
A runtime approach to model-independent
schema and data translation

(extended abstract?)

Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, and Giorgio Gianforme

Dipartimento di informatica e automazione
Università Roma Tre

Abstract. A runtime approach to model-generic schema and data trans-
lation is proposed. It is based on our previous work on MIDST, a plat-
form conceived to perform translations in an off-line fashion. In the orig-
inal approach, the source database is imported into MIDST dictionary,
where it is stored according to a universal model. Then the translation
is applied within the tool as a composition of elementary transformation
steps, specified as Datalog programs. Finally, the result is exported into
the operational system.
Here we illustrate a new, lightweight approach where the database is not
imported. The tool needs only to know the model and the schema of
the source database and generates views on the operational system that
transform the underlying data (stored in the source schema) according
to the corresponding schema in the target model. Views are generated in
an almost automatic way, on the basis of the Datalog rules for schema
translation.

1 Introduction

The problem of translating schemas between data models is acquiring progres-
sive significance in heterogeneous environments and has received attention in
many works [3, 5, 7, 11, 13, 16]. Applications are usually designed to deal with
information represented according to a specific data model, while the evolution
of systems (in databases as well as in other technology domains, such as the
Web) led to the adoption of many representation paradigms.

For example, many database systems are nowadays object-relational (OR)
and so it is reasonable to exploit their full potentialities by adopting such a model
while most applications are designed to interact with a relational database. Also,
object-relational extensions are often non-standard, and conversions are needed.
The explosion of XML, with all its applications (for example, as a format for
information exchange or as the language for the semantic Web), has increased
the heterogeneity of representations. In general the presence of several coexisting
models introduces the need for runtime translation techniques and tools.
? This is the extended abstract of a paper that appears in the Proceedings of EDBT

2009, St. Petersburg, Russia, March 23-26.



2 Atzeni P., Bellomarini L., Bugiotti F., Gianforme G.

We have recently proposed MIDST [3, 5], a platform for model-independent
schema and data translation in order to provide a paradigm to face issues of this
kind. MIDST adopts a metalevel approach towards translations by performing
them in the context of a universal model (called the supermodel), which allows
for the management of schemas in many different data models. In fact, the set
of models that can be dealt with is large and extensible. The current version
handles relational, object-oriented, object-relational, entity-relationship, XML-
based, each in many different variants, and new metaconstructs can be added,
if needed for handling features not covered by the current ones. Translations
in MIDST are organized according to the following pattern. First, the source
database is imported into the tool and described according to the supermodel
whose expressiveness is also discussed in [5]. Then translations are performed by
means of elementary transformation steps; finally, the obtained database, whose
schema is conformed to the one expected by the application, is exported into the
operational system.1 MIDST approach provides a general solution to the problem
of schema translation, with model-genericity (as the approach works in the same
way for many models) and model-awareness (in the sense that the tool knows
models, and can use such a knowledge to produce target schemas and databases
that conform to specific target models). However, as pointed out by Bernstein
and Melnik [8], this approach is rather inefficient for data exchange. In fact, the
necessity to import and export a whole database in order to perform translations
is out of step with the current need for interoperability in heterogeneous data
environments.

Here we propose a runtime approach towards the translation problem, where
data is not moved from the operational system and translations are performed
directly on it.

What the user obtains at runtime is a set of views (the target schema) con-
form with the target model. The approach is model-generic and model-aware, as
it was the case with MIDST, because we leverage on MIDST dictionary for the
description of models and schemas and also on its key idea of having transla-
tions within the supermodel, obtained as composition of elementary ones, each
dealing with a specific aspect (construct or feature thereof) to be eliminated or
transformed. The main difference is that the import process concerns only the
schema of the source database and the rules for schema translation are here used
as the basis for the generation of views in the operational system. In such a way
data is managed only within the operational system itself. In fact, our main con-
tribution is the definition of an algorithm that generates executable data level
statements (view definitions) out of schema translation rules.

A major difference between an off-line and a runtime approach to transla-
tion is the following. For an off-line approach, as transformations are performed
within the translation tool (MIDST in our case), the language for expressing
translations can be chosen once, for all models. A significant difficulty is in the
import/export components, which have to mediate between the operational sys-

1 We use the term operational system to refer to the system that is actually used by
applications to handle their data.



runtime schema and data translation 3

tems and the tool repository, in terms of both schemas and data. In fact, in
the development of MIDST, a lot of effort was devoted to import/export mod-
ules, whereas all translations were developed in Datalog. In a runtime approach,
the difficulties with import/export are minor, because only schemas have to be
moved, but the translation language depends on the actual operational systems.
In fact, if there is significant heterogeneity, then stacks of languages may be
needed (involving for example, SQL, SQL/XML, XQuery). Also, different di-
alects of the various languages may exist, and our techniques need to cope with
them.

In order to deal with heterogeneous languages, we propose an approach that,
after a preliminary abstract representation, first generates views organized ac-
cording to the constructs in the target model, but independent of the specific
languages, and then actually concretizes them into executable statements on the
basis of the specific language supported by the operational system.

In this paper we provide, with some detail, a general explanation of the
language-independent solution we obtain. The second step of the solution (where
the language-independent views are adapted to the operational system repre-
sentation) will not be pursued here as its specific details are not essential for a
general illustration of the approach.

The remainder of the paper is organized as follows. In Section 2 we provide an
end-to-end description of the approach to illustrate the achieved results first by
means of a motivating example and then focusing on some technical details. In
particular, we will see how relational views can be generated to access an object-
relational schema with references and inheritance. In Section 3, we discuss the
approach and make comparisons with related works. Section 4 concludes the
paper.

2 The approach

The goal of a tool for schema and data translation is to provide support to the
adoption of a wide family of heterogeneous data models. In a runtime perspec-
tive, this means that application programs, designed to interact with a specific
data model Mt, would be allowed to work with another data model Ms in a
transparent way. The tool we propose supports this feature by translating the
schemas of Ms (which actually contain the data of interest for the programs)
in terms of views of model Mt. Then the application programs would use these
views to access data organized according to Ms.

The starting point for this work is MIDST [3, 5], a platform for model-
independent schema and data translation based on a metalevel approach over a
wide range of data models. In MIDST the various data models are described in
terms of a small set of basic constructs. Schemas of the various models are de-
scribed within a common model, the supermodel, which generalizes all of them,
as it involves all the basic constructs. Translations refer to the basic constructs
and are performed within the supermodel. In the current implementation, they
are specified in Datalog.



4 Atzeni P., Bellomarini L., Bugiotti F., Gianforme G.

Fig. 1. The runtime translation procedure

In the previous work on MIDST, translations are dealt with in an off-line fash-
ion, meaning that the import of both schema and data into MIDST is needed as
well as an export of the result. Here we describe the approach of the enhanced
version of our platform that enables the creation of executable statements gen-
erating views in the operational system. Let us illustrate the new approach we
propose here, by following the main steps it involves, with the help of Figure 1:

1. given a schema Ss (of a source model Ms) in the operational system, the
user (or the application program) specifies a target model Mt;

2. schema Ss (but not the actual data) is imported into MIDST, and specifically
in its dictionary, where it is described in supermodel terms;

3. MIDST selects the appropriate translation T for the pair of models (Ms,Mt),
as a sequence of basic ones available in its library;

4. the schema-level translation T is applied to Ss to obtain the target schema
St (according to the target model Mt);

5. on the basis of the schema-level translation rules in T , the tool generates
views over the operational system, in three phases: first it generates an ab-
stract description of views that specify schema St (in model Mt) in terms
of the elements of the source schema in Ss; then it translates these abstract
descriptions into system-generic SQL-like view definitions; finally it compiles
statements that define the actual views in the specific language available in
the operational system.

Let us observe that steps 1-4 appear also in the previous version of MIDST,
whereas 5 is completely new, in all its phases, and clearly significant. It is worth
observing that while steps 1-4 do not depend on the expressive power of the
involved models, since translation only defines compositions and rearrangements
of constructs at schema levels, for step 5 it is different. In fact, two cases may be
involved: a) migration of data from a more expressive model to a less expressive
one; b) migration of data from a less expressive model to a more expressive one.
Obviously, case a) does not present any drawbacks, on the other hand, case b)
causes the loss of the logical constraints of the more expressive model. However
this issue can be forecast with a consequential customization of the behaviour
operated by the user through the selection of an appropriate translation strategy.

As a motivating example, consider the following. Assume we have an en-
vironment where application programs are designed to interact with relational



runtime schema and data translation 5

Fig. 2. A simple object-relational schema

databases while we have an actual database on the operational system based
on the object-relational (OR) model, with the following features:2 tables, typed
tables, references between typed tables and generalizations over typed tables.
In this scenario, we use MIDST to generate relational views over the object-
relational schema, which can be directly used by application programs.

A concrete case for this example involves the schema graphically represented
in Figure 2. The boxes are typed tables: engineer (ENG) is a specialization of
employee (EMP) and department (DEPT) is referenced by employee. The goal
of the runtime application of MIDST is to obtain a relational database for this,
such as the one that involves the following tables:3

EMP (EMP OID, lastname, DEPT OID)
DEPT (DEPT OID, name, address)
ENG (ENG OID, school, EMP OID)

Given the schema in Figure 2, our tool first imports it in its dictionary.
Then, given the specification of the target model (the relational one), it selects
an appropriate schema-level translation that is a sequence of basic translations,
each of which is specified by means of a Datalog program. In this case, the
schema-level translation should perform the following tasks: it first eliminates
the generalizations (in the example, the one between ENG and EMP) and then
transforms the typed tables (all tables in the source) into value-based tables.

In MIDST this would be done in four steps, with a first Datalog program for
the elimination of generalizations, then two auxiliary ones, for the introduction
of keys and the replacement of references with foreign keys, and a final one for
the transformation of typed tables into value-based ones. The major task of our
new version of the tool is the generation of a set of view statements for each of
these Datalog programs.

The following is a sketch of a view definition generated in the first step.

CREATE VIEW ENG A ...
AS (SELECT ... SCHOOL, ... EMP OID

FROM ENG );

2 This is just a possible version of the OR model, and our tool can handle many others.
3 As it is well known, there are various ways to map generalizations to tables, and

here we use one of them.



6 Atzeni P., Bellomarini L., Bugiotti F., Gianforme G.

It extends ENG (denoted as ENG A to distinguish the new version from
the original one) with a supplementary attribute, EMP OID. It implements a
strategy for the elimination of generalizations, where both the parent and child
typed tables are kept, with a reference from the child to the parent. Details are
omitted for the sake of space in this extended abstract, but they are shown in
the full paper.

As it should have been clarified by the example, the core goal of the procedure
is to generate executable statements defining views. This is obtained by means
of an analysis of the Datalog schema rules (the ones used here to implement
translations). The analysis gives the system-generic statement as an output.

The key idea of the procedure is a classification of MIDST metaconstructs
according to the role they play. There are three categories: container-, content-
and support-constructs. Containers are the constructs that correspond to sets of
structured objects in the operational system (i.e. Aggregation and Abstract cor-
responding to tables and typed tables respectively). Content constructs represent
elements of more complex constructs, such as columns, attributes or references:
usually a field of a record (i.e. Lexical and AbstractAttribute) in the operational
system. Support constructs do not refer to data-memorizing structures in the
system, but are used to model relationships and constraints between them in
a model-independent way. Examples are Generalizations (used to model hierar-
chies) and ForeignKeys (used to specify referential integrity constraints).

Our Datalog translation rules, in turn, can be classified according to the
construct their predicate refers to. Therefore we have container-, content- and
support-generating rules.

Exploiting the above observations, the procedure defines a view for each
container construct, with fields that derive from the corresponding content con-
structs. Instead, as support constructs do not store data, they are are not used
to generate view elements (while they are kept in the schemas). More precisely,
given a Datalog schema rule H ← B, if H refers to a container construct, we will
generate one view for each record matching the body of the rule. If H refers to
a content construct, we generate a field of the view for the container construct
this content belongs to.

This procedure does not depend on the specific constructs nor on the opera-
tional system or language. It is not related to constructs because we only rely on
the concepts of container and content to generate statements. Other constructs
may be added to MIDST supermodel without affecting the procedure: it would
be sufficient to classify them according to the role they play (container, con-
tent, support). Moreover, it is not related to the operational system constructs
or languages since the statements are designed as system-generic. A specifica-
tion step, exploiting the information coming from the information schema of the
operational system, will be then needed to generate system-specific statements.
Furthermore, this approach is extensible because we might also consider adding
annotations to functors whenever conditions get more complex and in order to
handle specific cases.



runtime schema and data translation 7

The procedure is not bound to a single language and the generation of state-
ments could involve the integration of several dialects fetching data from het-
erogeneous sources. This would not increase the complexity of the analysis nor
the system-generic statements.

3 Discussion and related work

The problem of translating schemas between models has a largely recognized sig-
nificance and has been pursued in the literature according to several perspectives
of model management. Bernstein and Melnik [8] present the current state of the
art in this field and, indirectly, outline an overview of the major achievements.

The approach towards runtime translation illustrated in this paper is based
on MIDST [3–5], a platform allowing for model-independent schema and data
translation. Its theoretical basis are laid in [3, 5–7] and provide a framework
to perform model-independent schema and data translation. In this paper we
provide the framework with a runtime design and go beyond the limitations
expressed in [8, Sec.3.1].

The problem of translating schemas between models has been pursued by
various other authors, including [11, 13], with approaches that are either focused
on the schema level or on abstract models and languages.

Mork et al. [15] also adopt a runtime approach (based on [3, 7]) to solve
the specific problem of deriving a relational schema from an extended entity-
relationship model. They use a rule-driven approach and write transformations
that are then translated into the native mapping language. However, although
they face many issues such as schema update propagation and inheritance, indeed
they solve a specific subset of problems and provide an object-relational mapping
tool similar to [12]. Bernstein et al. [9] adopt a runtime approach to allow a
developer to interact with XML or relational data in an object-oriented fashion.
On the one hand their perspective is different since they only deal with a specific
kind of heterogeneity; in addition they address the problem by translating the
queries while we aim at generating views on which the original queries can be
directly applied.

Our approach shares some analogies with Clio [10, 14, 17] too. Its aim is
building a completely defined mapping between two schemas, given a set of
user-defined correspondences. As for our translations, these mappings could be
translated into directly executable SQL, XQuery or XSLT transformations. How-
ever, in the perspective of adopting Clio in order to exchange data between two
heterogeneous schemas, the needed mappings should be defined manually; more-
over, there is no kind of model-awareness in Clio, which operates on a generalized
nested relational model.

The presented runtime extension of MIDST is a significant step with respect
to the process of turning the platform into a complete model management sys-
tem [1]. In such a perspective, Datalog rules are not only seen as model-to-model
translations, but encode more general transformations that implement schema
evolution and model management operators. Therefore the possibility of apply-



8 Atzeni P., Bellomarini L., Bugiotti F., Gianforme G.

ing translation, hence operators, at runtime allows for the runtime solution to
model management problems with model-independent approaches like the ones
illustrated in [2].

4 Conclusions

The main contribution of this paper is a runtime version of MIDST. We have
showed how we can generate executable statements out of translation rules. The
approach aims at being general, in the sense that the final objective is to derive
an executable statement for any possible translation.

References

1. P. Atzeni, L. Bellomarini, F. Bugiotti, and G. Gianforme. From schema and model
translation to a model management system. In BNCOD, pages 227–240, 2008.

2. P. Atzeni, L. Bellomarini, F. Bugiotti, and G. Gianforme. A platform for model-
independent solutions to model management problems (extended abstract). In
SEBD, pages 310–317, 2008.

3. P. Atzeni, P. Cappellari, and P. A. Bernstein. Model-independent schema and data
translation. In EDBT Conference, LNCS 3896, pages 368–385. Springer, 2006.

4. P. Atzeni, P. Cappellari, and G. Gianforme. MIDST: model independent schema
and data translation. In SIGMOD Conference, pages 1134–1136. ACM, 2007.

5. P. Atzeni, P. Cappellari, R. Torlone, P. Bernstein, and G. Gianforme. Model-
independent schema translation. VLDB Journal, 17:1347–1370, 2008.

6. P. Atzeni, G. Gianforme, and P. Cappellari. Reasoning on data models in schema
translation. In FOIKS Symposium, LNCS 4932, pages 158–177. Springer, 2008.

7. P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. In EDBT Conference, LNCS 1057, pages 79–95. Springer, 1996.

8. P. A. Bernstein and S. Melnik. Model management 2.0: manipulating richer map-
pings. In SIGMOD Conference, pages 1–12, 2007.

9. P. A. Bernstein, S. Melnik, and J. F. Terwilliger. Language-integrated querying of
xml data in sql server. In VLDB, pages 1396–1399, 2008.

10. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio grows up:
from research prototype to industrial tool. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Baltimore, Maryland, USA,
June 14-16, 2005, pages 805–810. ACM, 2005.

11. J.-L. Hainaut. The transformational approach to database engineering. In GTTSE,
LNCS 4143, pages 95–143. Springer, 2006.

12. Hibernate. http://www.hibernate.org/.
13. P. McBrien and A. Poulovassilis. A uniform approach to inter-model transforma-

tions. In CAiSE Conference, LNCS 1626, pages 333–348, 1999.
14. R. J. Miller, L. M. Haas, and M. A. Hernández. Schema mapping as query discov-

ery. In VLDB, pages 77–88, 2000.
15. P. Mork, P. A. Bernstein, and S. Melnik. Teaching a schema translator to produce

O/R views. In ER Conference, LNCS 4801, pages 102–119. Springer, 2007.
16. P. Papotti and R. Torlone. Heterogeneous data translation through XML conver-

sion. J. Web Eng., 4(3):189–204, 2005.
17. Y. Velegrakis, R. J. Miller, and L. Popa. Mapping adaptation under evolving

schemas. In VLDB, pages 584–595, 2003.


