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a b s t r a c t

To support heterogeneity is a major requirement in current approaches to integration

and transformation of data. This paper proposes a new approach to the translation of

schema and data from one data model to another, and we illustrate its implementation

in the tool MIDST-RT.

translations in an off-line fashion. In such an approach, the source database (both

schema and data) is imported into a repository, where it is stored in a universal model.

Then, the translation is applied within the tool as a composition of elementary

transformation steps, specified as Datalog programs. Finally, the result (again both

schema and data) is exported into the operational system.

Here we illustrate a new, lightweight approach where the database is not imported.

MIDST-RT needs only to know the schema of the source database and the model of the

target one, and generates views on the operational system that expose the underlying

data according to the corresponding schema in the target model. Views are generated in

an almost automatic way, on the basis of the Datalog rules for schema translation.

The proposed solution can be applied to different scenarios, which include data and

application migration, data interchange, and object-to-relational mapping between

applications and databases.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of translating schemas between data mod-
els is acquiring progressive significance in heterogeneous
environments and has received attention in many projects,
including MIDST and its predecessors [5,6], DBMain [18],
AutoMed and its predecessors [21,27], Chameleon [26], and
the work by Mork et al. [25]. This is motivated by the fact
ll rights reserved.

ce paper [2].

ni),
that applications are usually designed to deal with informa-
tion represented according to a specific data model, while
the evolution of systems (in databases as well as in other
technology domains, such as the Web) led to the adoption of
many representation paradigms. For example, many data-
base systems are nowadays object-relational (OR) and so it
is reasonable to exploit their full potentialities by adopting
such a model while most applications are designed to
interact with a relational database. Also, object-relational
extensions are often non-standard, and conversions are
needed. Moreover, there is currently a significant adoption
of XML repositories that manage native XML data. This fact
has increased the heterogeneity of representations.

In general, the presence of several coexisting models
introduces the need for translation techniques and tools. In
fact, Model Management [9], a high-level approach to meta
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data management that offers high-level operators to deal
with schemas and mappings, includes an operator (called
ModelGen) for translating schemas from a model to another.

We have recently proposed MIDST [5], a platform for
model-independent schema and data translation in order
to provide a paradigm to face issues of this kind, and
to implement the ModelGen operator. MIDST adopts a
metalevel approach toward translations by performing
them in the context of a universal model (called the
supermodel1), which allows for the management of sche-
mas in many different data models. The tool has been
experimented with many models, including relational,
object-oriented (OO), object-relational, entity-relation-
ship (ER), XML-based, each in many different variants.
Translations are organized according to the following pat-
tern. First, the source database is imported into the tool and
described in its dictionary in terms of the supermodel. Then,
the translation is performed by means of a sequence of
elementary steps (rules), each dealing with a specific aspect
to be eliminated or transformed. Finally, the obtained
database is exported into the target operational system.2

This approach provides a general solution to the problem of
schema translation, with model-genericity (as the approach
works in the same way for many models) and model-

awareness (in the sense that the tool knows models, and
can use such a knowledge to produce target schemas and
databases that conform to specific target models). However,
as pointed out by Bernstein and Melnik [10], this approach
is rather inefficient. In fact, the necessity to import and
export a whole database in order to perform translations is
out of step with the current need for interoperability in
heterogeneous data environments.

Here we propose a new platform, MIDST-RT: it is based
on a runtime approach to the translation problem, where
data is not moved from the operational system and transla-
tions are performed directly on it. What the user obtains at
runtime is a set of views (defining the target schema)
conforming to the target model. The approach is model-
generic and model-aware, as it was the case with MIDST,
because we leverage on MIDST dictionary for the description
of models and schemas and also on its key idea of having
translations based on the supermodel, obtained as composi-
tion of elementary ones. However, the management of the
involved data is completely different. In fact, the import
process concerns only the schema of the source database.
The rules for schema translation are used here as the basis
for the generation of views in the operational system. In such
a way, data is managed only within the operational system
itself. In fact, our main contribution is the definition of an
algorithm that generates executable data level statements
(view definitions) out of schema translation rules.

A major difference between an off-line and a runtime
approach to translation is the following. For an off-line
approach, as translations are performed within the transla-
tion tool (MIDST in our case), the language for expressing
translations can be chosen once, for all models. A significant
1 The use of a universal model has been adopted, in different forms,

by the various projects mentioned above [5,6,18,21,25–27].
2 We use the term operational system to refer to the system that is

actually used by applications to handle their data.
difficulty is in the import/export components, which have to
mediate between the operational systems and the tool
repository, in terms of both schemas and data. In fact, in
the development of the original, off-line version of MIDST, a
lot of effort was devoted to import/export modules, whereas
all translations were developed in Datalog. In a runtime
approach, instead, the difficulties with import/export are
minor, because only schemas have to be moved, but the
translation language depends on the actual operational
systems. In fact, if there is significant heterogeneity, then
stacks of languages may be needed (involving for example,
SQL, SQL/XML, XQuery, and combinations of them). Also,
different dialects of the various languages may exist, and
our techniques need to cope with them.

In order to handle the heterogeneity of the involved
languages, we propose an approach that, after a prelimin-
ary abstract representation, first generates views orga-
nized according to the target model, but independent of
the specific languages, and then actually concretizes them
into executable statements on the basis of the specific
language supported by the operational system.

In this paper we provide a general solution to the
language independent step, whereas for the final one we
concentrate on SQL, with respect to a set of models that
include many variations of the object-relational model
and of the relational one, and their extension with XML.

The paper is organized as follows. Section 2 is an
explanation of scenarios in which our work can be placed.
Section 3 is an overview of the work and introduces a
running example. Section 4 gives the necessary background
on MIDST. Sections 5 and 6 present our approach, by first
illustrating its principles and then the technical details. In
Section 7 we show how our approach can contribute to the
scenarios discussed in Section 2, with actual samples of
code. In Section 8 we discuss some related work. Finally in
Section 9 we draw our conclusions.

2. Motivating scenarios

The main result of our work is the ability to define
views over the operational system, in order to execute a
light transformation that needs only to import the source
schema in our dictionary. The meaning of ‘‘view’’ depends
on the operational system: for an RDBMS or an ORDBMS,
a ‘‘view’’ is a stored query leading to a virtual table that
shows data in a different way; for an object-oriented
language, a ‘‘view’’ is a set of objects that reference each
other; for the Web, a ‘‘view’’ can be an XML document
that shows data extracted from a relational database.

In this section we briefly describe some representative
problems in this context and explain how MIDST-RT can
support them.

2.1. Data and application migration

‘‘Data-migration’’ is a process of data movement between
different storage systems (and different technologies) caused
by changes in the technology or in the organization of data.
In order to obtain an effective migration, it is important to
keep in mind that applications have to be migrated as well.
As argued by Brodie and Stonebraker [12], migration needs
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to be incremental, and some legacy functions should coexist
with the newly developed ones. MIDST-RT can support this,
by offering two different interfaces to the same database. Let
us consider the following practical problem in order to see
how to solve it using MIDST-RT:
�

A

S

let A be an ORDBMS used by some applications of an
enterprise;

�
 the enterprise decides to change its commercial part-

ner, so it will use B, another DBMS (with a different
version of the object-relational model or with the
relational one);

�
 given the actual differences between systems A and B,

the original schema is not compatible with B and so
current applications do not work with it. New applica-
tions need to be developed and tested, without inter-
rupting operation.

Fig. 1 explains how we can support this problem:
1.
 MIDST-RT can generate a set of views over system A that
show a schema compatible with the specification of
system B. In such a way, the enterprise can gradually
update its applications: the modified components will
use the new schema shown by the set of generated
views, while the other ones will use the original schema;
2.
 then, after all applications have been modified, the data
can be actually migrated, by executing the same queries
that define the views, this time materializing their results.

It is important to observe that this approach would
support the intermediate phase where the old data exist
together with the new schema, while off-line or data-
exchange approaches [5,17,18,27] would support only the
last step.

2.2. XML for data interchange

XML is widely used in the process of data movement
between applications or DBMSs, especially via a network.
Thus, a user can benefit from the usage of XML formats for
different reasons: she can migrate a database using the
network, she can allow the communication between incom-
patible systems, she can use such an XML file as an input for
an application, and so on. MIDST-RT is able to create an XML
Applications Migration ModifiedLegacy
Applicationspplications

chema A Views B Schema B

Data Miration
A B

Fig. 1. The data migration scenario.
view over a relational or object-relational database. We talk
about an ‘‘XML view’’ because we perform a runtime
translation: first, we do not import data into MIDST-RT,
but only the schema of the source database; then, we
produce executable statements, so the XML file is always
up to date even when the source database is frequently
updated. As an example, we can consider the following
simple scenario. A user has a relational database and she
wants to send data to a Java application through the
network. She needs to produce an XML document that
contains such a data, and then she needs a framework for
the marshalling/unmarshalling of the document. MIDST-RT
helps the creation of the XML document in a flexible way
with three interesting features which differentiate this
approach from the data exchange one [24]: the dynamic
generation, the handling of various source models and the
possibility of customizing translations. Such a document
will be processed by the destination application, possibly by
taking advantage of the document schema (XSD).

In Section 7.2 we will show a concrete example for this
scenario by using MIDST-RT.

2.3. O/R mapping

The need for mapping object-oriented applications and
relational databases arises in many contexts [23,25], and
various technologies have been developed to support it.
The problem can be seen in two major forms: (i) given a
relational schema (or an object-relational one) it is con-
venient to produce object-oriented wrappers, that is,
software artifacts that ensure an object-oriented access
to a relational database; (ii) given a set of classes that
define objects in an object-oriented language it is often
useful to obtain the schema of a relational database for
the persistent storage of the corresponding data.

As far as the first scenario concerns, MIDST-RT can
contribute with the generation of wrappers, which can be
seen as a form of views, with benefits in the flexibility
both in the source model (many variations of the rela-
tional and object-relational ones) and in the target model
(different languages and programming conventions), as
well as in the mapping (which can be customized, for
example for performance issues). We will see in Section
7.3 a concrete example for this scenario.

In the second scenario we want to automatically
generate a database from a set of classes. Even with
respect to existing technologies that support this problem
(such as JDO [20], Hibernate [8], or ADO.NET Entity
Framework [23]), or in combination with them, MIDST-
RT can provide specific benefits:
�
 flexibility in the database management, thanks to the
knowledge of different representations of the object-
relational model;

�
 flexibility in the definition of the target schema, thanks

to the possibility of transforming the source schema
before the creation of the mapping.

At the moment, we have not implemented this sce-

nario in MIDST-RT, but we are working on it, since it is an
important application for our tool. This can be realized by
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introducing an object-oriented importer that translates
a set of Java or C# classes into MIDST-RT internal
representation.

3. Overview

As we said in Introduction, the starting point for this
work is MIDST [5], a platform for model-independent
schema and data translation based on a meta-level approach
over a wide range of data models. In MIDST the various data
models are described in terms of a small set of basic

constructs. Schemas of the various models are described
within a common model, the supermodel, which generalizes
all of them, as it involves all the basic constructs. Transla-
tions are performed within the supermodel and are obtained
as a composition of elementary steps (which we call basic

translations). In the current implementation, they are speci-
fied in Datalog.

In this paper we describe a new approach and an
enhanced version of our platform (called MIDST-RT) which
enables the creation of executable statements generating
views in the operational system. Let us illustrate the
runtime translation procedure, by following the main steps
it involves, with the help of Fig. 2:
1.
A
by
of
S

given a schema Ss (of a source model Ms) in the
operational system, the user (or the application pro-
gram) specifies a target model Mt;
2.
 schema Ss (but not the actual data) is imported into
MIDST-RT, and specifically in its dictionary, where it is
described in supermodel terms;
3.
 MIDST-RT selects the appropriate translation T for the
pair of models ðMs,MtÞ, as a sequence of basic transla-
tions available in its library;
4.
 the schema-level translation T is applied to Ss, still
within the tool, to obtain the target schema St (accord-
ing to the target model Mt);
5.
 on the basis of the schema-level translation rules in T,
MIDST-RT generates views in the specific language
available in the operational system;
6.
 MIDST-RT exports and executes the produced state-
ments over the operational system, in order to create a
set of views that perform the translation.
ccess Access
 way 
 source 
chema Ss

by way
of target 
Schema St

Views Translator

Importer

DB

Dictionary
View

DB Generator

MIDST-RTOperational System

Fig. 2. The runtime translation procedure.
version of MIDST, whereas 5 is completely new, in all its
phases, and clearly significant. Step 6 is a revised form of the
Let us observe that steps 1–4 appear also in the previous

export step of MIDST: it exports and executes the view
creation statements, rather than exporting the data.

As a running example, let us consider an environment
where some applications interact with an object-relational
database. Then, assume we want to write an application
that uses the same data but interacting with a relational
data model. We can consider a version of the OR model that
has the following features3: tables, typed tables (i.e. tables
with identifiers), references and foreign keys between typed
tables and generalizations over typed tables.

In this scenario, our tool generates relational views
over the object-relational schema, which can be directly
used by the new application program.

A concrete case for this example involves the OR
schema sketched in Fig. 3. The boxes are typed tables:
employee (EMP) is a generalization for engineer (ENG),
which is in turn a generalization for IT-engineer (IT_ENG);
office (OFFICE) is referenced by employee.

The goal of the runtime application of MIDST is to
obtain a relational database for this, such as the one that
involves the following tables with the foreign keys sug-
gested by the names of the attributes (details omitted for
the sake of space)4:
OFFICE (OFFICE_OID, offName, city)

EMP (EMP_OID, lastName, OFFICE_OID_fk)

ENG (ENG_OID, school, EMP_OID_fk)

IT_ENG (IT_ENG_OID, specialty, ENG_OID_fk)
Given the schema in Fig. 3, our tool first imports it into its
dictionary. Then, given the specification of the target model
(the relational one), the tool automatically selects an appro-
priate schema-level translation, which is a sequence of basic
translations, each specified by means of a Datalog program.
The user can customize the proposed sequence, in order to
execute a personalized translation. The customization may
3 This is just a possible version of the OR model, and our tool can

handle many others.
4 As it is well known, there are various ways to map generalizations

to tables, and this is one of them.
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include the addition, removal or reorder of the basic transla-
tions of the sequence chosen by the tool.

In the example, the schema-level translation performs
the following tasks: it first eliminates the multiple levels
of generalizations (in the example, the one between ENG
and EMP and the one between IT_ENG and ENG) and then
transforms the typed tables (all tables in the source) into
value-based tables. In MIDST this would be done in four
steps, with a first Datalog program for the elimination of
generalizations and a fourth one for the transformation of
typed tables into value-based ones with two auxiliary
intermediate steps for the introduction of keys and the
replacement of references with foreign keys, respectively.
The tool we propose here generates a set of view state-
ments for each of these Datalog programs.

The following is a sketch of one of the view definitions
generated in the first step:
CREATE VIEW ENG_A . . . AS

SELECT . . . SCHOOL, . . . EMP_OID

FROM ENG ;
We use the name ENG_A to distinguish the new
version from the original one.5 View ENG_A extends
ENG with a supplementary attribute, EMP_OID. It imple-
ments a strategy for the elimination of generalizations,
where both the parent and child typed tables are kept,
with a reference from the child to the parent.

In Sections 5 and 6, we will see in detail how we
produce views of this kind, by showing the principles, the
complete description of the algorithm, and the specific
details that are needed for the SQL statements. The
discussion will need some background on MIDST, which
is given in the next section.
4. Translations in MIDST

MIDST [5] is based on the idea that the constructs of
the various models correspond to a limited set of types of
constructs and it is therefore possible to define a ‘‘uni-
versal model’’, called the supermodel, that includes, pos-
sibly renamed, all the constructs of interest. Each model,
then, is a specialization of the supermodel, and each
schema in any model is also a schema in the super-model.
Therefore, translations from a model to another can be
performed within the supermodel.
5 In the technical sections of the paper, we use this convention, with

the suffix, when needed for the sake of readability and conciseness. In

the tool, names are repeated and distinguished by using different

schema names.
In order to support the process of generating transla-
tions, similar models are grouped into families [5]. Fig. 4
(taken, with minor variations, from [5]) reports a list of
MIDST generic constructs and shows examples of their
use in most common models managed by our tool: rows
correspond to constructs, columns to families of models,
while each cell shows the name of a construct in a specific
family.

In the tool, each construct has a name, a set of
properties (which allow the specification of variants and
details) and a set of references (which allow constructs to
refer to each other). Each construct is provided with a
unique identifier (OID) and references are then based
on OIDs.

Let us illustrate the main constructs by means of the
running example, the object-relational schema of Fig. 3.
Each of the typed tables (EMP, ENG, IT_ENG and OFFICE) is
seen as an Abstract in the supermodel. Then, each column
of the typed tables (SPECIALTY for IT_ENG, SCHOOL for ENG,
LASTNAME for EMP, OFFNAME and CITY for OFFICE) is a Lexical
and is related to the corresponding Abstract. Similarly,
reference fields (OFFICE in this case) are modeled as
AbstractAttributes (of EMP in the example). Finally, Gen-
eralizations appear in the supermodel: ENG is a child of
EMP and IT_ENG is a child of ENG.

Each translation step in MIDST is specified as a Datalog
program, which is a set of Datalog rules. More precisely,
we use a variant of Datalog with ‘‘value invention’’
[13,19], where values for new OIDs are generated. We
use Skolem functors to generate OIDs. For example, the
following rule translates an Abstract (a typed table in an
OR model) into an Aggregation (a simple table):
Aggregation ( OID: SK1(oid),

Name: name )

o� Abstract ( OID: oid,

Name: name );
Notice the use of a Skolem functor, SK1 in the example,
which, given the OID of an Abstract, produces a corre-
sponding OID for an Aggregation. We use Skolem func-
tions to generate new identifiers for constructs, given a
set of input parameters, as well as for referring to them
whenever needed, given the same set of parameters.
Skolem functions are injective. So, in this case SK1 will
generate a different OID, and so a different new Aggrega-
tion, for each Abstract in the source schema. For a given
target construct many functors can be defined (denoted
by numeric suffixes in the examples), each taking differ-
ent parameters in dependence on the source constructs
the target one is generated from. As a consequence, in
order to guarantee the uniqueness of the OIDs, the ranges
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of the Skolem functions are disjoint. Other functors for
Aggregation (which exist in the tool, but not shown in this
paper) generate a different set of OIDs.

Translations taking place in real scenarios require
several Datalog programs to specify the transformation
of each construct. We pursue a modular approach and
decompose translations into simple steps (each returning
a coherent schema of a specific model that is then used by
the subsequent step). This is done by means of a library of
Datalog programs implementing elementary steps and of
an inference engine which can determine the appropriate
sequence of steps to be applied.

With reference to our running example, let us take into
account the translation from the version of the OR model
we are considering toward a classical relational model. In
MIDST [5] this could be done as a process in four steps:
A
 elimination of generalizations;

B
 generation of identifiers for typed tables;

C
 elimination of reference columns with the introduc-

tion of value-based columns and foreign keys;

D
 transformation of typed tables into tables.
In each translation step we copy, with a simple ‘‘copy
rule’’, all the constructs that are not modified. For exam-
ple, in order to copy an Abstract, we have the copy-

abstract rule (R1Þ:
R1 Abstract ( OID: SK2(oid),

Name: name )

o� Abstract ( OID: oid,

Name: name );
The tool has a copy rule for each construct automati-
cally generated out of the definition of the supermodel.

When actual transformations are needed, rules are
more complex. Let us illustrate the main points.

As for Step A, there are various ways to eliminate
generalizations. Let us refer to the one that keeps both the
parent and the child typed tables and connects them with
a reference. This requires that we copy all typed tables
with their columns and then add a new column for each
child typed table with a reference to the respective parent
typed table. In terms of MIDST constructs, this means
that, for each Generalization between two Abstracts, an
AbstractAttribute (a reference column) referring to the
parent Abstract must be added to the child Abstract. The
Datalog rule implementing this last step is the following
(in the following denoted as R4, or elim-gen):
R4 AbstractAttribute (

OID: SK3(genOID, childOID),

Name: name,

IsNullable: ‘‘false’’,

abstractOID: SK2(childOID),

abstractToOID: SK2(parentOID) )

o� Generalization ( OID: genOID,

parentAbstractOID: parentOID,

childAbstractOID: childOID ),

Abstract ( OID: parentOID, Name: name),

Abstract ( OID: childOID);
Let us observe that the Skolem functor SK3 has
two arguments, because we need to create a new Abstrac-
tAttribute for each Generalization and for each of its child
Abstracts: indeed a Generalization may have various
children and an Abstract may be a child in various
Generalizations.

In order to obtain a coherent schema we also need to
copy all the constructs in the schema, other than general-
izations. This is done by the copy-abstract rule (R1) we
have seen above, together with similar ones for the other
constructs, copy-lexical (R2) and copy-abstractAttribute (R3)
reported below:
R2 Lexical ( OID: SK7(lexOID),

Name: name,

IsNullable: isN,

IsIdentifier: isI,

abstractOID: SK2(absOID) )

o� Lexical ( OID: lexOID,

Name: name,

IsIdentifier: isI,

IsNullable: isN,

abstractOID: absOID ),

Abstract( OID:absOID );

R3 AbstractAttribute( OID: SK8(oid),

Name: name,

isNullable: isN,

abstractToOID: SK2(absToOID),

abstractOID: SK2(absOID) )

o� AbstractAttribute (

OID: oid,

Name: name,

isNullable: isN,

abstractToOID: absToOID,

abstractOID: absOID ),

Abstract( OID:absOID ),

Abstract( OID:absToOID );
Step B is needed because it is not guaranteed that
typed tables (in the OR model) have key attributes,
whereas, in order to transform references into value-
based correspondences (subsequent Step C), keys are a
precondition. The following Datalog rule (R5), where the
‘‘!’’ character denotes a negation, implements this strat-
egy: for each Abstract without any identifier, it generates
a new key Lexical for it:
R5 Lexical ( OID: SK4(absOID),

Name: name þ ‘‘_OID’’,

IsNullable: ‘‘false’’,

IsIdentifier: ‘‘true’’,

Type: ‘‘integer’’,

abstractOID: SK2(absOID) )

o� Abstract ( OID: absOID,

Name: name ),

! Lexical (IsIdentifier: ‘‘true’’,

abstractOID: absOID );
As in the previous step, we need copy rules for all the
constructs in the model (the same as above, R1, R2, R3).

Step C replaces reference columns with value-based
ones and connects them to the target table with a
referential integrity constraint. The following rule (R6)
specifies this: for each AbstractAttribute (reference), it
replicates the key Lexicals of the referred typed table into
the referring one.
R6 Lexical ( OID: SK5(oid,lexOID),

Name: lexName,

IsIdentifier: ‘‘false’’,

Type: type,

abstractOID: SK2(absOID) )

o� AbstractAttribute ( OID: oid,

abstractOID: absOID,



P. Atzeni et al. / Information Systems 37 (2012) 269–287 275
abstractToOID: absToOID),

Lexical ( OID: lexOID,

Name: lexName,

abstractOID: absToOID,

IsIdentifier: ‘‘true’’,

Type: type ),

Abstract( OID:absOID ),

Abstract( OID:absToOID );
Here we just need the application of two copy rules
(R1 and R2).

Finally, in Step D, typed tables are eliminated and this is
simply performed by means of two Datalog rules. The first
translates Abstracts into Aggregations (R7), the second trans-
forms Lexicals referring to Abstracts into Lexicals referring
to Aggregations (R8). We omit R7 and R8 for sake of space, as
they would not add much to the discussion.

With respect to the running example of Fig. 3, we have
the following:
�
 Step A eliminates the hierarchies, hence connects ENG
to EMP with a reference and IT_ENG to ENG with
another reference;

�
 Step B creates an identifier for each of the typed tables:

EMP_OID for EMP, ENG_OID for ENG, and so on;

�
 in Step C, references are translated into value-based

correspondences: a new Lexical EMP_OID_fk is added
to ENG, with foreign key constraint toward the identi-
fier EMP_OID of EMP; similarly OFFICE_OID_fk is
added to EMP and ENG_OID_fk to IT_ENG, each with
the appropriate foreign key;

�
 finally, Step D performs the actual translation of EMP,

ENG, IT_ENG and OFFICE into tables.

The final result is indeed the relational schema we
have already seen in Section 3:
OFFICE (OFFICE_OID, offName, city)

EMP (EMP_OID, lastName, OFFICE_OID_fk)

ENG (ENG_OID, school, EMP_OID_fk)

IT_ENG (IT_ENG_OID, specialty, ENG_OID_fk)
6 This classification shares some similarity with that proposed by

McBrien and Poulovassilis [21], which has however a different goal.
5. Generating views

As we said, the core goal of the runtime translation
procedure is to generate executable statements defining
views. This is obtained by means of an analysis of the
Datalog programs used to translate schemas as discussed
in Section 4. In this section we discuss the major ideas of
how views are constructed: which views, which compo-
nents for them, where values come from and how they
have to be correlated if needed (in the relational case, in
SQL terms: which views, and, for each of them, which
columns, which sources in the FROM clause and which join
conditions). Then, in the next section, we will discuss the
details in terms of a complete algorithm.

5.1. The general approach

The first issue to be considered is how to find which
views are needed in a translation step, on the basis of the
Datalog program that implements it. A key idea in this
respect is a classification of MIDST metaconstructs (those
in Fig. 4) according to the role they play. There are three
categories: container, content, and support constructs.6

Containers are the constructs that correspond to sets of
structured objects in the operational system (i.e. Aggrega-
tions and Abstracts corresponding to tables and typed
tables, respectively). Content constructs represent ele-
ments of more complex constructs, such as columns,
attributes, or references: usually a field of a record
(i.e. Lexical and AbstractAttribute) in the operational
system. Support constructs do not refer to structures
where data are logically stored in the system (for example
relations), but are used to model relationships and con-
straints between them in a model-independent way.
Examples are Generalizations (used to model hierarchies)
and ForeignKeys (used to specify referential integrity
constraints). This sharp distinction is not sufficient in
practice, since there are some constructs that can be
content and container at the same time: we call them
dual constructs. For example, we model nested structures
using the metaconstruct StructOfAttributes: a StructOfAt-
tributes is a content for the construct in which it is
contained (an Abstract or another StructOfAttributes)
and a container for the constructs it aggregates.

In turn, Datalog translation rules can be classified
according to the construct their head predicate refers to.
Therefore, we have container- (for example, rules R1 and R7

in Section 4), content- (all other rules in Section 4),
support- and dual-generating rules.

The introduction of this classification is motivated by the
observation that in all models we have constructs that have
an independent existence (and are used to organize data
or to represent real-world concepts), other constructs
that exist only as components of independent constructs
(and maintain component information), constructs that play
both these roles, and finally constructs that describe proper-
ties of constructs of the previous two categories. These are
the four categories we have just illustrated: container,
content, dual, and support, respectively.

Exploiting the above observations, the procedure
defines a view for each container construct, with fields
that derive from the corresponding content (and dual)
constructs. Instead, as support constructs do not store
data, they are not used to generate view elements (while
they are kept in the schemas). More precisely, given a
Datalog schema rule H’B, if H refers to a container
construct, we will generate one view for each instantia-
tion of the body of the rule. If H refers to a content or a
dual, then we define a field of a certain view.

We will present the translation procedure with its
technical details in Section 6. In the rest of this section, we
first illustrate the procedure with reference to the running
example, and then discuss two major issues in the
procedure, namely: (i) the provenance of data (that is,
where to derive the values from or how to generate them)
for the single field (Section 5.2) and (ii) the appropriate
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combination of the source constructs, which, from a rela-
tional point of view, corresponds to a join (Section 5.3).

Let us consider the running example again. Step A
includes rules R1, R2, R3, R4. The only container-generating
rule is R1, which copies all the typed tables, hence we
generate a view for each typed table of the operational
system: EMP_A, ENG_A, IT_ENG_A and OFFICE_A.7

The other rules are content-generating. Rules R2 and R3

copy Lexicals (simple fields) and AbstractAttributes
(references), respectively. From rule R2, the procedure
infers the owner view, name, and type for each field. For
AbstractAttributes the procedure works likewise (rule R3)
with the addition that it has to handle the values encod-
ing the references between constructs in an object-
oriented fashion.

The main rule of Step A is R4, which eliminates
generalizations by maintaining the parent and the child
and connecting them with a reference. Here the problem
of data provenance for fields is evident: while in rules R2

and R3 the values are copied from the source fields, in rule
R4 an appropriate value that links the child table with the
parent one has to be generated. We will discuss this issue
in Section 5.2.

Let us now extend the same reasoning to the non-
copying rules of the other steps.

In Step B we generate a key attribute for each typed
table using rule R5. It is a content-generating rule since it
generates a key Lexical for every Abstract without an
identifier. Hence we add another field to the views that
correspond to those Abstracts.

Once Step B has guaranteed the presence of a key, in Step
C we translate references into value-based (foreign-key)
correspondences.8 Rule R6 addresses the need to copy the
identifier values of the referred construct into the referring
one in order to allow for the definition of value-based
correspondences. It implies the addition of a new field to
the view that corresponds to the referring Abstract.

Step D is simpler, since the only transformation involves
turning typed tables into tables once they do not have any
generalizations nor references and the presence of identi-
fiers is guaranteed. The issue is then limited to the internal
representation of views handled by the operational system.
In fact, many systems have both views and typed views, and
so we have to transform the former into the latter, or vice
versa, according to the target model.

This procedure does not depend on the specific con-
structs nor on the operational system or language. It is not
related to constructs because we only rely on the concepts
of container and content to generate statements. Other
constructs may be added to MIDST supermodel without
affecting the procedure: it would be sufficient to classify
them according to the role they play (container, content,
support, or dual). Moreover, it is not related to the opera-
tional system constructs or languages since the statements
are designed as system-generic structures. A specification
7 As we said, we use the suffix here to distinguish the versions of

tables and views in the various steps.
8 Notice that we refer to foreign-key values, as we use them, but not

to foreign-key constraints because they are not usually meaningful in

views.
step, exploiting the information coming from the opera-
tional system, will then be needed to generate system-
specific statements. Furthermore, this approach is flexible
because (as we will see shortly) it allows annotations on
Datalog programs whenever conditions get more complex
and in order to handle specific cases.

5.2. The provenance of field values

In this subsection we consider the problem of the data
provenance of the individual fields. We discuss how the
procedure finds for every value either a source field to
derive the value from or a generation technique for it. Our
procedure, for a given rule, collects information about the
provenance of values by analyzing the Skolem functor
used in the head of the rule.

If the Skolem functor has only one parameter and this
parameter is the OID of another content field, then the
value comes from the instance of the construct having
that OID. In the example, this is what happens whenever
a Lexical is copied using rule R2 (with the functor SK7

(lexOID) that copies the content construct Lexical from a
unique source content). Similarly, if the Skolem functor
has more than one parameter and only one of them refers
to a field, then a source construct can be determined as
well. For example, let us refer to a translation step in our
repository, which implements the elimination of hierar-
chies by removing parent Abstracts and moving their
attributes to child Abstracts. Such a step includes the
following rule, shown here in simplified form:
R18 Lexical( OID: SK15(lexOID, childOID),

. . .

abstractOID: SK2(childOID) )

o� Lexical( OID:lexOID,

. . .

abstractOID:parentOID ),

Generalization( OID: genOID,

parentAbstractOID: parentOID,

childAbstractOID: childOID ),

Abstract ( OID: childOID ),

Abstract ( OID: parentOID );
In the rule, the functor SK15 has two parameters:
lexOID, referring to a content (the attribute), and child-
OID, referring to a container (the child Abstract). Clearly,
the value is derived from the attribute, in many cases just
copied. Concretely, this could have been used to copy the
attribute SCHOOL into IT_ENG.

Instead, if more than two or none of the functor
parameters refer to a content construct, the result value
has to be retrieved in some other way. This is exactly
what happens in steps A and B with rules R4 (functor
SK3(genOID,childOID)) and R5 (SK4(absOID)) respectively.
This case can be handled with the use of annotations,
which specify where values come from. Here we present
an informal description of this approach to give an
intuition of the adopted strategy while technical details
will be shown in Section 6.2.1. In rule R4, functor SK3

generates the OID for a reference field (AbstractAttribute)
from the OID of a Generalization (a support construct) and
from the OIDs of an Abstracts (container construct). Here
an annotation is used to specify that the reference from
the child table to the parent can be implemented by
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means of the tuple ID (TID)9 used as value for the field. A
reason for this choice is the fact that every instance of a
child typed table is an instance of the parent table too.
Then for each tuple of the child container there is a
corresponding tuple in the parent one with a restricted
set of attributes, but with the same TID. Therefore, the
reference can be made by means of some manipulation of
this TID. In detail, the rules of Step A in the running
example lead to the following system-generic pseudo-SQL
statements:
CREATE VIEW ENG_A . . . AS

SELECT . . . SCHOOL,

REF(ENG_OID) AS EMP_OID

FROM ENG ;

CREATE VIEW IT_ENG_A . . . AS

SELECT . . . SPECIALTY,

REF(IT_ENG_OID) AS ENG_OID

FROM IT_ENG ;
ENG participates in a Generalization with EMP, so the
rule copies its attributes and adds the values for the field
referencing the parent EMP by casting the tuple TID. A
similar thing happens for IT_ENG, which participates in a
Generalization with ENG.

Similarly, in rule R5, the functor generates the OID for a
Lexical from the OID of an Abstract therefore it conveys the
fact that the value of the field corresponding to that Lexical
derives from a container. Our strategy involves the trans-
formation of the TID into a value for this field. This solution
would guarantee the presence of a unique identifier.

5.3. Combining source constructs

On the basis of the discussion in the previous subsec-
tion, it turns out that, for each field in a view, we have
either a provenance or a generation. Provenance can refer
to different source constructs, in which case it is needed
to correlate them. In database terms, a correlation intui-
tively corresponds to a join. However, in practice, this is
not always necessary. If two fields can be accessed from
the same container, then the join can be avoided. For
instance, considering an object-relational schema, if a
construct C has a reference to a construct D, then we
can use that reference to derive the values c of C and d of
D, without any join.

In our paradigm we associate join conditions to Data-
log rules and Skolem functors whenever necessary. In fact
we handle typed functors, in the sense that they generate
OIDs for specific constructs given the OIDs of a fixed set of
constructs.

Let us see an example with an application of this
technique. Consider another way of eliminating general-
izations: moving the child attributes into the parent and
deleting the child; obviously the parent will preserve its
original attributes as well. In a multilevel case, this means
that only the ‘‘top ancestor’’ is maintained, and attributes
of all the ‘‘descendants’’ are moved to it. This requires, as a
9 In OR systems, every typed table usually has a supplementary

field, which we call TID, a system-managed identifier which can be used

to base reference mechanisms on.
preliminary step (handled by a recursive rule), to detect
the top ancestor for each child. These pairs are maintained
in an auxiliary table and the Lexicals are copied from a
child to the corresponding ancestor by means of a rule
that uses a Skolem functor SK6(ancestorOID, childOID,

lexOID). Conversely, Lexicals from the source ancestor
would be copied to the target one by means of the simpler
functor SK7(lexOID). Functor SK6 relates two Abstracts
(containers) and generates a new OID for the Lexical
whose OID is lexOID. Instead, SK7 generates OIDs for
Lexicals given the OID of another Lexical.

The adopted combination of content-generating func-
tors {SK6, SK7} encodes the sourcing of data as follows: as
we will clarify in Section 6.2, it is a left join on TIDs
between the ancestor and the child; in such a way, all the
instances of the ancestor that are also instances of the
child, appear in the result view as a single tuple. More-
over, the left join guarantees the inclusion of the tuples
that represent instances of the ancestor that do not
belong to the child.

In the running example, we have a two level general-
ization and so Lexicals have to be copied (if they exist) from
two different child tables, thus leading to two left joins:
CREATE VIEW EMP_A

(. . ., LASTNAME, SCHOOL, SPECIALTY) AS

SELECT . . . EMP.LASTNAME,

ENG.SCHOOL, IT_ENG.SPECIALTY

FROM (EMP LEFT JOIN ENG ON

(CAST (EMP.OID AS INTEGER)¼

CAST (ENG.OID AS INTEGER)))

LEFT JOIN IT_ENG ON

(CAST (EMP.OID AS INTEGER)¼

CAST (IT_ENG.OID AS INTEGER)) ;
Notice that, in this statement, the pattern bases joins on
the sharing of TIDs that takes place between parent and
child instances. Moreover, consider that it is not always
necessary to perform a join operation. In fact, there are some
ORDBMSs (like DB2) that allow to perform our translation by
accessing only the top level table of the hierarchy. For
example, our query in DB2 will be characterized by the use
of the OUTER keyword in the FROM clause, which exposes all
the columns of the parameter table and of its subtables:
CREATE VIEW EMP_A

(. . . , LASTNAME, SCHOOL, SPECIALTY) AS

SELECT . . . EMP.LASTNAME,

EMP.SCHOOL, EMP.SPECIALTY

FROM OUTER(EMP) ;
As mentioned before, there might be cases in which
fields of different containers can be accessed by just
referring to a single container by means of references.
This is what happens in Step C where the values for the
fields in the referring typed table can be derived from the
key fields in the referred one (rule R6).

The following statement is among the ones generated
for Step C:
CREATE VIEW EMP_C . . . AS

SELECT . . . LASTNAME,

OFFICE �4OFFICE_OID AS OFFICE_OID

FROM EMP_B ;
Indeed, EMP has references toward OFFICE (which
does not appear in the statement) via the field OFFICE and
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10 As we will clarify later, this is essentially a simplified version of

SQL, which has the goal of generalizing in a declarative syntax the

various languages of the commercial DBMS’s.
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OFFICE_OID is the identifier for OFFICE added by rule R5.
Then, we need to copy OFFICE_OID values into a field of
EMP according to the semantics of the rule. It is clear that
there are two sources: EMP and OFFICE. However OFFI-
CE_OID can be accessed via OFFICE, therefore the join
between the two containers is not needed.

In this way, joins are avoided when possible, by
exploiting dereferencing (as in the example) when such a
feature is supported by the operational system. Other-
wise, when they are necessary, their treatment is globally
encapsulated in Skolem functors that relate constructs in
a strongly-typed fashion. In general, we can provide a
different combination of Skolem functors for each needed
join condition. The concept is that we exploit functor
expressivity and strong typing to understand how to
combine the containers of the different fields.

6. The view-generation algorithm

We now illustrate our algorithm for generating views
at runtime from Datalog rules encoding schema-level
translations. The procedure is shown in Fig. 5 and
includes tasks from the previous version of MIDST (Tasks
0 and 1) as well as new ones (all the others). Let us
comment on them.

The algorithm takes as input the name of the source
schema and the indication of the desired target model and
of the target DBMS. The ‘‘import’’ subprocedure (Task 0 in
the figure) is a function already in the previous version of
MIDST, adopted here in order to build an internal repre-
sentation of the source schema. It maps each construct of
the source schema in terms of supermodel constructs. Then
(Task 1) we use the target model parameter to invoke
another existing MIDST function: findAutomaticTranslation.
It produces a translation (for translating the source schema
into the target model), which is composed of a sequence of
elementary steps. Each step is, in turn, a set of Datalog rules.
The rest of the procedure generates the views, on the basis
of the Datalog rules in the translation steps. This is done in
various tasks, with a process that finds general features first
and then specializes them to the actual target context.
Specifically, Task 2 produces language-independent views,
and this is done in two subtasks: we first produce ‘‘view-
generators’’ (Subtask 2.a), which depend only on the model
at hand, and then instantiates them to (language-indepen-
dent) views, which refer to the schema elements of interest
(Subtask 2.b). Then, Task 3 transforms these views into
statements in pseudo-SQL.10 Finally, Task 4 compiles execu-
table statements in the specific language (e.g. SQL, SQL/XML,
XQuery) of the target operational system.

We describe the technical details of the procedure in
the next subsections, as follows: the generation of lan-
guage-independent views (Task 2) in Section 6.1, their
conversion to pseudo-SQL views (Task 3) in Section 6.2,
and finally the compilation of the executable view-crea-
tion statements (Task 4) in Section 6.3.
6.1. Language-independent views

As we said, language-independent views are built in
two subtasks. The first of them, which produces ‘‘view-
generators’’ (Subtask 2.a), is performed by means of the
algorithm shown in Fig. 6. Its input is an elementary
translation step T , which is a set of Datalog rules. As we
said in Section 5, our goal is to produce a view for each
container construct in the head of rules in T with
components (columns in relational terms) for each of its
content constructs. The classification of constructs is part
of our supermodel, and so it is immediate for our
procedure to discover which schema elements have to
become views and which components thereof. In fact, line
1 in the algorithm finds container-generating rules by
means of a simple inspection. Then, the loop in lines 2–6
builds a view-generator for each container rule. The most
delicate step is to associate components with views, that
is, to establish, for each component, which is the view it
belongs to. This is done by finding the content-generating
rules associated with the container rule at hand (line 3)
and then building a view generator for the container rule
and the associated content rules (line 4).

Let us introduce a bit of notation. Given a translation
T , we denote the set of content-generating and dual-
generating rules in it as Contents(T ) and the set of
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container-generating rules as Containers(T ). Given T and
a container-generating rule R in T , we denote as con-

tent(R,T ) the set of rules in Contents(T ) generating con-
tent (and dual) constructs for R.

So, line 3 in the algorithm computes the association
between container and content rules: given a container
rule in a translation step, it finds the corresponding
content rules. This is determined by analyzing the Skolem
functors in the rules in T . In our context, each Skolem
functor SK is associated with a given construct, the one
which it generates OIDs for. Each functor always appears
with the same arity and arguments, each one having a
fixed type. The associated function is injective and func-
tion ranges are pairwise disjoint. For example, consider
functor SK5 of Section 4, used in rule ðR6Þ (which elim-
inates the references). As it can be seen from the rule, and
especially its head, SK5 takes as input the OID of an
AbstractAttribute and the OID of a Lexical and generates
a unique OID for another Lexical:

SK5 : AbstractAttribute� Lexical-Lexical

The relationship between content and container con-
structs is determined by the OIDs. Container constructs
have one main OID whose uniqueness is guaranteed by a
primary Skolem functor (the one that generates the OID in
the head). On the other hand, content constructs have
more than one OID: one of them identifies the content
itself while the others relate it to other constructs such as
the container. This second category of OIDs is generated
by a family of secondary Skolem functors. Our procedure
includes in contentðR,T Þ the content rules in T that involve,
as secondary functor, the primary functor of the container
rule R.

For example, the head of the rule R1 (which copies
Abstracts) has the form:
Abstract ( OID: SK2(oid),

Name: name )
and it is apparent that it is only characterized by its OID,
the one that identifies it. Conversely, a content construct
has at least two functors (one for each characterizing
OID). This is the case for example for Lexical as mentioned
in the head of rule R2 (repeated here for the sake of
convenience):
R2 Lexical ( OID: SK7(lexOID),

Name: name,

IsNullable: isN,

IsIdentifier: isI,

abstractOID: SK2(absOID) )

o� Lexical ( OID: lexOID,
Name: name,

IsIdentifier: isI,

IsNullable: isN,

abstractOID: absOID ),

Abstract( OID:absOID );
Here, SK7 is the primary functor, used to generate
unique OIDs for instances of Lexical from OIDs of other
Lexicals; SK2 is a secondary one, used to connect each
instance of Lexical (content) to the appropriate Abstract
(container) by retrieving the OID of the target Abstract
(abstractOID) from the one of the source (absOID).

Therefore, in our running example, if T is the transla-
tion of Step A, we have that ContainersðT Þ ¼ fðR1Þg and
ContentsðT Þ ¼ fR2,R3,R4g and contentðR1,T Þ ¼ fR2,R3,R4g. In fact, each
of the rules R2,R3,R4 has SK2 (the primary functor of R1) as a
secondary functor.

This complete the discussion of line 3 of the algorithm
in Fig. 6. The rest of the algorithm is pretty easy. Line 4 is
based on a definition, as follows. For each R 2 ContainersðT Þ
(that is, for each container generating rule) we define a
view-generator as a pair VG¼ ðR,contentðR,T ÞÞ, composed of
the rule itself and of a set of rules, those that define
contents for its container. Essentially, a view-generator
tells which rules define containers (and so will lead to
views in the target schema) and which are the rules that
define the respective contents (and so will lead to fields of
the corresponding views). Finally, line 5 just prepares the
result to be returned by the algorithm.

In the example, our algorithm will determine, for Step
A, the following view-generator: VG1 ¼ ðR1,fR2,R3,R4gÞ. Intui-
tively, this view-generator says that in the target schema
we have container constructs as generated by rule R1 (and
so, Abstracts), each with content constructs generated by
R2, R3, and R4 (Lexicals and AbstractAttributes).

Let us now move to the actual construction of lan-
guage-independent views, Subtask 2.b in the main algo-
rithm in Fig. 5. This does not require procedural details,
and is based on some definitions.

Given a Datalog rule R, we define an instantiated body IB

as a specific assignment of values for the constructs
appearing in the body of R. It means that, for each
construct in the body, we have values for name, proper-
ties, references, and OID that satisfy the predicates in the
body of the rule itself with respect to the considered
schema. For example, given the body of rule R2 (copy-
lexical), an instantiated version of it is the following one:
Lexical ( OID: 100,

Name: ‘‘lastName’’,
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IsIdentifier: ‘‘false’’,

IsNullable: ‘‘false’’,

abstractOID: 3 ),

Abstract( OID: 3 );
In the running example, it expresses the fact that we
are copying the Lexical ‘‘lastName’’ (with OID 100) from
the Abstract ‘‘EMP’’ (with OID 3). We remark that in
general the conditions expressed in the bodies of Datalog
rules (which are evaluated within MIDST-RT supermodel)
may refer to container, content, and dual constructs as
well as to support ones.

We define an instantiated head IH for a given instan-
tiated body IB, as a construct whose name, properties,
references, and OID are instantiated as a consequence of
the instantiation of variables in IB. Again with reference to
R2, we have the following instantiated head:
Lexical ( OID: SK7(100),

Name: lastName’’,

IsNullable: ‘‘false’’,

IsIdentifier: ‘‘false’’,

abstractOID: SK2(3) )
This head defines a new Lexical for a given Abstract
(with OID obtained applying the functor SK2 to the
argument 3) that is a copy of the original Lexical of the
Abstract with OID 3.

Finally, an instantiated Datalog rule IR is a pair ðIH,IBÞ

where IH is an instantiated head for the instantiated body
IB of R.

Then, Subtask 2.b in the algorithm in Fig. 5 computes a
set of language-independent views for a view-generator VG,
where each of them is defined as V ¼ ðIR,fc1,c2, . . . cngÞ, and is
composed of an instantiation IR of rule R and of the set of
all the possible instantiations of rules in content(R,T ) that
are coherent with IR.

In the example, the language-independent views for
VG1 are11:

V1 ¼ ðEMP-copy-abstractEMP,

EMPðlastNameÞ-copy-lexicalEMPðlastNameÞ,

EMPðofficeÞ-copy-abstractAttributeEMPðofficeÞ

V2 ¼ ðOFFICE-copy-abstractOFFICE,

fOFFICEðoffNameÞ-copy-lexicalOFFICEðoffNameÞ,

OFFICEðcityÞ-copy-lexicalOFFICEðcityÞgÞ

V3 ¼ ðENG-copy-abstractENG,

fENGðschoolÞ-copy-lexicalENGðschoolÞ,

GenðEMP,ENGÞ-elim-genENGðEMPÞgÞ

V4 ¼ ðIT_ENG-copy-abstractIT_ENG,

fIT_ENGðspecialtyÞ-copy-lexicalIT_ENGðspecialtyÞ,

GenðENG,IT_ENGÞ-elim-genIT_ENGðENGÞgÞ

In plain words, this means that we will have to
produce four views, each with the associated components.
For example, V1 says that there will be a view EMP, with
columns lastName and office.
11 The descriptive names of the rules are inserted for the sake of

adability of the example. Notice that we have omitted the suffix _A as

o ambiguity arises.
It is worth noting that in our tool language-indepen-
dent views contain additional information besides the one
shown above. In particular, a language-independent view
is a map of actual values assigned to the variables of the
rules (content- and container-generating) that belong to
the view-generator. As a concrete example, the language-
independent view V4 is represented in our tool as:
CONTAINER: [oid¼75; name¼IT_ENG;

internal_oid¼IT_ENG_OID ]

CONTENTS: {

[oid¼332; name¼SPECIALTY;

absOID¼75; isN¼false; isId¼false],

[oid¼6; parentOID¼74; childOID¼75;

genOID¼6; parentName¼ENG ]

};
where ‘‘CONTAINER’’ represents the instantiation of the
container-generating rule that copies the Abstracts (in the
example the typed table IT_ENG), while ‘‘CONTENTS’’
represent the useful instantiations of the content-gener-
ating rules that copy Lexicals and remove Generalizations.
6.2. Pseudo-SQL view creation statements

Let us now devote our attention to Task 3 of the
procedure in Fig. 5. It performs the translation of a language
independent view into a pseudo-SQL view-creation state-
ment and it follows the algorithm shown in Fig. 7. Its input
is a language-independent view, V ¼ ðIR,fc1,c2, . . . cngÞ instan-
tiation of a view-generator VG¼ ðR,contentðR,T ÞÞ, for a container
rule R. The resulting pseudo-SQL statement has the follow-
ing structure:
CREATE VIEW nameðcol1 ,col2 , . . . ,colnÞ AS

SELECT a1ðsj1
:col1Þ,a2ðsj2

:col2Þ, . . . ,anðsjn
:colnÞ

FROM sources;
Line 1 of the algorithm in Fig. 7 obtains name from V

(the variable named l_independent_view) by retrieving the
name of the head construct of the instantiation IR of the
container-generating rule R. This is the name of the actual
view to be created.

Next, line 2 derives the names for the columns of the
view, col1,col2, . . . ,coln, by getting the names of the con-
structs generated by the heads of the instantiated rules
fc1,c2, . . . cng in V, and so each of them is a content
(or dual) construct.

In line 3, the algorithm identifies, on the basis of the
primary Skolem functor of the container rule R, the main

source containers for the view: essentially, these are the
containers (usually just one12) in the source schema that
are transformed into the view being constructed here. In
the example, we will have that EMP_A is the source
container for EMP_B and so on.

Then the algorithm proceeds by producing the details
for the SELECT statement in the view:
(a)
1

that

gene
the identification of the source container (let us call it
sourceðsji

:coliÞ) for the provenance of each content
2 In the sequel, in order to simplify the discussion, we will assume

there is only one main source container for each view. The more

ral case is intricate but straightforward.



Fig. 7. The creation of pseudo-SQL view statement.
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element coli and of the respective actual value for it
(indicated with the functional symbols ai); this is
done in lines 4–5, discussed in detail in Section 6.2.1;
(b)
 the actual construction of sources in the FROM clause,
with a refinement and the merge of the various ele-
ments sourceðsji

:coliÞ, with the possible use of suitable
join conditions (lines 6–10, illustrated in Section 6.2.2).
At the end the procedure creates and returns the
pseudo-SQL statement putting together the elements
produced in the previous steps (lines 11–12).

Let us consider the aspects, (a) and (b) above, in turn.

6.2.1. Finding value provenance

Let us now discuss how the algorithm identifies, in
lines 4–5, the sources of each content coli. Specifically,
this involves the decision on whether the value can be
copied (if so, from where) or has to be generated (if so,
how). This is done on the basis for the information given
by the Skolem functors of the rules that generate coli and
the annotations possibly specified on them. Let us provide
some detail. Given a content-generating rule R0, its sec-
ondary functor links the generated content to its source
container (the one the functor is applied to). The para-
meters of the functor are instantiated as a consequence of
the instantiation of the body of R0. The primary functor
conveys information about the provenance of data (that
is, the content to derive the value from) for the content
under examination. In general, the joint instantiation of
both primary and secondary functors indicates where to
retrieve the values from. Specifically, if the primary
functor can link the head content to a source construct,
then the secondary functor allows to determine the
corresponding container construct. It may happen that it
is not possible to associate the primary functor to a source
content (and thus to a source container) uniquely. In such
cases the strategy we follow relies on the possibility of
using of annotations, fragments of pseudo-SQL code that
can be associated with Datalog rules, and more precisely
to functors in them. Specifically it is possible to associate
the primary functor with a generation technique for the
value. This is essential for the functors that have two or
more content arguments (or no content arguments at all).
For example in Rule ðR4Þ we have the primary functor SK3
that has no content argument. As we will shortly see,
an annotation is needed here.

Then, our algorithm proceeds as follows:
(a.1)
 Default case: there is no annotation on the primary
functor; this is possible when (i) the functor has
exactly one parameter, a content, or (ii) it has more
parameters, with at least a content one and at most
a container one. In case (i) the column of the view
comes from the container in the source indicated by
the secondary functor. In case (ii) the column of the
view comes from the container mentioned in the
functor. In both cases, the algorithm finds a target
list element for the SQL statement composed of the
names (in the source schema) of the container and
of the content element. The algorithm computes
also the provenance for such an element (to be used
in the subsequent steps to build the FROM clause): it
is the container mentioned above; if it does not
coincide with the main source container for the
view, the provenance is defined as a join of the
two containers (and possibly others) on the basis of
repeated OIDs in the body of the rule.
(a.2)
 Annotation case: if the primary functor is annotated
with a query fragment a, then a is applied in order to
calculate the value. Notice that the query can be
written referring to all the literals in the instantiated
content-generating rule. Usually, these queries are
simple and involve a small number of parameters.
The provenance is handled as in case (a.1), on the
basis of the containers involved in the rule and in
the annotation.
As an example of case (a.1), consider again the rule ðR3Þ

of Step A (which we partially show here again for
convenience), which copies the AbstractAttributes:
R3 AbstractAttribute( OID: SK8(oid),

Name: name,

isNullable: isN,

abstractToOID: SK2(absToOID),

abstractOID: SK2(absOID) )

o� . . .
This rule is not annotated and its functor SK8 takes in
input the OID of the AbstractAttribute. In this case, in the
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target list of the view we will have an element s:col, where s

is the name of the Abstract and col the name of the
AbstractAttribute. The provenance of such an element will
be the Abstract s. In the actual example, we will have, in the
construction of the view EMP_A, an element in the target list
of the form (EMP.Office) and its provenance would be EMP.

On the other hand, as an example of case (a.2),
consider the rule R4 of Step A which replaces the general-
izations between two typed tables by adding a specific
reference field (AbstractAttribute) in the child table:
R4 AbstractAttribute (

OID: SK3(genOID, childOID),

Name: name,

IsNullable: ‘‘false’’,

abstractOID: SK2(childOID),

abstractToOID: SK2(parentOID) )

o� Generalization ( OID: genOID,

parentAbstractOID: parentOID,

childAbstractOID: childOID ),

Abstract ( OID: parentOID, Name: name ),

Abstract ( OID: childOID );
Here, SK3, the primary functor, takes in input the OID
of the Generalization and the OID of an Abstract. In this
case, the functor is annotated with:
SELECT INTERNAL_ID FROM ABSTRACT(parentOID)
This annotation specifies that the value of the refer-
ence (indeed AbstractAttributes represent references)
must coincide with the OID of the Abstract that is the
parent of the generalization. In this case, in the target list,
we will have the parent Abstract (in the sense that, as
allowed by most OR systems, we will use the system
managed TID as a value). Such an Abstract will also be the
provenance for the value. However, as the main container
for the view to be generated is the child Abstract, the
actual provenance is the join of the two Abstracts. In the
actual example, in the elimination of the Generalization
between ENG and EMP, we would have the element EMP
in the target list for view ENG_A and its provenance
would be the join between ENG and EMP.

A similar strategy should be followed to cope with rule
R5 of Step B. As we have seen, such a rule generates a key
field for every typed table without an identifier: thus the
problem of generating a unique value at data level arises.
In the head of the rule, the primary functor SK4 takes an
Abstract as input parameter, and so there are no natural
sources for the values. A possible annotation could be the
following one:
SELECT INTERNAL_ID FROM ABSTRACT(absOID)
This implies the adoption of the values of internal tuple
identifiers (INTERNAL_ID) as elements for the key of the
typed table as explained at the end of Section 5.2.
6.2.2. Building the FROM clause

Let us now discuss how point (b) above is performed,
that is, how sources for the various elements are con-
structed and combined.

The FROM clause is initialized (line 6 in Fig. 7) with the
source containers for the language-independent view at
hand. Then, the instantiated content rules in the view are
examined one at the time (lines 7–9) and if the source
container is not a main source container, then the join
condition (computed in line 5, as we said above) involving
both containers (and additional ones of needed) is added
to the FROM clause.

Let us show a result of the application of this step, both
to illustrate it and to motivate the next one. In the first
example in Section 5.3, the algorithm would generate
three elements for the source clause, namely the main
source container EMP, and the two left joins between EMP
and ENG, and between EMP, ENG and IT_ENG.

Finally (line 10), the algorithm examines the elements
in the FROM clause that has been initially generated, and
performs simplifications by merging the various join
conditions, on the basis of common containers and of
subsumed expressions. In the example, the simple ele-
ment EMP and the left join between EMP and ENG would
be removed because they are subsumed by the double left
join over EMP, ENG, and IT_ENG.

At the end (lines 11–12), the procedure creates the
pseudo-SQL statement combining the information retrieved
on the previous steps and returns the statement.

6.3. Executable view-creation statements

After a system-generic SQL statement has been gener-
ated for a Datalog translation, it is customized according
to the specific language and structures of the operational
database system in order to be finally applied.

With respect to a complex translation involving more
than one phase, each system-generic SQL statement
encoding an elementary step is translated in terms of a
system-specific and executable one.

The following SQL statements exemplify the elimina-
tion of hierarchies (rule R4) which takes place in step A
with reference to IBM DB2. This DBMS adopts the concept
of typed view, which is a view whose type has to be
defined explicitly. This motivates the presence of the two
initial statements defining the types EMP_A_t and
ENG_A_t in the result schema. The statements below
implement the strategy consisting in using the internal
OID to make the child refer to its parent. It is apparent
that a lot of DB2 technical details are introduced in this
last phase (for example, the use of type constructors, the
various cast functions and explicit scope modifiers):
CREATE TYPE EMP_A_t AS (lastName varchar(50))

NOT FINAL INSTANTIABLE

MODE DB2SQL WITH FUNCTION ACCESS REF USING INTEGER;

CREATE TYPE ENG_A_t AS (

toEMP REF(EMP_A_t),

school varchar(50))

. . .;

CREATE VIEW EMP_A of EMP_A_t MODE DB2SQL

(REF is EMPOID USER GENERATED) AS

SELECT EMP_A_t(INTEGER(EMPOID)), lastName

FROM EMP;

CREATE VIEW ENG_A of ENG_A_t MODE DB2SQL

(REF is ENGOID USER GENERATED,

toEMP WITH OPTIONS SCOPE EMP_A) AS

SELECT ENG_A_t(INTEGER(ENGOID)),

EMP_A_t(INTEGER(EMPOID)), school

FROM ENG;
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The produced statements are finally sorted in order to
Fig. 8. An object-relational schema: OR_DEMO.
take care of the dependencies between views, so that a
view that refers to another one is created later.

7. Views for the example scenarios

In this section we consider three scenarios of execu-
table statements, in order to better understand the con-
cept of ‘‘view’’ with respect of the motivating examples
proposed at the beginning of this paper.

7.1. Relational views

Let us consider the object-relational schema OR_DEMO
shown in Fig. 8, where we have three typed tables
and two structured types. We have a generalization
(ENG is a subtable of EMP) and a reference (from
EMP to OFFICE). Structured types are used to build a
two-level complex object (the value of ADDRESS comes
from the ADDRESS type whose values involve the STREET

type). We want a translation that produces a set of
relational views with reference to IBM DB2 [14]. MIDST-
RT completely supports this activity, with a component
whose interface is shown in Fig. 9. The user would
perform the following sequence of steps, which are high-
lighted in the figure:
0.
me

the

are

use
Import of the source schema from the operational
system into the tool dictionary (this step is not shown
in the figure).
1.
 Selection of the source schema (the one imported in
step 0).
2.
 Selection of the target schema (relational).

3.
 Automatic selection of the programs to apply. The user

can modify the set of selected programs in order to
customize some steps of the translation.13
4.
 Insertion of useful information for the generation of
the statements, such as the DB name and the path in
which the statements will be produced.
5.
 Generation of the statements in a text file or direct
execution over DB2.

Let us comment on the produced statements.14 For
brevity and without loss of generality, we describe
only the first step of the translation (that is, the removal
of generalizations). DB2 handles object views with
the concept of typed view, which is a view whose
type has to be defined explicitly. This motivates the
presence of the ‘‘create type’’ statements defining the
types OFFICE_t, EMP_t and ENG_t in the result schema.
The statements below implement the strategy consisting
in using the internal OID to make the child refer to its
parent.
13 For example, the system proposes to remove generalizations

rging the children into the parent, while the user wants to keep both

children and the parent.
14 Notice that, as we anticipated in Section 3, in the tool the names

distinguished by means of schema names, and so there is no need to

suffixes.
2nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

– STEP 1: removing generalizations

2nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

CREATE TYPE OR_DEMO_1.OFFICE_t AS(

CITY varchar(50),

OFFNAME varchar(50))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.OFFICE of

OR_DEMO_1.OFFICE_t MODE DB2SQL

(REF is OIDOFFICE USER GENERATED) AS

SELECT

OR_DEMO_1.OFFICE_t(

CAST(OR_DEMO.OFFICE.OIDOFF AS INTEGER)),

OR_DEMO.OFFICE.CITY,

OR_DEMO.OFFICE.OFFNAME

FROM OR_DEMO.OFFICE;

CREATE TYPE OR_DEMO_1.EMP_t AS(

LASTNAME varchar(50),

FIRSTNAME varchar(50),

ADDRESS OR_DEMO.ADDRESS_t,

OFFICE REF(OR_DEMO_1.OFFICE_t))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.EMP of

OR_DEMO_1.EMP_t MODE DB2SQL

(REF is OIDEMP USER GENERATED,

OFFICE WITH OPTIONS SCOPE OR_DEMO_1.OFFICE) AS

SELECT

OR_DEMO_1.EMP_t(

CAST(OR_DEMO.EMP.OIDEMP AS INTEGER)),

OR_DEMO.EMP.LASTNAME,

OR_DEMO.EMP.FIRSTNAME,

OR_DEMO.EMP.ADDRESS,

OR_DEMO_1.OFFICE_t(

CAST(OR_DEMO.EMP.OFF AS INTEGER))

FROM OR_DEMO.EMP;

CREATE TYPE OR_DEMO_1.ENG_t AS(

SCHOOL varchar(50),

YEARDEGREE integer,

to_EMP REF(OR_DEMO_1.EMP_t))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.ENG of

OR_DEMO_1.ENG_t MODE DB2SQL

(REF is OIDENG USER GENERATED,

to_EMP WITH OPTIONS SCOPE

OR_DEMO_1.EMP) AS

SELECT

OR_DEMO_1.ENG_t(

CAST(OR_DEMO.ENG.OIDEMP AS INTEGER)),

OR_DEMO.ENG.SCHOOL,

OR_DEMO.ENG.YEARDEGREE,

OR_DEMO_1.EMP_t(

CAST(OR_DEMO.ENG.OIDEMP AS INTEGER))

FROM OR_DEMO.ENG;
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Fig. 9. A screenshot of MIDST-RT.

Fig. 10. An object-relational schema.
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The subsequent steps of the translation process will
refer to the previous ones. This means that, after the
removal of generalizations, we will have a set of views
that represents a new schema without generalizations.
We call this schema OR_DEMO_1. The next step is the
elimination of nested types: we define a new set of views
over the views previously defined. Thus, we will have a
schema OR_DEMO_2 composed of a set of views defined
over OR_DEMO_1. Then we must eliminate all the refer-
ences (we introduce foreign-keys) and we must transform
typed tables into simple tables. At the end, we have four
new schemas (because the translation is composed of four
steps), but only the last one, OR_DEMO_4, represents our
target schema, a relational one.

7.2. XML views

Consider the object-relational schema shown in Fig. 10
and suppose we need an XML document that contains all
its data in a structured way. We can do this with MIDST-
RT by choosing XSD as the target model. In this way, the
tool produces a statement that, executed over DB2, will
create an XML document with all data directly extracted
from the original schema. This can be possible by using an
SQL/XML language, specific for the operational system,
that contains functions that help the user to create XML
elements from relational data. The tool produces the
following statement:

SELECT XMLELEMENT(

name ‘‘orxml’’,

XMLCONCAT(

XMLAGG(

XMLELEMENT(

name ‘‘emp’’,

XMLELEMENT(name ‘‘OIDEMP’’,e.OIDEMP),

XMLELEMENT(name ‘‘firstName’’,e.firstName),

XMLELEMENT(name ‘‘lastName’’,e.lastName),

XMLELEMENT(name ‘‘offref’’,e.off),
XMLELEMENT(

name ‘‘address’’,

XMLELEMENT(name ‘‘city’’, e.address : :city),

XMLELEMENT(name ‘‘street’’,e.address

: :street)

)

)

),

(SELECT XMLAGG(

XMLELEMENT(

name ‘‘office’’,

XMLELEMENT(name ‘‘OIDOFF’’,d.OIDOFF),

XMLELEMENT(name ‘‘offName’’,d.offName),

XMLELEMENT(name ‘‘city’’,d.city)

)

)

FROM OR_XML.OFFICE d)

)

)

FROM OR_XML.EMP e;

The produced XML document will be:
oorxml4
oemp4

oOIDEMP41o=OIDEMP4
ofirstName4Marko=firstName4
olastName4Browno=lastName4
ooffref42o=offref4
oaddress4

ocity4Romeo=city4
ostreet4Viale Marconi 1o=street4

o=address4
o=emp4



P. Atzeni et al. / Information Systems 37 (2012) 269–287 285
. . .

ooffice4
oOIDOFF42o=OIDOFF4
ooffName4ROMA TREo=offName4
ocity4Romeo=city4

o=office4
. . .

o=orxml4
7.3. Object-oriented views

In this last scenario we start from an object-relational
schema in order to obtain a set of Java classes that allows
an object-oriented access to the database. This example
briefly sketches how the generation process of a piece of
Java code from relational tables may be performed.

The example we show produces some classes that
contain CRUD methods (create, retrieve, update, delete) to
access the database. Thus, we are following the DAO (data
access object) design pattern. We are also able to produce
classes by referring to other technologies, for example using
Hibernate annotations. Moreover, thanks to an object-
oriented importer, we can import the schema from the Java
classes and produce an object-relational database: this is
very simple, in fact, inside our metamodel, the object-
oriented model is entirely contained into the object-rela-
tional one, so we do not need any translation.

This problem has a lot of solutions in the literature, but
MIDST-RT ensures flexibility: in fact, thanks to the inter-
nal set of rules, the user can decide to modify the source
schema to obtain the preferred translation, or can perform
a translation toward a model that presents some non-
standard features.

Starting from the object-relational schema shown in
Section 7.2, one possibility is the creation of three Java
classes using the DAO pattern. So we will have the objects
Fig. 11. The produced Java class.
Emp, Office and Address. Fig. 11 shows the source code of
the Java class EmpDAO.

8. Related work

The problem of translating schemas between models
has a largely recognized significance and has been pur-
sued in the literature according to several perspectives
of model management. Bernstein and Melnik [10]
present the recent state of the art in this field and,
indirectly, outline an overview of the major approaches
and achievements.

The starting point for this paper is our MIDST project
[4,5], which developed a platform allowing for model-
independent schema and data translation, whose initially
ideas and theoretical bases were laid by Atzeni and
Torlone [6]. While we refer to the above papers for a
general discussion on related work, we mention here the
work of Hainaut [18] and McBrien, Poulovassilis, and
Smith [21,27], with which we share the use of some form
of metamodeling technique. Indeed, we have great simi-
larity with both these approaches, which also adopt a
translation process composed of various steps. There are
differences in the kind of universal metamodel, which is
simpler in [21,27] and more complex (and so closer to
ours) in [18].

This paper has the goal to provide the MIDST framework
with a runtime design and so to overcome the limitations
mentioned by Bernstein and Melnik [10, Section 3.1] with
respect to the off-line approach. In this sense, this paper
goes beyond the work of Hainaut [18] and McBrien,
Poulovassilis, and Smith [21,27], who can transform the
database instance, but it in an essentially static way.

Other proposals have recently appeared with the goal
of supporting dynamic translations, as follows. Mork et al.
[25] also adopt a runtime approach (based on the work by
Atzeni and Torlone [6] as well) to solve the specific problem
of deriving a relational schema from an extended entity-
relationship model. They use a rule-driven approach and
write transformations that are then translated into the
native mapping language. However, although they face
many issues such as schema update propagation and inheri-
tance, they indeed solve a specific subset of problems and
provide an object-relational mapping tool. Bernstein et al.
[11] adopt a runtime approach to allow a developer to
interact with XML or relational data in an object-oriented
fashion. On the one hand their perspective is different since
they only deal with a specific kind of heterogeneity; in
addition they address the problem by translating the queries
while we aim at generating views on which the original
queries can be directly applied. Instead, our approach is
aimed at providing a runtime support to the whole range of
translations allowed by MIDST that is not limited to object-
to-relational or XML-to-object, but involves any possible
transformation between a pair of models in our supermodel
(ER, OR, OO, XSD, relational, etc.).

Our approach shares some analogies with Clio
[15–17,24,28] too. Clio is aimed at building a completely
defined mapping between two schemas, given a set of
user-defined correspondences. As for our translations, these
mappings could be translated into directly executable SQL,



P. Atzeni et al. / Information Systems 37 (2012) 269–287286
XQuery or XSLT transformations. However, in the perspec-
tive of adopting Clio in order to exchange data between two
heterogeneous schemas, the needed mappings should be
defined manually; moreover, there is no kind of model-
awareness in Clio, which operates on a generalized nested
relational model. Although this model can be shown to
subsume a considerable amount of models, in a real applica-
tion scenario a preliminary translation and adaptation of the
operational system should be performed, leading to the
problems of the initial MIDST approach.

The presented runtime extension of MIDST is a sig-
nificant step with respect to the process of turning the
platform into a complete model management system [1].
In such a perspective, Datalog rules are not only seen as
model-to-model translations, but encode more general
transformations that implement schema evolution and
model management operators. Therefore the possibility of
applying translation, hence operators, at runtime allows
for the runtime solution to model management problems
with model-independent approaches like the ones illu-
strated in [3].

9. Conclusions

The main contribution of this paper is a runtime
approach to data translation, with the development of
the MIDST-RT tool. We have shown how we can generate
executable statements out of translation rules. The
approach aims at being general, in the sense that the
final objective is to derive an executable statement for
any possible translation. Then, we have also shown some
scenarios which may benefit from the usage of MIDST-RT,
in order to allow flexibility and customization.

A major issue is the query language. It is necessary to
specify a language capable of interacting with all the
involved models homogeneously. Although, in some cases,
such a single language would be available, other situations
are more complex and need further investigation. Examples
are the ones involving translations from object-relational to
XML and vice versa. We have used here combinations of
languages including SQL/XML and XQuery/SQL, over one
single platform. In fact, the solution described in this paper
actually refers to transformations taking place in a single
system, offering the logical support to both models. Indeed,
it may be the case that more systems are involved; however
the adoption of the appropriate middleware solutions might
offer working solutions based, for example, on a common
exchange format.

Moreover, in this paper we have shown examples of
relational views. These views have an intrinsic problem:
in fact, when we define a relational view, it is quite
probable that it will not be updatable. A possible solution
to this problem (and possible future work) is the intro-
duction of the concept of ‘‘reverse mapping’’ [25], a
mapping that keeps trace of the origin of data shown by
views in order to modify the source database when the
user tries to modify a view.

Let us conclude by discussing a few issues where our
approach shows some limitations that we are working to
overcome. From the implementation point of view, it is
clear that the target system will have some restrictions on
how it deals with views (including materialization, persis-
tence, update propagation). However this limitation is
related to the specific target system and it comes as a direct
consequence of the runtime perspective where no third-
party actors interfere. From a theoretical point of view, open
issues are related with the generality and correctness of the
approach. As for generality of modeling, MIDST metamodel
collects all the constructs most commonly used in models
and can be extended whenever necessary. Extensions could
also go toward a richer representation of semantics, where
integrity constraints are described and supported, in the
sense that their satisfaction is verified and reasoning on
them can be performed. Clearly, this would require a
different approach on the management of the supermodel,
which would require additional features beside and beyond
the relational implementation. In this respect, we are
considering approaches based on description logics [7].
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