
A Comparison of Data Models and APIs of
NoSQL Datastores

Francesca Bugiotti and Luca Cabibbo

Dipartimento di Ingegneria
Università Roma Tre

Abstract. NoSQL datastore systems are a new generation of non-rela-
tional databases. More than fifty NoSQL systems have been already im-
plemented, each with different characteristics — especially, with different
data models and different APIs to access the data. In this paper we de-
scribe and compare the data models and operations offered by a number
of representative NoSQL datastores, which we have directly used while
developing the SOS (Save Our Systems) and ONDM (Object-NoSQL
Datastore Mapper) frameworks. We discuss how these NoSQL systems
can be used to manage a database consisting of collections of objects.
Furthermore, we report on some experimental results concerning the use
of the various systems and the implementation of the data representa-
tions described in this paper.

1 Introduction

NoSQL datastore systems [9, 12] are a new generation of non-relational databases
that support the design and development of applications that require managing
persistent data, but for which traditional RDBMSs are not well suited. For ex-
ample, Web 2.0 and “social” applications that require good horizontal scalability,
and for which a database access based on simple operations is sufficient.

According to [13], more than fifty NoSQL systems have been already im-
plemented, each with different characteristics (e.g., different data model and
different API to access the data, as well as different consistency and durabil-
ity guarantees). As pointed up in [13] this lack of standard is problematic to
application developers.

To provide a better understanding of the NoSQL landscape, [9] suggested to
group NoSQL data stores according to their data model in three main categories:

– key-value stores: systems that store values and an index to find them, based
on a programmer-defined key; thus, a database is a schema-less collection of
key-value pairs; e.g., Oracle NoSQL [5] and Redis [6];

– document stores: in these systems, a document can comprise scalar values,
lists or even nested documents; there is no schema for documents, and each
document can have its own attributes, defined at runtime; documents are in-
dexed and usually a simple query mechanism is provided; e.g., MongoDB [4];

– extensible record stores: these systems store tables of extensible records (an
extensible record is a hybrid between a tuple in a relational database and

a document in a document store) that can be partitioned across multiple
nodes; e.g., Amazon DynamoDB [1], Apache Cassandra [2], and Google
Bigtable [10].

In the last few years, the authors have been working on the design and imple-
mentation of two different frameworks, SOS (Save Our Systems [7]) and ONDM
(Object-NoSQL Datastore Mapper [8]). Both these systems aim at exploiting
the commonalities between various non-relational systems — to define a uni-
form application programming interface to access different NoSQL datastores in
a transparent way.

This paper has the goal of sharing our experience on using several different
NoSQL systems. The main contribution of this work is the description and com-
parison of the data models and operations offered by a number of representative
non-relational systems. We consider at least a system in each of the three main
categories described above. We compare models and operations of these data-
stores by applying them to a typical NoSQL usage scenario: the management
of a database consisting of collections of objects, with the goal of providing the
efficient storage and access of a single object at-a-time. Finally, we report on
some experimental results, concerning the effective implementation of various
data representation strategies for the NoSQL systems we consider.

A disclaimer is in order before moving forward. NoSQL systems have usually
the goal of offering horizontal scalability, on the basis of a distributed implemen-
tation and deployment. They offer consistency and durability guarantees that
differ from those provided by relationsl DBMSs. Most NoSQL systems support
complex processing of large data sets, e.g., using MapReduce. Moreover, most
of these datastores manage multiple versions of data. In this paper, we will not
consider any of these topics, as we focus on data models and operations offered
by NoSQL systems, as well as on the goal of managing collections of objects.

The paper is organized as follows: Section 2 introduces a typical NoSQL usage
scenario, which defines the context for this work. Then, the data models and
APIs of some representative NoSQL datastores are illustrated and compared in
the following sections: Section 3 describes the key-value stores Redis and Oracle
NoSQL; Section 4 presents the MongoDB document store; Section 5 discusses
the extensible record stores DynamoDB and Cassandra. Section 6 illustrates and
discusses some experimental results. Finally, Section 7 describes related work and
in Section 8 we discuss our current work.

2 Context

In this section we describe a typical NoSQL usage scenario, that defines the
context and scope of this paper. We consider a fictitious Web 2.0 or “social”
application, such as an online game. The application should manage various
collections of objects, including players and games. We assume that each object
has a unique identifier and a complex value. These complex values can also
nest the value of other objects; for example, the value of a player can nest the
games she is currently playing. In this scenario, the underlying database should

[
username : "mary1994",
firstName : "Mary",
lastName : "Wilson",
games : {

[id : "2345", opponent : "rick_the_good", gameDetails : ...],
[id : "7425", opponent : "ann x", gameDetails : ...]

}
]

Fig. 1. The complex value of a sample Player object

guarantee the efficient storage and retrieval of a single whole object at-a-time,
given its collection and identifier. For example, when a player connects to the
application, then all data concerning the player and all the games she is currently
playing should be loaded in memory. Thus, the typical access is to a single object
at-a-time, and requires an efficient retrieval of all the data concerning that object.

In this paper, we adopt the following terminology from [9]. A data store is
a system used to store data (such as a NoSQL or even a relational database
system). The term database refers to data stored in one of these systems.

The kind of data we would like to store in a NoSQL database is thus a set
of objects, organized in collections. Each object has an identifier (unique within
the collection it belongs to) and a complex value. At the top-level, the complex
value of an object is a record, i.e., a set of field-value pairs. Each value can be
of a simple type, a record, or a list or a set of values. The complex value of an
object can be arbitrarily nested. Please note that, apart from collections, our
databases are schema-less: the objects in a same collection are not required to
have the same identical structure.

The operations we would like to perform in an efficient way are the storage
and retrieval of a single object at-a-time, given its collection and identifier. We
can also be interested in performing other operations (such as retrieving all the
objects in a certain collection whose value satisfies a certain condition). However,
we do not require that such other operations should be executed in an efficient
way. This position is aligned with the kind of access operations usually supported
by NoSQL datastores.

As a running example, we consider a database for storing a collection of
Players. Figure 1 shows the complex value of a Player object having username
mary1994. An operation we would like to perform in an efficient way could be
the retrieval of the complex value of a Player object, given its username.

In the following sections, we will describe and compare a number of represen-
tative non-relational systems. For each datastore, we will first present its data
model and operations, and then discuss how to store a database for collections
of objects and how to implement the access to such objects, in an efficient way,
with reference to the context defined in this section.

3 Key-Value Stores

A key-value store is a system that stores values and an index to find them,
based on a programmer-defined key, in a schema-less way. Thus, a database

is a collection of key-value pairs. Each key-value pair is a single record in the
database, where the key is used to locate and access the associated value.

Several NoSQL systems belong to the category of key-value stores. As we will
see, they can differ greatly in how they define what keys and values are, and in
the operations they offer to access groups of key-value pairs.

3.1 Redis

Redis is “an open-source, advanced key-value store” [6]. In Redis, a database is a
schema-less collection of key-value pairs, with a key-value index. In this section,
we will first consider the basic features of Redis, and then discuss some of the
features that make it an advanced key-value store.

Basic Data Model, Operations, and Usage. The basic Redis data type,
used to define keys and values, are binary strings, that is, any kind of binary
data, such as a byte array, a number, a plain string1, an XML document, a
serialized object, a JPEG image, or any kind of binary large object (blob). In
general, Redis considers such binary strings as uninterpreted data. Thus, each
key-value pair is a pair of binary strings.

As basic operations, Redis offers the following simple operations to access
key-value pairs: set(key, value) adds (or modifies) the key-value pair 〈key, value〉
to (in) the database;2 get(key) retrieves from the database the value associated
with key key ; delete(key) deletes from the database the key-value pair associated
with key key. All these operations can be executed in a very efficient way, that
is, essentially in constant time.

As we already said, in Redis each key is a binary string. However, it is possible
(and quite common, in our experience) to use plain strings as keys. Moreover, it
is also possible (and common) to give some structure to keys, for example to use
keys formed as sequences of identifiers, separated by suitable separators, e.g.,
colons, slashes or dots. For example, Player:mary1994/firstName.

In Redis, values are binary strings, too. They can be used to store simple
data — either in a binary or a textual representation. They can also be used to
store complex values — in particular, using some serialization3 format such as
JSON [3].

On the basis of these considerations, it is possible to identify some data
representation strategies for storing in Redis a database comprising collections
of objects (see the context defined in Section 2).

A first strategy adopts a single key-value pair for each object (key-value per
object, kvpo). The key is composed of the collection name and the identifier
of the object. The value is a serialization of the whole complex value of the

1 In this paper, we will write plain string to denote an ordinary string, that is, a
sequence of characters, and to distinguish them from binary strings.

2 As it is customary in many NoSQL systems, Redis offers a single operation to add
or modify a database record, rather than two distinct operations.

3 Serialization is the process of translating an object or a set of objects into a binary
or textual format that can be stored and then reconstituted later.

key value
Player:mary1994 {"username":"mary1994", "firstName":"Mary", ...}

(a) Key-value per object in Redis

key value
Player:mary1994/username mary1994
Player:mary1994/firstName Mary
Player:mary1994/lastName Wilson
Player:mary1994/games ...

(b) Key-value per field in Redis

key value

Player:mary1994

username:mary1994
firstName:Mary
lastName:Wilson

games:...

(c) Key-hash per field in Redis

key value
/Player/mary1994/-/username mary1994
/Player/mary1994/-/firstName Mary
/Player/mary1994/-/lastName Wilson
/Player/mary1994/-/games ...

(d) Key-value per field in Oracle
NoSQL

key value
/Player/mary1994/-/username mary1994
/Player/mary1994/-/firstName Mary
/Player/mary1994/-/lastName Wilson
/Player/mary1994/-/games/0/id 2345
/Player/mary1994/-/games/0/opponent rick the good
/Player/mary1994/-/games/0/gameDetails ...
/Player/mary1994/-/games/1/id 7425
/Player/mary1994/-/games/1/opponent ann x
/Player/mary1994/-/games/1/gameDetails ...

(e) Key-value per atomic value in Oracle NoSQL

Fig. 2. Data representation strategies for key-value stores

object. For example, consider the sample player shown in Figure 1. We can
represent it using a single key-value pair, with key Player:mary1994 and value
{"username":"mary1994", "firstName":"Mary", ...}. See Figure 2(a).

A second strategy uses multiple key-value pairs for each object. Specifically,
it adopts a key-value pair for each top-level field of the complex value of the
object (key-value per field, kvpf). The key is composed of the collection name,
the object identifier, and the name of the top-level field. The value is the value
of the field in the specified object. For example, the sample player shown in
Figure 1 can be represented using four different key-value pairs, one for each of
its fields, username, firstName, lastName, and games. See Figure 2(b).

The former strategy kvpo above enables the efficient retrieval of an object.
Indeed, a retrieval requires just a Redis get operation.

A naive implementation of the latter strategy kvpf can be based on an ad-
ditional Redis operation, keys(pattern), which finds all keys matching the given
pattern. For example, keys(Player:mary1994/*) allows finding in the database
keys such as Player:mary1994/firstName. However, Redis discourages the use
of operation keys, for performance reasons. Moreover, the retrieval of an object
would also require multiple get operations. In summary, the naive implementa-
tion of the retrieval of an object using strategy kvpf is not efficient.

As we will see next, Redis offers some advanced features, that make possible
an efficient implementation of (a variant of) strategy kvpf.

Advanced Characteristics. Redis is an advanced key-value store, and as such
it offers a number of specific features other than the ones described so far.

In particular, Redis defines a few specific data types for its values, as follows:
binary strings, integer counters, lists and sets of binary strings, or hashes (a hash
is a map between binary string fields and binary string values). It is important

to note that structured data types (i.e., lists, sets, and hashes) cannot be nested,
so that, for example, it is not possible to define a list of sets of binary strings.

In correspondence to each data type, Redis defines a specific set of additional
operations. For example, there are atomic operations to append a string to a
binary string, to insert an element in a set or a list, or to increment a counter.

To our goals, a useful feature in Redis are hashes. A hash value can be used,
in particular, to represent the various fields of an object, using a single hash
for a whole object, containing a field-value pair for each of its top-level fields
(key-hash per object, khpo). See Figure 2(c). Moreover, Redis offers operations
to handle a whole hash in an efficient way. For example, operation hgetall(key)
retrieves all field-value pairs associated with key key. Hence, data representation
strategy khpf enables the efficient retrieval of an object.

3.2 Oracle NoSQL

Oracle NoSQL [5] is another key-value store, offering the storage of key-value
pairs. Differently from Redis — which implements a simple structure for keys and
an advanced organization for values — Oracle NoSQL provides the management
of unstructured values on the basis of more structured keys.

In Oracle NoSQL, a key is composed of a major key and a minor key. The
major key is a non-empty sequence of plain strings. The minor key is a possibly-
empty sequence of plain strings. Each element of a key is called a component
of the key. An example of key is /M1/M2/M3/-/m1/m2, where each Mi is a major
component and each mj is a minor component. Symbol / separates components,
and symbol - separates the major key from the minor key.

On the other hand, in Oracle NoSQL a value is simply a binary string.
The distinction between major key and minor key is relevant with reference

to the distributed implementation of Oracle NoSQL, based on sharding.4 Indeed,
key-value pairs are spread on the distributed datastores, using a hash function
based only on the major key component(s). In simpler words, key-value pairs
having a same major key are always allocated in a same node. Moreover, an effi-
cient access to the key-value pairs having a same major key (and thus allocated
in a same node) is provided.

The basic operations offered by Oracle NoSQL are as follows: put(key, value)
adds (or modifies) the key-value pair 〈key, value〉 to (in) the database; get(key)
retrieves from the database the value associated with key key ; delete(key) deletes
from the database the key-value pair associated with key key. All these operations
can be executed efficiently, i.e., in constant time.

Moreover, Oracle NoSQL offers operations to access and manipulate a related
group of key-value pairs. For example, operation multiGet(parentKey) retrieves
multiple key-value pairs at once, provided they all share a same major key.
Specifically, parentKey should specify a complete major key, whereas the minor
key could be either omitted or partial. Operation multiGet then retrieves all key-
value pairs whose key starts with the specified parent key. Since such key-value

4 Sharding is the partitioning of the data in a database into multiple smaller parts,
distributed across various nodes. Many NoSQL datastores adopt this technique.

pairs are always allocated in a same node, operation multiGet can be executed
in an efficient way.

While Oracle NoSQL does not define a “write” counterpart of operation
multiGet, it provides an execute operation for executing multiple put and delete
operations efficiently — provided that the keys specified in these operations all
share a same major key.

With reference to the above features, it turns out that data representation
strategies key-value per object and key-value per field (described in Section 3.1)
can be straightforwardly implemented using Oracle NoSQL. See, for example,
Figure 2(d). The availability of the multiGet operation makes it efficient also the
implementation of strategy kvpf.

Furthermore, Oracle NoSQL enables the implementation of another repre-
sentation strategy that adopts again multiple key-value pairs for each object,
but using atomic values only (key-value per atomic value, kvpav). Specifically, a
key-value pair is used for each atomic value contained in the complex value of the
object. The key is composed of the collection name, the object identifier, and the
sequence of fields that need to be traversed to locate the specific atomic value.
See Figure 2(e) for the representation of the sample player shown in Figure 1.

4 Document Stores

A document store is a system that store documents, where a document is es-
sentially a complex value, which can comprise scalar values, lists, and nested
documents.

4.1 MongoDB

MongoDB [4] is an open-source, document-oriented data store that offers a full-
index support on any attribute, a rich document-based query API and Map-
Reduce support.

In MongoDB, a database comprises one or more collections. Each collection
is a named group of documents. Each document is a structured document, that
is, a complex value, a set of attribute-value pairs, which can comprise simple
values, lists, and even nested documents. Thus, documents are neither freeform
text documents nor Office documents. Documents are schema-less, that is, each
document can have its own attributes, defined at runtime.

Specifically, MongoDB documents are based on BSON (Binary JSON), a
variant of the popular JSON format. Values constituting documents can be of
the following types: (i) basic types, such strings numbers, dates, and boolean
values; (ii) arrays, i.e., ordered sequences of values; (iii) documents (or objects):
a document is a collection of zero or more key-value pairs, where each key is a
plain string, while each value is of any of these types.

MongoDB documents can be nested using either the document embedding
feature, that saves a document inside another one, or the document linking fea-
ture, that links nested documents by means of references.

A main document is a top-level document with a unique identifier, repre-
sented by a special attribute id, associated to a value of a special type ObjectId.

collection document id document
Player mary1994 {" id":"mary1994", "username":"mary1994", "firstName":"Mary", ...}

(a) Document per object in MongoDB

table id username firstName lastName games
Player mary1994 mary1994 Mary Wilson { ... }

(b) Item per object in DynamoDB

table id value
Player mary1994 {"username":"mary1994", "firstName":"Mary", ...}

(c) Cell per object in Cassandra

Fig. 3. Data representation strategies for document and extensible record stores

The basic operations offered by MongoDB are as follows: insert(coll, doc)
adds a main document doc into collection coll ; find(coll, selector) retrieves from
collection coll all main documents matching document selector. The simplest se-
lector is the empty document {}, which matches with every document; it allows
to retrieve all documents in a collection. Another useful selector is document
{ id:ID}, which matches with the document having identifier ID. Operation
remove(coll, selector) removes from collection coll all documents matching doc-
ument selector.

A data representation strategy that can be implemented in MongoDB adopts
a single main document for each object (document per object, dpo). Each dis-
tinct collection of objects is stored in a separate MongoDB collection. An object
having identifier ID and value V is represented by a document whose value is
a serialization of V and that includes an additional key-value pair { id:ID}. See
Figure 3(a).

5 Extensible Record Stores

An extensible record store is a datastore organized around tables, rows, and
columns. Databases are mostly schema-less, since each row can have its own
set of columns. In a distributed implementation, rows and columns are used to
shard data over multiple nodes. These datastores are also called column-family
stores [12].

5.1 DynamoDB

Amazon DynamoDB [1] is a NoSQL database service provided on the cloud by
Amazon Web Services (AWS), which focuses on high availability, flexibility, and
scalability. It can be classified as an extensible record store.

In DynamoDB, a database is organized in tables. A table is a set of items.
Each item contains one or more attributes, each with a name and a value (or a
set of values). Each table should designate an attribute as primary key. Then,
each item in the table is required to have a unique value for the primary key.
Items in a same table are not required to have the same set of attributes —
apart from the primary key, which is the only mandatory attribute of a table.
Thus, DynamoDB database are mostly schema-less.

DynamoDB indexes data only with respect to primary-key attributes. Specif-
ically, a primary key is composed of a hash partition attribute and an optional
range attribute. Sharding is based only on the partition attribute.

Some operations offered by DynamoDB are as follows: putItem(table, key, av)
adds (or modifies) a new item in table table with primary key key, using the set
of attribute-value pairs av ; getItem(table, key) retrieves the item of table table
having primary key key ; and deleteItem(table, key) deletes the item of table table
having primary key key. All these operations can be executed in an efficient way.

A data representation strategy that can be implemented in DynamoDB
adopts a single item for each object (item per object, ipo). Each distinct collec-
tion of objects is stored in a separate table. Each table has an attribute designed
as primary key, say, id. Then, an object O in a collection C having identifier
ID and value V is represented by an item in the table for C, with primary key
ID, having a distinct attribute for each top-level field f of O, whose value is
the value of f in V (or a serialization of such value, thereof). See Figure 3(b).
This strategy can be implemented in efficient way, since a whole object can be
retrieved using a single getItem.

5.2 Apache Cassandra
Apache Cassandra [2] is another extensible record store. Its data model is based
on tables, rows, and columns. Similarly to a relational database, in Cassandra a
database consists of a set of tables (which are also called column families). Each
table is organized in rows and columns. Each row in a table has a unique row
key. The intersection of a row and a column is called a cell ; each cell stores an
uninterpreted binary string. Differently from a relational database, each row in
a table is not required to have the same set of columns. Moreover, the structure
of a Cassandra database is dynamic, since columns need not to be specified in
advance. In practice, each table stores a sparse data set, since only some of the
cells are populated.

Data access is based on simple read/write operations, each over a table and
via a row key. Data access can be either a row at a time, or a cell at a time.

The data model of Cassandra is similar to that of DynamoDB, even if the
terminology is quite different. Indeed, Cassandra tables, rows, row keys, and
columns essentially correspond to DynamoDB tables, items, primary keys, and
attributes.

In Cassandra we can implement a row per object (rpo) data representation
strategy — analogous to strategy item per object in DynamoDB (described in
Section 5.1).

Another representation strategy adopts a single cell for each object (cell per
object, cpo). Each object is stored in a distinct row, having two columns: id for
the object identifier and value for a serialization of the whole complex value of
the object. See Figure 3(c).

6 Experimental Results

The various data representation strategies described in this paper have all been
implemented in a working prototype, which is able to access the representative

Datastore Strategy (a) (b) (c) (d) (e)
Redis kvpo 1.60 5.63 2.57 0.65 0.89
Redis kvpf 1.71 6.57 3.71 0.60 1.11
Redis khpo 1.51 6.25 3.51 0.59 1.26

Oracle NoSQL kvpo 1.68 6.94 2.87 0.90 1.08
Oracle NoSQL kvpf 2.25 9.67 4.91 1.02 1.75
Oracle NoSQL kvpav 2.84 24.61 24.88 3.56 9.88

MongoDB dpo 2.17 7.85 3.35 0.75 1.02
Cassandra cpo 4.01 17.10 5.17 2.16 1.95
Cassandra rpo 3.60 17.38 6.33 1.62 2.19

(a) Baseline performances (sec)

Datastore Strategy (a) (b) (c) (d) (e)
Redis kvpf 1.58 1.67 1.74 1.78 2.29

Oracle NoSQL kvpf 2.07 1.78 2.05 1.69 1.91
Cassandra rpo 3.52 2.76 3.11 2.74 4.34

(b) Relative penalty due to naive implemen-
tations (penalty factor)

Fig. 4. Experimental results

NoSQL systems we have described so far. In this section be briefly report on the
performances of the different systems and strategies.

Our experiments refer to a database for customers and orders. Each customer
has 9 top-level fields, and 11 atomic values. Each order has 11 top-level fields,
and an average of 28 atomic values.

Figure 4(a) shows the baseline of our experimental results. Each row refers to
a specific combination datastore-data representation strategy.5 The five columns
list the timings (in seconds, and the least significant digit is hundredths of a
second) with respect to five different workloads, as follows: (a) creation of 5000
new customers; (b) creation of 10000 new orders (each also requires the retrieval
of a customer); (c) retrieval of 5000 orders (each also requires the retrieval of
the associated customer); (d) update of a top-level field of 2000 customers (each
also requires the retrieval of the customer); (e) update of a top-level field of 2000
orders (each also requires the retrieval of the order and its customer).

We can draw the following conclusions, based on a comparison of timings,
rather than to an analysis of absolute timings.

For key-value stores, when the workload is just creation of objects and re-
trieval of objects (workloads (a)-(c)), strategy kvpo outperforms strategies kvpf
(slightly) and kvpav (significantly). However, strategy kvpf can be better then
kvpo when we need to update single fields (workload (d)), even if this is not
true in general (workload (e)). The use of specific data types (such as hashes in
Redis, strategy khpo) can be beneficial, even if this is not always true (compare
rows referring to Redis khpo and Redis kvpf).

We can draw similar conclusions for extensible record stores, if we compare
strategies cpo (analogous to kvpo) and rpo (analogous to kvpf).

5 We do not report on DynamoDB, since its runs on the cloud and therefore timings
are not easily comparable with timings for datastores which run on a local data
server.

Furthermore, in Figure 4(b) we compare the use of efficient multi-put and
multi-get operations with the use of naive implementations based on multiple
simple put and get operations.6 The numbers in the table report the penalty
timing factors one should pay when using naive implementations. For example,
1.58 means that the corresponding timing is 1.58 times the baseline performance
reported in Figure 4(a). As the table reports, in our experiments this penalty
ranges from 1.50 to more than 4.

In summary, these experiments suggest that the adoption of a NoSQL datas-
tore requires a deep understanding of all the following aspects: (i) the data model
offered by the datastore; (ii) the possible representation strategies enabled by
such data model; (iii) the data access operations offered by the system; and (iv)
the efficiency of such operations.

7 Related Work

According to Stonebraker [13], more than fifty NoSQL datastores have been
implemented. http://nosql-database.org/ lists about 150 non-relational da-
tabase systems. Each datastore has its own documentation — which is often
difficult to understand and sometimes even incomplete. The documentation of
a few systems discuss some useful guidelines and best practices for obtaining
the best performances and results from that datastore. With this huge amount
of heterogeneous information, it is difficult to have a clear vision of the NoSQL
landscape.

A survey by Cattell [9] describes a number of NoSQL datastores. It offers
an overview of this technology. It also provides a useful classification of non-
relational systems. However, it is not focused on data models and APIs, which are
described only in general terms. Moreover, it does not consider methodological
aspects concerning data modeling. On the other hand, in this paper we focus on
the data models and APIs of a number of representative NoSQL systems. We
also consider some methodological aspects related to data modeling.

A few systems have been proposed with the aim of hiding the heterogeneity
of NoSQL datastores and to provide a uniform access to them. In particular,
SOS [7] and ONDM [8], which we will briefly describe in the next section.

8 Discussion

This work has the goal of sharing our experience on using several NoSQL data-
stores while working on the design and implementation of two different frame-
works, SOS and ONDM. Both these systems have the goal of defining a uniform
application programming interface to access different NoSQL datastores in a
transparent way.

SOS (Save Our Systems [7]) is a platform that provides a uniform interface
towards NoSQL systems. It exposes operations for storing, retrieving, deleting,

6 Strategy kvpo uses simple put and get operations only, so the naive implementation
is the more efficient. We do not have realized the naive implementations for all
strategies, and therefore we do not report on, e.g., strategy kvpav in Oracle NoSQL.

and modifying data — they are inspired by the ones offered by the underly-
ing datastores. SOS hides specific features of NoSQL systems, thus allowing
programmers to remain unaware of the individual characteristics and query pat-
terns of each datastore. The use of SOS provides also interoperability. Indeed,
an application can benefit from the usage of multiple NoSQL datastores in a
transparent way, by simply accessing them through the same interface. The im-
plementation of SOS is based on a metamodel approach that maps the specific
datastore interfaces into a common and general one. Mappings specify how to
store and query data, and are defined between the metamodel and each system.

ONDM (Object-NoSQL Datastore Mapper [8]) is a framework for facilitat-
ing the storage and retrieval of persistent objects in NoSQL datastores, which
aims at supporting several challenges posed to application developers by the het-
erogeneity in the NoSQL arena. The key features of ONDM are as follows: (i)
ONDM offers to application developers an ORM-like API, based on the popular
Java Persistence API (JPA [11]). As JPA, it is based on an entity data model,
with entities, relationships, and embeddable objects (i.e., complex values). (ii)
ONDM already supports the access to a handful of NoSQL systems (Apache
Cassandra, Couchbase, Oracle NoSQL, MongoDB, and Redis), belonging to dif-
ferent datastore categories. More important, ONDM has been designed to be
easily extensible. (iii) For each NoSQL datastore, ONDM implements multi-
ple entity representation strategies (such as the ones described in this paper).
Moreover, ONDM has been designed to easily incorporate new entity represen-
tation strategies. (iv) Using ONDM, it is possible to store relationships between
objects using two distinct relationship representation modes: as references (i.e.,
normalized) or materialized (i.e., denormalized).

References

1. Amazon DynamoDB. http://aws.amazon.com/dynamodb. Accessed 2013.
2. Apache Cassandra. http://cassandra.apache.org. Accessed 2013.
3. JSON. http://www.json.org. Accessed 2013.
4. MongoDB. http://www.mongodb.org. Accessed 2013.
5. Oracle NoSQL Database. http://www.oracle.com/technetwork/products/

nosqldb. Accessed 2013.
6. Redis. http://redis.io. Accessed 2013.
7. Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform access to non-relational

database systems: The SOS platform. In CAiSE 2012, pages 160–174, 2012.
8. Luca Cabibbo. ONDM: an Object-NoSQL Datastore Mapper. Submitted for

publication, 2013.
9. Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4):12–27,

2010.
10. Fay Chang et al. Bigtable: A distributed storage system for structured data. ACM

Trans. Comput. Syst., 26(2), 2008.
11. Java Persistence 2.0 Expert Group. The Java Persistence API 2.0, jsr 317, 2009.
12. Pramodkumar J. Sadalage and Martin J. Fowler. NoSQL Distilled. Addison-

Wesley, 2012.
13. Michael Stonebraker. Stonebraker on NoSQL and enterprises. Commun. ACM,

54(8):10–11, 2011.

