
A platform for model-independent solutions to
model management problems

(extended abstract)

Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, and Giorgio Gianforme?

Università Roma Tre

Abstract. Model management is an approach to metadata management
aimed at supporting the productivity of developers by providing high
level operators defined on schemas and mappings over them.
Here we propose a platform for model management that handles schemas
in different models, with explicit reference to the models themselves.
Therefore, this is a model-generic, model-aware approach, and we believe
that it is the first proposal in this direction.
We consider the major operators in model management: merge, diff,
modelgen. To confirm the effectiveness of the approach, we show a general
solution to the round-trip engineering problem.

1 Introduction

The need for complex transformations of data arises in many different contexts,
because of the presence of multiple representations for the same data or mul-
tiple sources that need to coexist or to be integrated [6, 8, 9]. A major goal
of technology in the database field is to enhance the productivity of software
developers, by offering them techniques that allow for high-level specifications
and abstraction over recurring tasks. This has been stressed since the introduc-
tion of the relational model, with the emphasis on set-oriented operations [7],
but it was implicit in much earlier developments of generalized techniques [10].
The model management proposal [5, 4] is a recent, significant effort in this di-
rection: its goal is the development of techniques that consider metadata and
operations over them. More precisely, a model management system [6] should
handle schemas and mappings between them and support operations to match
and merge schemas, translate them from a data model to another (by means of
operators called match, merge, diff, modelgen, and others). These opera-
tions should be specified at a high level, on schemas and mappings, and should
allow for the (support to the) generation of data-level transformations. Many
application areas can benefit from the use of model management techniques, in-
cluding data integration over heterogeneous databases, data exchange between
independent databases, ETL (Extract, Transform, Load) in data warehousing,
wrapper generation for the access to relational databases from object-oriented

? Supported by a Microsoft fellowship.



Fig. 1. The round-trip engineering problem.

applications, dynamic Web site generation from databases. As an example of a
problem of interest in model management let us recall the “round-trip engineer-
ing problem” [5]. Consider (see Figure 1) a specification S1 and its corresponding
implementation I1 as provided by a design tool, and a “manual” modification of
the implementation, which leads to a new version I2, which is not coherent with
S1; the goal is to find a specification S2 from which I2 could be generated. A con-
crete case for this would involve a high level specification tool which translates
ER schemas into relational tables by generating appropriate SQL DDL. Then, if
a data architect wants some changes on the DDL, the changes have to propagate
backwards and the ER specification has to be updated. The model management
solution to this problem is based on a script that requires the application of
various operators, which detect the actual differences between the original and
the modified implementation, translate this portion back to the specification and
finally integrate the original specification with the elements that correspond to
the new or modified portion of the implementation [5].

Most of the work in model management has considered the need for model
independence, that is the fact that the techniques do not refer to individual data
models, but are more general. This has usually been done by adopting some
“universal data model” or supermodel [3], a model that is more general than
the various models of interest in a heterogeneous framework. If the operations of
interest include also translations from a data model to another (the modelgen
operator), it is important that the individual data models are represented, in
such a way that it becomes possible to describe the fact that a schema belongs
to a data model. The various proposals for schema translation (the modelgen
operator) [3, 12, 13] do include such a feature, to a larger or lesser extent. Instead,
the major efforts in the model management area (as summarized by Bernstein
and Melnik [6]) do not handle the explicit representation of data models.

The goal of this paper is to provide contributions towards the development
of model-independent but model-aware solutions to model management prob-
lems. We leverage on our experience in the MIDST platform [1, 2], where a
model-independent approach for modelgen was proposed. MIDST handles the
artifacts of interest in a repository that represents data models, schemas and
databases in an integrated way. Models are described with a metalevel approach.
We use a reduced and extensible set of constructs to represent the concepts of
the models of interest. The supermodel, in this approach, is the model that in-
cludes all the available constructs. Translations from a model to another are



implemented in datalog with OID-invention. The tool has a library of transla-
tions and can find the appropriate sequence of rules for a specific translation
(given source and target models).

Here we extend the MIDST platform to a general model management system,
with the major operators, including merge, diff, and a version of match, all
implemented in a model-generic way, which takes advantage of the features of
our multilevel dictionary. We will also show a complete solution to the round-
trip engineering problem based on our platform. The implementations of the
operators are written in datalog, with rules that are generated automatically,
with respect to the given supermodel, so that if the supermodel is extended, the
operators can be extended as well. To the best of our knowledge, this is the first
proposal for a model-independent platform for model management.

The rest of this extended abstract is organized as follows. In Section 2 we
discuss the definitions and implementation of the main operators, with a model-
independent approach. In Section 3 we illustrate their application to a round-trip
engineering scenario. Finally in Section 4 we draw our conclusions.

2 Operators

In this section we show how the MIDST platform can be extended to handle
most model management operators.

MIDST [1, 2] is based on a metalevel approach, with a small set of meta-
constructs (that is, types of constructs) which can be used to define models in
terms of the constructs they involve (and of their types). It supports transla-
tion of schemas and data between different models (the modelgen operator).
The platform includes a dictionary that handles models, schemas and data, over
which translations are specified as datalog rules.

Here we show that the approach can be extended to a wider context. In fact,
we use datalog rules to specify other general transformations among schemas,
including all model management operators (diff, merge and match). In this
way model management operators do not refer to a specific schema or model, but
are defined with respect to MIDST dictionary metaconstructs with significant
benefits, as follows.

Operators are model-independent since they are defined over the metacon-
structs, however they are model-aware, as each schema belongs to a model. This
implies that if an operator is applied to a set of schemas of a given model, the
output schemas will belong to a given model as well (which can be the same
or another one, depending on the operator). With respect to the new model
management operators we discuss here (diff and merge), this is essentially a
model closure property : these transformations do not add constructs which are
not consistent with the model the input schemas belong to.

The new operators are also supermodel-independent, in the sense that they
do not depend on the chosen representation of models. In fact, each operator
is composed of a set of rules defined on the basis of constructs: for example,
for each type of construct there is a rule that compares constructs of such a



type, a rule that copies them, and so on. As a consequence, the rules for these
operators can be automatically generated by an appropriate MIDST metalevel
preprocessing phase.

Most common operators in model management problems solving procedures
[5] are diff, merge, and match.

diff and merge work as follows: they respectively generate the set-oriented
difference and union of two given schemas. As we said, in our working frame-
work, schemas are composed of constructs directly derived from MIDST meta-
model. A construct can be considered as an object with a unique identifier, a
name and some properties describing the domain of interest. As it happens in
object-oriented models, constructs are related to one another by means of refer-
ences. Coherently with the object-oriented model, we handle typed references,
in the sense that they define links between specific types of constructs. There-
fore, set-oriented operations must also consider references in “summing” and
“subtracting” constructs.

Both diff and merge are defined in a model-independent way: they operate
on every possible MIDST metaconstruct without any specific knowledge of the
role played by each construct in a given application scenario. They must only
be provided with some initial information about correspondences between the
involved schemas.

The difference has to be aware of the correspondences between the two input
schemas so as to copy only the appropriate constructs into the destination by
detecting the equal ones. Similarly, the merge operator has to be aware of those
correspondences not to generate duplicates in the result schema: a construct
which appears in both the input schemas must in fact appear in the result
schema once only.

In model management, these issues are frequently handled by means of the
specification of a mapping between the two schemas, where the mapping is usu-
ally obtained as the result of a match operation. Here, we argue that some
mapping information is necessary, but we do not implement a general match-
ing operation. In fact, we adopt a unique name assumption: two constructs are
equal if their names and properties are lexically identical and if their ancestors
(referred by references) are equal themselves. Therefore there is the need for
a hierarchical comparison of schema constructs which, in the base case (con-
structs without references), leads to a positive or negative answer. This is a sort
of implicit match and could be replaced by a more general match operator.

The comparison based on the unique name assumption is implemented in
datalog as a part of the operators. Once the operators are provided with the
necessary correspondences, specific tasks can be performed: while the difference
operates a selective copy of the constructs present only in one input schema, the
merge unites the constructs avoiding duplicates.

The definitions of diff and merge have some specific features, in terms of the
number of arguments and results. diff takes two input schemas and computes
an algebraic difference between them, with two results (“semi-differences”), a
“positive” (the constructs in the second operand but not in the first one) and



a “negative” one (the converse). merge takes three input schemas and returns
one result: the first and the third parameters are united in a set-oriented fashion,
while the second one is subtracted.

In the diff context, managing references leads to a further caveat: the out-
come of a difference can be an inconsistent schema, meaning that dangling ref-
erences could be present. Consider a schema S with a construct C1 referring to
C2. Suppose that only C1 belongs to a difference diff(S, S′) because C2 appears
also in schema S′. Then the resulting schema is inconsistent because C1 has a
dangling reference. To handle this situation, which is indeed common, we intro-
duce stub constructs. They are constructs which should not be in the difference
result according to its semantics. They are inserted in order to avoid dangling
references but they are tagged in such a way that subsequent operations deal
with them in an appropriate way.

3 Round-trip engineering

In this section we show how our approach can handle the round-trip engineering
problem, following the general technique provided by Bernstein [5], with some
simplification due to our unique name assumption. Consider Figure 1 again: S1 is
the specification schema and I1 the implementation schema. Let I2 be a modified
version of I1. Bernstein substantially proposes the application of diff between
I1 and I2 in order to detect added and removed constructs. Then a reverse step
translates the difference result into the specification domain and, finally, a merge
between the original specification and the reversed difference can be worked out
in order to obtain the updated specification S2.

On the basis of the briefly described procedure, we propose a revised script
which uses MIDST model-independent operators (Figure 2).

1. <G′+2 , G′−2 > = diff(I1, I2): we compute the difference between the imple-
mentation schema and its modified version. G′+2 , G′−2 are the positive and
negative semi-differences, respectively.

2. S′−3 = modelgen(G′−2 , reverse): S′−3 is generated from G′−2 through the ap-
plication of a datalog translation rule. If map1 in Figure 2 is the datalog rule
translating the specification schema into its corresponding implementation,
the mapping reverse applies the opposite transformation. This step, known
as reverse step, has fundamental importance in the round-trip engineering
problem and distinguishes it from the forward engineering problem.

3. S′+3 = modelgen(G′+2 , reverse): the same for the other semi-difference.
4. S2 = merge(S′−3 , S′+3 , S1): we merge the original specification schema with

the two reversed semi-differences in order to update S1 by deleting the re-
moved constructs and adding the new ones.

Now we present a complete example of application of the described round-
trip solving procedure. The specification domain is the ER model, while the
implementations are relational schemas.



Fig. 2. A procedure for the round-trip engineering problem.

In Figure 3, the schema S1 is composed of two entities, A and B, and a
relationship R between them. A1 and A2 are A attributes, A1 is key, while B1

and B2 are B attributes, B1 is key. The relationship in S1 corresponds to the
foreign key in I1. The mapping map3 describes a schema evolution operator: it
modifies the relation A by changing its key (from A1 to A2), and B by eliminating
the attribute B1 and adding the attribute B3. The foreign key that in I1 connects
the attribute B1 of table A with the relation B, does not exist anymore, it is
replaced by a new one from the attribute B2 of A to the relation B.

The first step of the solving procedure is the application of the diff rule to
I1 and I2 which yields G′−2 and G′+2 . G′−2 , the negative difference, contains the
attributes A1 (key), A2 and B1 of the relation A because they are in I1 but not
in I2, in fact they have been removed. The relation A is present as a stub for
these attributes (denoted by the subscript “s” in Figure 3). As for the relation
B, it is present in I1 with the attributes B1 (key) and B2, and in I2 with B2

(key) and B3, then the negative difference G′−2 contains B1 (key) and B2 and B
itself as a stub. Notice that an attribute with a certain name is different from
another one with the same name but different properties; for example A1 is
present in the negative difference as an identifier attribute because we find it in
I2 as a non identifying attribute. The negative difference also has the S1 foreign
key since it has been removed. G′+2 , the positive difference, as for the relation
A, contains A2 (key), A1 and B2, because these attributes are present in I2 but
not in I1. The same for the attributes B2 and B3 belonging to the relation B.
Both the relations are stub as well as in G′+2 . Then, since the key attributes
have changed, in the positive difference there is the new foreign key from the
attribute B2 towards the relation B.



Fig. 3. An example of application of the round-trip solving procedure.

Then each semi-difference must be reversed with the application of the mod-
elgen operator, loaded with the datalog rule which translates relational schemas
into ER. In the case under examination the reverse translation is simple, in gen-
eral it might be much more complex and involve several constructs. Notice that
in the application of the reverse rule, the stubness property of constructs is
preserved, then for example the entity A in S′+3 is stub as well as in G′+2 .

Now we have three different versions of the specification: the original one, S1,
S′−3 including all the constructs that have to be removed, and S′+3 containing all
the added ones. It is clear that the set-oriented merge of these three schemas leads
to an updated specification. Then the procedure applies the merge operator
that subtracts and adds constructs to S1. As for the relation A, the attributes
A1 and A2 in S1 are also contained in S′−3 hence removed. The same happens to
the attributes B1 and B2 of B. The relationship R in S1 has the same name of
the relationship in S′−3 and connects equivalent constructs, so it is removed since
an equivalent construct has been found in the negative difference. The entities
A and B in S1 are copied into the destination schema S2 because the two semi-
differences only have their stub equivalents, which are noninfluent in the merge.
Finally, all the non-stub constructs of the positive part of the difference S′+3 are
copied to S2: so the attributes are updated and the relationship between A and
B is restored.

4 Conclusions and related work

This paper relies on our previous works on model-generic schema and data trans-
lation [1, 2] describing our conception and implementation of the modelgen op-



erator. There are many proposals addressing model management problems which
have been put forward since the original formulation of the problem.

In [4] Bernstein et al. recognize the possibility of a generic metadata approach
to model management: their theoretical formalizations [5] and later studies con-
verge in Rondo, a programming platform for model management [11]. However
their approach is not supported by a dictionary of models and so they pursue
model independence without a concrete characterization of models. Conversely,
MIDST uses a relational dictionary of models and schemas to actually represent
models and allows transparent transformations on them.

To summarize, our approach proposes MIDST as a platform for model-
independent model management; its main innovative contributions are model-
independent but model-aware operators and the automatic generation of opera-
tors, both enabled by a rich though simple and thorough metalevel representation
of data models.

References

1. P. Atzeni, P. Cappellari, and G. Gianforme. MIDST: model independent schema
and data translation. In SIGMOD Conference, pages 1134–1136. ACM, 2007.

2. P. Atzeni, P. Cappellari, R. Torlone, P. A. Bernstein, and G. Gianforme. Model-
independent schema translation. In VLDB Journal, To appear.

3. P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. In EDBT Conference, LNCS 1057, pages 79–95. Springer, 1996.

4. P. Bernstein, L. Haas, M. Jarke, E. Rahm, and G. Wiederhold. Panel: Is generic
metadata management feasible? In VLDB, pages 660–662, 2000.

5. P. A. Bernstein. Applying model management to classical meta data problems. In
CIDR Conference, pages 209–220, 2003.

6. P. A. Bernstein and S. Melnik. Model management 2.0: manipulating richer map-
pings. In SIGMOD Conference, pages 1–12, 2007.

7. E. Codd. Relational database: A practical foundation for productivity. Commun.
ACM, 25(2):109–117, 1982.

8. L. M. Haas. Beauty and the beast: The theory and practice of information inte-
gration. In T. Schwentick and D. Suciu, editors, ICDT, volume 4353 of Lecture
Notes in Computer Science, pages 28–43. Springer, 2007.

9. A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper, J. Pollock, A. Rosen-
thal, and V. Sikka. Enterprise information integration: successes, challenges and
controversies. In SIGMOD Conference, pages 778–787, 2005.

10. W. C. McGee. Generalization: Key to successful electronic data processing. J.
ACM, 6(1):1–23, 1959.

11. S. Melnik. Generic Model Management: Concepts and Algorithms. Springer-Verlag,
2004.

12. P. Mork, P. A. Bernstein, and S. Melnik. Teaching a schema translator to produce
O/R views. In ER Conference, LNCS 4801, pages 102–119. Springer, 2007.

13. P. Papotti and R. Torlone. Heterogeneous data translation through XML conver-
sion. J. Web Eng., 4(3):189–204, 2005.


