we use them,
but not to foreign-key constraints because they are not usu-
ally meaningful in views.

the adopted strategy while technical details will be pursued
in Section 5. In rule r4, the functor generates the OID for a
reference field (AbstractAttribute) from the OID of a Gen-
eralization (a support construct)

In order to obtain a reference from the child table to the
parent it is possible to use the tuple OID7 as value for the
reference field. A reason for this choice is the fact that every
instance of a child typed table is an instance of the parent
table too. Then for each tuple of the child container there is
a corresponding tuple in the parent one with a restricted set
of attributes, but with the same tuple OID. Therefore the
reference can be made by means of an appropriate casting
of this OID.

The following system-generic SQL-like statement is gener-
ated for the elimination of hierarchies (step A) in the running
example. ENG participates in a Generalization with EMP,
so the rule copies its attributes and adds the values for the
field referencing the parent EMP by casting the tuple OID.

CREATE VIEW ENG_A ...

AS (SELECT ... SCHOOL, REF(ENG_OID) AS EMP_OID

FROM ENG

);

In rule r5, the functor generates the OID for a Lexical
from the OID of an Abstract therefore it conveys the fact
that the value of the field corresponding to that Lexical de-
rives from a container. A possible strategy would involve the
transformation of the tuple OID into a value for this field.
This solution would guarantee the presence of a unique iden-
tifier.

In rule r6, the functor indicates that the value of the field
derives both from the AbstractAttribute and the Lexical.
Whenever a Lexical is involved in the provenance of a value,
such value comes from it independently of the other involved
constructs.

4.3 Combining source constructs
On the basis of the discussion in the previous subsection,

it turns out that for each field in a view, we have either a
provenance or a generation. Provenance can refer to differ-
ent source constructs, in which case it is needed to correlate
them. In database terms, a correlation intuitively corre-
sponds to a join. However, in practice, this need not be the
case. If two fields can be accessed from the same container
it is wise to do it and to avoid joins. For instance if a con-
struct C has a reference to a construct D and the fields c of
C and d of D must be fetched, one can use that reference to
get both the values from C without using the join operator.
Moreover, a simpler variant is possible if all the fields of a
given view derive from the same container, as it happens in
all the steps of our example.

In our paradigm, the information about the join condi-
tions are encoded in the Skolem functors. In fact we handle
typed functors that generate OIDs for specific constructs
given the OIDs of a fixed set of constructs. Therefore we
may state that for a given set of contents, each of which is
derived through the application of a Skolem functor on other

7In OR systems, every typed table usually has a supplemen-
tary field, OID, treated as a unique identifier which can be
used to base reference mechanisms on. Notice that this OID
is not related to the OID used in MIDST which identifies
the constructs.

280

constructs, the collection of all the used functors encodes the
join conditions.

For instance, consider another way of eliminating gener-
alizations: copying the child attributes into the parent and
deleting the child; obviously the parent will preserve its orig-
inal attributes as well. We would have a content-generating
rule for the parent, copying Lexicals from the child to the
parent itself with the Skolem functor SK2.1(genOID, par-
entOID, childOID, lexOID). Conversely, Lexicals from the
source parent will be copied to the target one by means
of the functor SK5(lexOID). SK2.1 relates a Generalization
(support construct) and two Abstracts (containers) and gen-
erates a new OID for the Lexical whose OID is lexOID. More
simply, SK5 generates OIDs for Lexicals given the OID of
another Lexical.

The specific set of content-generating functors ({SK2.1,
SK5}) encodes the fact that we have a left join on OID basis
in such a way that all the instances of the parent that are also
instances of the child, appear in the result view as a single
tuple. Moreover the left join guarantees the inclusion of the
tuples coding instances of the parent that do not belong to
the child.

In the running example we have EMP; according to the
lastly mentioned strategy, it has to be merged with its child
ENG. The general procedure establishes the presence of a
join and the specific pattern for the set {SK2.1, SK5} en-
codes the conditions.

CREATE VIEW EMP_A (..., LASTNAME, SCHOOL)...

AS (SELECT ... EMP.LASTNAME, ENG.SCHOOL

FROM EMP LEFT JOIN ENG

ON (CAST (EMP.OID AS INTEGER) =

CAST (ENG.OID AS INTEGER))

);

Notice that, in this statement, the pattern bases joins on
the sharing of tuple OIDs which takes place between parent
and child instances.

As mentioned before, there might be cases in which fields
of different containers can be accessed by just referring to a
single container by means of references. This is what hap-
pens in step C where the values for the fields in the refer-
ring typed table, must be derived from the key fields in the
referred one (rule r6). The following statement is among
the ones generated for step C: EMP has references towards
DEPT (which does not appear in the statement) via the
field dept and DEPT OID is the identifier for DEPT added
in rule r5. Then, we need to copy DEPT OID values into
a field of EMP according to the semantics of the rule. It
is clear that there are two sources: EMP and DEPT. How-
ever DEPT OID can be accessed via dept, therefore the join
between the two containers is not needed.

CREATE VIEW EMP_C ...

AS (SELECT ... LASTNAME,

dept->DEPT_OID AS DEPT_OID

FROM EMP_B

);

So, source constructs are handled in a lightweight way:
joins are avoided by exploiting dereferencing (as in the ex-
ample) when such a feature is supported by the operational
system. Otherwise, when they are necessary, their treat-
ment is globally encapsulated in Skolem functors that relate

constructs in a strongly-typed fashion. In general, we can
provide a different combination of Skolem functors for each
needed join condition. The concept is that we exploit func-
tor expressivity and strong typedness to understand how to
combine the containers of the different fields.

5. THE VIEW-GENERATION
ALGORITHM

Let us now discuss with some detail the algorithm we
adopt to generate views at runtime from Datalog rules en-
coding schema-level translations.

The algorithm takes in input a schema-level translation
expressed as a set of Datalog rules, a classification for the
involved constructs (support, container and content), and
generates SQL statements defining views on the basis of the
translation. The algorithm is composed of three parts: an
abstract specification of the views; the generation of system-
generic SQL-like statement corresponding to those views;
translation of the system-generic statements into statements
that are actually executable on the operational system.

We will illustrate the technical details of the three parts
in Subsections 5.1, 5.2 and 5.3 respectively.

5.1 Procedural analysis
Let us consider an elementary translation T . It is a set

of Datalog rules R1, R2, . . . , Rn, where each rule Ri has a
body Bi and a head Hi whose identifier (OID) is generated
by means of a Skolem functor Ski.

In our context, each Skolem functor Sk is associated with
a given construct, to which we refer as the type type(Sk)
of the functor. Each functor always appears with the same
arity and with arguments that have each a fixed type. The
associated function is injective and function ranges are pair-
wise disjoint.

For example, consider functor Sk4 of Section 3, used in the
implementation of rule r6 (which eliminates the references).
It has the structure:

Sk4 : AbstractAttribute × Lexical → Lexical

meaning that it takes in input the OID of an AbstractAt-
tribute and the OID of a Lexical and generates a unique
OID for another Lexical, as it can be inferred from the head
literal in which it is used. Also, type(Sk4) = Lexical.

Let us now investigate the relationship between the role
of constructs and the Skolem functors used to generate their
OIDs. A container construct has a single OID, which iden-
tifies it. Whenever a container is created in a head Hi,
the functor Ski is responsible for the creation and for the
uniqueness of that OID. Conversely, a content construct is
characterized at least by two OIDs: one that identifies the
construct itself and another one referring to its container
construct. The former plays the same role as in the contain-
ers and it is determined by the application of the Skolem
functor Ski; the latter denotes the container construct to
which the content belongs and it is calculated by another
functor Skp

i . Symbols Ski and Skp
i will be used throughout

the whole explanation of the procedure to denote the two
functors for a content construct.

For example, the head of the rule r1 (which copies ab-
stracts) has the form:

Abstract (OID: SK0(oid),

Name: name)

281

and it is evident that it is characterized only by its OID.
Conversely, a content construct, such as Lexical as men-
tioned in the head of rule r2 (which copies Lexicals), has at
least two functors (one for each characterizing OID):

Lexical (OID: SK5(lexOID),

...

abstractOID: SK0(absOID))

SK5 (Ski) is the one used to generate unique values for
instances of Lexical from OIDs of other Lexicals; SK0 (Skp

i)
is the one used to connect each instance of Lexical (content)
to the proper Abstract (container) by retrieving the OID
of the target Abstract (abstractOID) from the one of the
source (absOID).

In order to formalize a classification of constructs on the
basis of the number of OIDs they have, similar considera-
tions should be necessary also for support constructs. In-
deed, in complex system there might be both container and
content support constructs. However, this classification aims
at providing a mechanism to detect content- and container-
generating rules on the basis of the head predicate. Since
support constructs do not contribute to the generation of
structures that handle actual data, we can limit our discus-
sion to the illustrated cases.

Therefore a container construct is a construct where only
one OID (the identifier), and the respective Skolem func-
tor are meaningful, while a content one needs at least two
OIDs. Consequently, we distinguish between container- and
content-generating rules on the basis of the number of OIDs
in the head predicate.

Given a Datalog rule R we define an instantiated body IB
as a specific assignment of values for the constructs appear-
ing in it. It means that for each construct in the body we
have values for name, properties, references and OID that
satisfy the predicates in the body of the rule itself with re-
spect to the considered schema.

Notice that the body is evaluated only against MIDST
supermodel, where the preliminary import phase has gen-
erated a representation for the schema of the operational
system in terms of MIDST constructs. For example, con-
sider the body of rule r4 (eliminating Generalizations), an
instantiated version of it is the following one:

<-

Generalization (OID: 101,

parentAbstractOID: 1,

childAbstractOID: 2);

In the running example, it expresses the fact that the Ab-
stract representing the typed table EMP (with OID 1) is the
parent of the Abstract representing the typed table ENG
(with OID 2). As it is possible to infer from the exam-
ple, the conditions expressed in the bodies of Datalog rules
(which are evaluated within MIDST supermodel) may refer
to container and content constructs as well as to support
ones.

We define an instantiated head IH for a given instantiated
body IB, as a construct whose name, properties, references
and OID are instantiated as a consequence of the instan-
tiation IB of B. Again with reference to r4, we have the
following instantiated head:

AbstractAttribute (OID: SK2(101, 1, 2),

isNullable: "false",

abstractOID: SK0(2),

abstractToOID: SK0(1))

This head defines a new AbstractAttribute for a given Gen-
eralization involving two Abstracts and, with respect to the
operational database system, defines a reference column for
a typed table referring to another typed table.

Finally an instantiated Datalog rule IR is a pair (IH, IB)
where IH is an instantiated head for the instantiated body
IB of R.

Let us introduce some notation and definitions that are
useful to explain how views are generated.

• Given a translation T , we denote the set of content-
generating rules in it as Contents(T) and the set of
container-generating rules as Containers(T).

• Given a translation T and a container-generating rule
R in T , we denote as content(R, T) the set of rules gen-
erating contents for R. In symbols, content(R, T) =
{Rj ∈ Contents(T) | type(Skp

j) = type(Sk)}.
• For each R ∈ Containers(T) (that is, for each con-

tainer generating rule) we define an abstract view, as a
pair Av = (R, content(R, T)), composed of the rule it-
self and of a set of rules, those that define contents for
its container. An abstract view is generic in the sense
that it is written with respect to types of constructs.
The same argument can be applied to contents: in ab-
stract views, the content-generating rules define types
of columns (or attributes, or references, etc) and not
specific instances of them.

Given an abstract view Av, we compute instantiated views
over it. Each of them is defined as V = (IR, {col1, col2,
..., coln}). They are pairs composed of an instantiation
IR of the container-generating rule R and of the set of all
the possible instantiations of rules in content(R, T) that are
coherent with IR.

Let us now exemplify these concepts in our running ex-
ample. Let T be the translation of step A. It follows that
Containers(T) = {r1} and Contents(T) = {r2, r3, r4}.
Consequently we can determine the following abstract view:
Av1 = (r1, {r2, r3, r4}). Finally, it is possible to instanti-
ate the abstract view Av1 according to the constructs of the
operational system. Then the instances8 are:

V1 = (EMP →copy-abstract EMP ,

{ EMP(lastName) →copy-lexical EMP(lastName),

EMP(dept) →copy-abstractAttribute EMP(dept)})
V2 = (DEPT →copy-abstract DEPT ,

{ DEPT (name) →copy-lexical DEPT (name),

DEPT (address) →copy-lexical DEPT (address)})
V3 = (ENG →copy-abstract ENG ,

{ ENG(school) →copy-lexical ENG(school),

Gen(EMP ,ENG) →elim-gen ENG(EMP)})
An abstract view describes all the views that must be gen-

erated from a container-generating rule whose instantiations
correspond to the views that will be generated.
8Notice that we do not change the name of the constructs
after the application of the rules; anyway no ambiguity arises
since they refer to different schemas.

282

5.2 View-generating statements
The second part of the procedure involves the translation

of each instantiation V of every abstract view Av into a
view-generating statement with the SQL structure:

CREATE VIEW name(col1, col2, . . .)
AS (SELECT a1(s1.col1), a2(s2.col2), . . .

FROM source(col1) s1 cond source(col2) s2 cond . . .
)

In the statement, name is the instantiated name of H that
denotes the container in the operational system. Then, col1,
col2, . . . , coln are the names of the constructs generated by
all the possible instantiations of the body of the rules in
content(R, T), and so some of them may derive from differ-
ent instantiations of the same rule, while others may derive
from different rules.

Now we have to face two major issues to characterize the
general statement: (a) the determination of the source con-
tainer (in the statement denoted by source(col i)) and (b) the
actual value for each content (indicated with the functional
symbols ai); this problem has been informally discussed in
Section 4.2 and consists in establishing a way of comput-
ing the values for fields in the result views, hence assigning
a semantics to the functional symbols ai in the statement.
Problem (b) consists in the determination of the appropri-
ate form of combination needed for the source containers
of the various contents (indicated with the symbol cond).
This problem has been discussed in Section 4.3 and consists
in replacing cond with appropriate join conditions in the
statement. We will discuss issues (a) and (b) separately in
the remainder of the section.

As for point (a), given a content-generating rule Ri con-
sider its functor, Skp

i , that is, the one that links the head
construct to the parent. The parameters of the functor are
instantiated as a consequence of the instantiation of Bi and
link the generated content with its source container (the
one the functor Skp

i is applied on). Ski conveys information
about the provenance of data (that is the content to derive
the value from) for the content under examination.

The strategy we follow relies on a default case in which the
functor has a parameter whose type is content. If this hap-
pens, that container is the source for the values. Otherwise,
it is possible to specify annotations to force a specific behav-
ior. An annotation is a query (for example a SQL statement)
that specifies how to calculate the value for a field. Annota-
tions must be written at schema level, expressing transfor-
mations to be applied for each different instantiation, as it
happens for Datalog rules.

More precisely:

• if Ski is not annotated (let us call this case a.1), at
least one parameter of its must refer to a content con-
struct (a real one in the operational system, since the
functor is instantiated). Therefore, the value for the
container instance is derived from it without any fur-
ther computation.

• if Ski is annotated (case a.2) with a query a, then
a is applied in order to calculate the needed value.
Notice that the query can be written referring to all
the literals in the instantiated content-generating rule.
Generally, these queries are very simple and use a small
number of parameters. In the SQL statement above,

the functional symbols a denote the application of the
query associated to an annotation (in the default cases
this query has no effect).

As an example of case (a.1), consider the rule r6 of step
C, presented in Section 3, which replaces the references of
typed tables with simple fields (in order to allow for the def-
inition of value-based correspondences). The functor Sk4 is
not annotated and takes in input the OID of the Abstrac-
tAttribute and the OID of the Lexical referred by it. This
implies that values for the new field (generated to represent a
reference) have to be directly derived (namely, copied) from
values of the source Lexical.

On the other hand, as an example of case (a.2), consider
the rule r4 of step A, presented in Section 3, which replaces
the generalizations between two typed tables by adding a
specific reference field (AbstractAttribute) in the child ta-
ble. The functor Sk2 takes in input the OID of the Gener-
alization and the ones of the two involved Abstracts. In this
case it is correct to annotate the functor to specify how the
values for the field have to be calculated.

The following pseudo-SQL statement is an example of an-
notation defined at schema level that helps calculate the
value for the field.

SELECT INTERNAL_OID FROM childOID;

It specifies that the value of the reference must coincide with
the OID of the tuple under examination for the childOID
(which refers to the view that is being populated).

A similar strategy should be followed to cope with rule r5

of step B. As we have seen, such a rule generates a key field
for every typed table without an identifier: thus the problem
of generating a unique value at data level arises. In the head
of the rule, the functor Sk3(absOID) takes an Abstract as
input parameter, meaning that there are no valid sources
for the values. A possible annotation could be the following
one:

SELECT INTERNAL_OID FROM absOID;

It implies the adoption of the values of internal tuple identi-
fiers (INTERNAL OID) as elements for the key of the typed
table as explained in Section 4.

As for point (b) two cases are indeed possible for an in-
stantiated view Vi in dependence on the instantiation of the
functor Skp

i : (b.1) there are sets of contents deriving from
the same container, let us call them sibling contents. This
corresponds to instantiations of rules (be they the same or
different ones) where the values of the parameters of the
functors Skp

i are the same; (b.2) there are contents deriving
from different containers, let us call them non-sibling con-
tents; this corresponds to instantiations of rules where the
assigned values for the functor Skp

i are different.
(b.1) can be thought of as a default case, in which no

further definitions are necessary and the translation can be
performed directly; viceversa (b.2) requires some decision
and needs the definition of strategies to combine the sources.

In fact, in (b.1) it is sufficient to copy the contents from
the container Skp

i refers to. Thus, for each set of sibling
contents, we have the specification of a content in the FROM
part of the SQL statement.

On the other hand, in (b.2) the conds in the SQL state-
ment must be translated into appropriate join conditions. It
is clear that there are several variants for the joins, accord-
ing to the semantics of the schema-level translation. The

283

key is that Skolem functors allow to specify this semantics
at schema level in such a way that it can be translated into
join conditions at data level. We define a schema-join cor-
respondence SJ such that SJ : Sn → cond , where Sn is a
tuple of Skolem functors, cond is a join condition, expressed
as a statement at schema level. The correspondence SJ then
assigns a join condition to a specific tuple of functors, which
are the ones that generate the OIDs for the contents in the
container under examination. Then, for example, if a con-
tainer has three contents: two sibling contents and a non-
sibling one, then the tuple will be composed of two functors,
one for the siblings and another one for the single content.
Then the correspondence SJ will specify how to combine
the two associated source containers in terms of join condi-
tions. As for annotations, join conditions must be written at
schema level (for example directly with a pseudo-SQL for-
malism) and, when omitted, the Cartesian product between
the source containers is implied.

Case (b.1) is rather simple and an example of it is the
overall translation of step A where, for each typed table,
the values are directly derived from one source table and no
joins are needed.

Conversely, as seen in Section 4, an occurrence of (b.2)
arises in the elimination of generalizations consisting in copy-
ing the contents of child Abstracts into the parent. Ob-
viously, since the parent maintains its contents, there are
contents coming from the child typed table and others from
the parent one. The involved functors are Sk2.1, the one
responsible for the OIDs of Lexicals copied from the chil-
dren to the parents (school from ENG to EMP in the ex-
ample), and Sk5, responsible for the OIDs of the parent
Lexicals (lastName of ENG in the example). Here we de-
fine the schema-join correspondence f : (SK2.1 (genOID ,
parentOID , childOID , lexOID), SK5 (lexOID)) → cond1,
where cond1 can be defined according to a pseudo-SQL for-
malism as follows:

parentOID LEFT JOIN childOID ON INTERNAL_OID;

This pseudo-SQL condition, together with the schema-join
correspondence definition, specifies that, whenever two non-
sibling set of contents derive from the combination of the
functors Sk2.1 and Sk5, then the source containers have to
be combined with a left join on the basis of the internal OID.
The left join guarantees that instances of the parent that are
not also instances of the child are preserved in the result. It
is clear that different correspondences, in association with
different join conditions, can be defined to cover a wide range
of cases.

5.3 Executable statements
After a system-generic SQL statement has been generated

for a Datalog translation, it is customized according to the
specific language and structures of the operational database
system in order to be finally applied.

With respect to a complex translation involving more than
one phase, each system-generic SQL statement encoding an
elementary step is translated in terms of a system-specific
and executable one. Then the views generated by one step
are used by the following one and all the statements repre-
sent a pipeline of transformations yielding the desired output
view.

The following SQL statements exemplify the elimination
of hierarchies (rule r4) which takes place in step A with

reference to IBM DB2. This DBMS adopts the concept of
typed view, which is a view whose type has to be defined
explicitly. This motivates the presence of the two initial
statements defining the types EMP2 and ENG2 in the re-
sult schema. The statements below implement the strategy
consisting in using the internal OID to make the child refer
to its parent. It is apparent that a lot of DB2 technical de-
tails are introduced in this last phase. Examples are the use
of type constructors, the various casting functions or explicit
scope modifiers.

CREATE TYPE EMP2_t as (

lastname varchar(50))

NOT FINAL INSTANTIABLE

MODE DB2SQL WITH FUNCTION ACCESS REF USING INTEGER;

CREATE TYPE ENG2_t as (

toEMP REF(EMP2_t),

school varchar(50))

...;

CREATE VIEW EMP2 of EMP2_t MODE DB2SQL

(REF is EMP2OID USER GENERATED) as

SELECT EMP2_t(INTEGER(EMPOID)), lastname

FROM EMP;

CREATE VIEW ENG2 of ENG2_t MODE DB2SQL

(REF is ENG2OID USER GENERATED,

toEMP WITH OPTIONS SCOPE EMP2) as

SELECT ENG2_t(INTEGER(ENGOID)),

EMP2_t(INTEGER(EMPOID)), school

FROM ENG;

5.4 Discussion
The proposed algorithm represents the core step in trans-

lating schemas from a model to another at runtime since
it allows the translation of Datalog rules into actually exe-
cutable SQL statements on data. In previous works [3, 4, 5]
we argued that MIDST is a model-independent implementa-
tion of the modelgen operator. Here we argue that the pro-
posed algorithm extends the platform to a runtime context
and allows for the interaction with heterogeneous database
systems, without affecting that property. In fact the initial
import of information about the schema of the operational
database supports the definition of system-independent and
model-independent translations. We manage to decouple
the technical details of the operational system and its model
from translation rules, by means of suitable import modules
that allow to translate the internal representations of the
systems in terms of the constructs of the supermodel.

Then the schema-level rules are actually applied on the su-
permodel in order to obtain schema information about the
translated database, in such a way that further operations
are possible. What the algorithm performs is a procedural
analysis of translation on the basis of a generic whole-part
(container-content) classification of supermodel constructs
and on the basis of the model-awareness principle we fos-
ter in MIDST. It means that, although MIDST is model-
generic, in the sense that translations can be applied inde-
pendently of target and source models, we handle specific
metadata about models by adopting typed constructs which
differ from one another, and strongly typed Skolem func-
tors, which can be applied on and return only specific types

284

of construct OIDs. Hence, as evident from the formal illus-
tration of the algorithm, model-awareness allows to evaluate
the relationships between constructs and their instances in
the operational system without affecting the model-generic
approach of the whole process.

The whole-part classification of the constructs of the su-
permodel is not a limitation because it is the essential re-
lationship in most common data models. Moreover, more
complex structures of target systems (such as nested tables,
generalizations and so on) are indeed treated by means of
support constructs that can be even used in translations to
specify schema-level conditions.

The presented approach solves performance issues that af-
fected MIDST due to the necessity to import into the super-
model and export back the whole database. Schema meta-
data are obviously much lighter than the actual data and
the time spent in importing them has no relevance in the
performance of the translation. Furthermore, the compu-
tation of the SQL-generating statements is performed only
once (and in advance) for each translation; then the opti-
mization of the query and the performance issues are entirely
devoted to the operational database system. From our point
of view, in other papers [3, 4, 5] we showed that although
MIDST is model-independent, hence it handles translations
between any pair of models, the number of the needed steps
is bounded and small. Moreover, the number of the gener-
ated queries is minimal. In fact, due to the detection of the
appropriate join conditions, we generate one query for each
view needed in the operational system and do not need to
unite results from different statements.

6. RELATED WORK
The problem of translating schemas between models has a

largely recognized significance and has been pursued in the
literature according to several perspectives of model man-
agement. Bernstein and Melnik [8] present the current state
of the art in this field and, indirectly, outline an overview of
the major approaches and achievements.

The approach towards runtime translation illustrated in
this paper is based on MIDST [3, 4, 5], a platform allowing
for model-independent schema and data translation. Its the-
oretical basis are laid in [3, 5, 6, 7] and provide a framework
to perform model-independent schema and data translation.
In this paper we provide the framework with a runtime de-
sign and go beyond the limitations expressed in [8, Sec.3.1].

The problem of translating schemas between models has
been pursued by various other authors, including [13, 15],
with approaches that are either focussed on the schema level
or on abstract models and languages.

In this paper we have tackled the problem of enhancing
MIDST with the possibility of applying runtime translations
in such a way that data exchange queries are computed out
of schema translation rules and are used to generate views.
Our approach towards data exchange is not formal, what we
are interested in is the set of statements solving the data ex-
change problem between the source schema and the wanted
view; however we share many ideas with characterizations
by Fagin et al.[11, 10].

Mork et al. [17] also adopt a runtime approach (based on
[3, 7]) to solve the specific problem of deriving a relational
schema from an extended entity-relationship model. They
use a rule-driven approach and write transformations that
are then translated into the native mapping language. How-

ever, although they face many issues such as schema update
propagation and inheritance, indeed they solve a specific
subset of problems and provide an object-relational map-
ping tool similar to [14]. In [9], Bernstein et al. adopt a
runtime approach to allow a developer to interact with XML
or relational data in an object-oriented fashion. On the one
hand their perspective is different since they only deal with
a specific kind of heterogeneity; in addition they address the
problem by translating the queries while we aim at gener-
ating views on which the original queries can be directly
applied.

Our approach is aimed at providing a runtime support to
the whole range of translations allowed by MIDST that is
not limited to object-to-relational or xml-to-object, but in-
volves any possible transformation between a pair of models
in our supermodel (ER, OR, OO, XSD, Relational, etc.).

Our approach shares some analogies with Clio [10, 11, 12,
16, 19] too. Its aim is building a completely defined mapping
between two schemas, given a set of user-defined correspon-
dences. As for our translations, these mappings could be
translated into directly executable SQL, XQuery or XSLT
transformations. However, in the perspective of adopting
Clio in order to exchange data between two heterogeneous
schemas, the needed mappings should be defined manually;
moreover, there is no kind of model-awareness in Clio, which
operates on a generalized nested relational model. Although
it can be shown to subsume a considerable amount of mod-
els, in a real application scenario a preliminary translation
and adaptation of the operational system should be per-
formed, leading to the problems of the initial MIDST ap-
proach.

The presented runtime extension of MIDST is a significant
step with respect to the process of turning the platform into
a complete model management system [1]. In such a per-
spective, Datalog rules are not only seen as model-to-model
translations, but encode more general transformations that
implement schema evolution and model management opera-
tors. Therefore the possibility of applying translation, hence
operators, at runtime allows for the runtime solution to
model management problems with model-independent ap-
proaches like the ones illustrated in [2].

7. CONCLUSIONS
The main contribution of this paper is a runtime version

of MIDST. We have showed how we can generate executable
statements out of translation rules. The approach aims at
being general, in the sense that the final objective is to derive
an executable statement for any possible translation.

A major issue is the query language. It is necessary to
specify a language capable of interacting with all the in-
volved models homogeneously. Although in some cases, such
a single language would be available, some situations are
more complex and need further investigation. Examples
are the ones involving translations from object-relational to
XML and viceversa

The concrete examples we have shown in this paper are
based on SQL, which has the advantage of supporting dif-
ferent models, in particular the object-relational (which has
many variants) as well as the relational one. However, the
approach we have shown has a significant language indepen-
dent step that can be the basis for further experimentation,
especially in the XML world, possibly in conjunction with
SQL itself.

285

The runtime approach described in this paper actually
refers to transformations taking place in a single system, of-
fering the logical support to both models. Indeed, it may
be the case that more systems are involved; however the
adoption of the appropriate middleware solutions might of-
fer working solutions based, for example, on a common ex-
change format.

8. REFERENCES
[1] P. Atzeni, L. Bellomarini, F. Bugiotti, and

G. Gianforme. From schema and model translation to
a model management system. In BNCOD, pages
227–240, 2008.

[2] P. Atzeni, L. Bellomarini, F. Bugiotti, and
G. Gianforme. A platform for model-independent
solutions to model management problems (extended
abstract). In SEBD, pages 310–317, 2008.

[3] P. Atzeni, P. Cappellari, and P. A. Bernstein.
Model-independent schema and data translation. In
EDBT Conference, LNCS 3896, pages 368–385.
Springer, 2006.

[4] P. Atzeni, P. Cappellari, and G. Gianforme. MIDST:
model independent schema and data translation. In
SIGMOD Conference, pages 1134–1136. ACM, 2007.

[5] P. Atzeni, P. Cappellari, R. Torlone, P. Bernstein, and
G. Gianforme. Model-independent schema translation.
VLDB Journal, 17:1347–1370, 2008.

[6] P. Atzeni, G. Gianforme, and P. Cappellari. Reasoning
on data models in schema translation. In FOIKS
Symposium, LNCS 4932, pages 158–177. Springer,
2008.

[7] P. Atzeni and R. Torlone. Management of multiple
models in an extensible database design tool. In EDBT
Conference, LNCS 1057, pages 79–95. Springer, 1996.

[8] P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. In SIGMOD
Conference, pages 1–12, 2007.

[9] P. A. Bernstein, S. Melnik, and J. F. Terwilliger.
Language-integrated querying of xml data in sql
server. In VLDB, pages 1396–1399, 2008.

[10] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data
exchange: Semantics and query answering. In ICDT,
pages 207–224, 2003.

[11] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange:
getting to the core. ACM Trans. Database Syst.,
30(1):174–210, 2005.

[12] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to
industrial tool. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
Baltimore, Maryland, USA, June 14-16, 2005, pages
805–810. ACM, 2005.

[13] J.-L. Hainaut. The transformational approach to
database engineering. In GTTSE, LNCS 4143, pages
95–143. Springer, 2006.

[14] Hibernate. http://www.hibernate.org/.

[15] P. McBrien and A. Poulovassilis. A uniform approach
to inter-model transformations. In CAiSE Conference,
LNCS 1626, pages 333–348, 1999.

[16] R. J. Miller, L. M. Haas, and M. A. Hernández.
Schema mapping as query discovery. In VLDB, pages
77–88, 2000.

[17] P. Mork, P. A. Bernstein, and S. Melnik. Teaching a
schema translator to produce O/R views. In ER
Conference, LNCS 4801, pages 102–119. Springer,
2007.

[18] P. Papotti and R. Torlone. Heterogeneous data
translation through XML conversion. J. Web Eng.,
4(3):189–204, 2005.

[19] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping
adaptation under evolving schemas. In VLDB, pages
584–595, 2003.

286

