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CONTENTS

Abstract

Data heterogeneity is a major issue in any context where software directly deals
with data. The most general expectation of any complex system is the so-called seam-
less integration, where data can be accessed, retrieved and handled with uniform tech-
niques, tools and algorithms.

In this sense, integration can be considered as the opposite of heterogeneity. It is a
property of data that gives a measure of the degree of coherent exploitability. Indeed,
the more conformed pieces of data are, the more information will be retrieved from
them.

Passing from highly heterogeneous to integrated data is the subject of data integra-
tion, the discipline that formulates in formal terms all the processes and the technical
and algorithmic steps needed to transform data. Heterogeneity is a twofold issue. It
has a technical connotation and a theoretical one. Data can be distributed in different
data sources, memorized in various formats and encoding conventions, be queried via
incompatible programming interfaces. All these kind of problems can be addressed
with the design of proper adapting architectures, involving the presence of a number
of connectors homogenizing from a technical perspective. On the other hand, the core
problem with heterogeneity is that data can be intrinsically different because different
data models -collections of structural entities- are adopted to organize them. A rela-
tional database instance is intrinsically different from a XML file or from a collection
of objects in a NoSQL key-store repository. The divergences are not merely technical,
but representational.

The aim of this work is dealing with data integration techniques under a number of
perspectives. From the theoretical perspective, we consider the Model Management
as the framework to formalize translation problems. A schema, instance of a certain
model will be translated to another schema instance of a target model. We recog-
nize the need for a model-independent solution to schema and data translation and,
in general, to model management problems. Hence we present MIDST, a tool born
from many years of experience on schema and data translation, based on a metalevel
approach.
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CONTENTS

From the performance perspective, we appreciate the value of runtime environ-
ments, where translations are not performed out of the system with an import-translate-
export process; by contrast, we illustrate, as a novel contribution, MIDST-RT, an evo-
lution of MIDST, where translations are performed at runtime and even generate views
of data. Data heterogeneity also poses more dynamic problems, linked with data evo-
lution and maintenance.

As an important example, we adopt the perspective of model management to
present a model-independent solution to round-trip engineering problem, that pro-
totypes the typical propagation of changes among related schema. MISM, a model
management framework based on MIDST (and MIDST-RT) is then illustrated. The
contribution in this field is the use of MIDST as a model management platform.

Nowadays market demand for highly specialized data processors, performing at
best in specific cases such as web content retrieval, document search, object serializa-
tion, parallel calculation is taken in particular consideration. NoSQL engines promise
exceptional performance in non transactional fields and leverage simplified but pecu-
liar data models. Therefore a core goal of data integration is providing techniques
and tools to facilitate the interaction with these systems. In the final part of this work,
we extend our metalevel approach to encompass NoSQL systems and present several
experimental results on them also addressing still unexplored indexing strategies.

In conclusion, in this thesis we provide contributions in the three mentioned fields
of data integration: a theoretical model management framework is proposed; perfor-
mance is addressed through a change of paradigm within the context of metamodel
approaches involving the fact that translations are operated directly in the target sys-
tem; NoSQL systems are touched on and encompassed in the proposed metamodel.
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Introduction

Data integration is the data engineering discipline consisting in considering data re-

siding in different sources, environments or technical platforms, having different rep-

resentations, data model or encoding conventions and combining them in such a way

they can be accessed uniformly. In an idiomatic sentence, it is often said that data

integration goal is handling heterogeneous data so that they appear as one.

In industry and scientific reality in which multiple representations of the same

data coexist even in the same information system, there is a continuous request for

reconciliation and conformation. In the practice, this implies the repetition of several

high level tasks, transformations, leading to a multiplicity of heterogeneous data to

integrated information.

In industrial field, market products show efforts to converge towards an enter-

prise level master model asserting unambiguously the meaning of a certain pieces of

data. Historically, a first level of homogeneity was achieved with the adoption of rela-

tional databases [Cod70], where a common (relational interface) offered a structured

and unified view of data, constraining them under a well determined model and lan-

guage. Now, need for homogeneity is leading to several industry practices, known

with several similar expressions such as master data management, data federation

and so forth.

However, data integration in general aims at the conformation of all the data

schemas present in an information system. It involves both the solution to many

technical issues, such as protocol conciliation, data stream management, choice of

xv



INTRODUCTION

technical interfaces (drivers) and the conceptual and formal conformation of the in-

volved data models.

Contributions

What is central in this work is the analysis and a concrete contribution to the most up

to date techniques and algorithms for the reconciliation of different data models. In the

literature, the so-called difference is often referred to as heterogeneity. Heterogeneity

is a twofold concept: it has a technological aspect, and a representational one.

Technological aspects are faced by a number of research and industry approaches

integrating heterogeneous data environments and architectures. This world is often

known as enterprise data integration and covers a series of integration patterns and

techniques. They can be classified in two kinds of general approaches to the problem,

master data management and data transformation.

Master data management philosophy tends to federate sources and representations

under a unique and more encompassing one acting as a proxy. Data transformation,

borrowing techniques and patterns from classical ETL, aims at creating a shared en-

vironment where heterogeneities are conformed into a shared environment.

Heterogeneity and model management A major goal of this work, is proposing

an approach that aims at being more encompassing than master data management or

enterprise data integration. Reasonings are based on a metadata driven approach in

order to propose a model-independent solution to data heterogeneity. In fact, the main

innovative result is that the proposed techniques and algorithms are independent of

the specific involved models, but have a general validity in force of common structural

characteristics of different models.

According to our original approach, data models are defined according to a pre-

liminary observation by Hull and King [HK87], as it was considered by Atzeni and

Torlone in [AT93], asserting that all the data models share some structural characteris-
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tics that can be named as constructs. Therefore here, leveraging those formalizations,

we define a data model -or simply model hereinafter- as a collection of constructs.

This work follows the formal framework known as Model Management. Accord-

ing to Bernstein [Ber03], model management is a theoretical framework defining an

algebra on data models. Model constructs are the operands in this algebra, while

schema evolution techniques are the operators, and are synthesized in specific pat-

terns. In particular, we consider the Modelgen operator that, in model management, is

the one devoted to the generation of a schema of a certain model, given a schema of

another model and a set of translation rules. Translation rules specify how constructs

of the source model have to be combined and rearranged in order to yield a schema of

the target model.

Modelgen operator, as it is described in [Ber03] is model-dependent in the sense

that a different implementation is necessary for each pair of involved models. In

this discipline, the need for a model-generic approach is widely recognized and often

pointed out as a major goal [MRB03].

In Atzeni and Torlone’s original approach [AT93] and in several following

works [ACB05a, ACB06, ACG07, ACT+08] we proposed a model-independent solu-

tion to schema and data translation, relying on the presence of a general and flexible

metamodel that can be used to represent and handle data. Transformation and trans-

lations rules, that allow the managing and the transformation of data, are defined with

respect to this metamodel.

Figure 1: The round-trip engineering problem.

xvii



INTRODUCTION

Besides the basic problem of translating from a schema of a model into a schema

of another model, data heterogeneity presents the data architect with several other high

level problems, consisting in the presence of conceptual but repetitive tasks needed to

integrate evolutions. As a novel contribution, in this work activities are framed within

the model management framework and correlated with a model-independent solution.

As a preliminary example of possible conceptual task coming from integration

issues we point out round-trip engineering. Consider Figure 1. S1 is a specification

and I1 its implementation (possibly provided by a design tool).

Then a “manual” modification of the implementation leads to a new version I2,

which is not coherent with S1. The goal is to find a specification S2 from which I2
could be generated. The first is oriented to the coherence at data level, the second

is mainly oriented to the maintenance of functionalities of application when data are

updated or migrated into another model.

Concerning the round-trip problem there has been the effort to design a general

approach to the definition of transformation rules and operators that act at meta-level.

On the one hand, in this study we pursue schema evolution and model management

operators as formal definitions, on the other hand a major goal is framing them in a

global approach tending to a model-independent heterogeneity.

In the data integration scenario, increasing needs for performance and scalability,

strongly remarked by web applications first, and cloud services then, introduced the

necessity for lightweight and runtime solutions to model management problems.

These non functional demands, led to a definition of an approach that adopts a met-

alevel representation that allows the definition of the translation problem, where data

is not moved from the operational system and translations are performed directly on

it [ABBG09a]. What the user obtains at runtime is a set of views (the target schema)

conform with the target model. The main difference is that the import process con-

cerns only the schema of the source database and the rules for schema translation are

here used as the basis for the generation of views in the operational system. In such a

way data is managed only within the operational system itself.
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Heterogeneity and NoSQL Moreover, during the last years numerous new sys-

tems, not following the RDBMS paradigm (neither in the interface nor in the im-

plementation), have been developed [Sto10, Sto11a]. Their common features are

scalability and support to simple operations only (and so, limited support to complex

ones), with some flexibility in the structure of data. Most of them also relax consis-

tency requirements. They are often indicated as NoSQL systems, because they can be

accessed by APIs that offer much simpler operations than those that an be expressed

in SQL. Probably, it would be more appropriate to call them non-relational, but we

will stick to common usage and adopt the term NoSQL.

An interesting but simplified classification has been proposed, based on the mod-

eling constructs available: key-value stores (representatives of which are Redis and

Scalaris), document stores (including MongoDB and CouchDB) and extensible record

stores (including BigTable, HBase and Cassandra).

There exist more than fifty systems, in the various categories, and each of them can

be used by means of a different interface (different model and different API). Indeed,

the lack of standard is a great concern for any organization interested in adopting any

of these systems: applications are not portable and skills and expertise acquired on a

specific system are not reusable with another one.

In this scenario there is the need for a definition of a common interface and a

general modeling approach of the use cases scenario and data that are consequently

handled in different systems. The original contribution presented here (and

also in [ABR12a]) is the definition of a uniform programming and access interface

for NoSQL systems. Technical proofs programming simulations were indeed per-

formed ( [ABR12b]). The contribution benefits from the definition of a meta-layer

encompassing NoSql data models. This meta-layer can be successfully embedded

into MIDST dictionary and allows to provide a common view even over relational

and non relational systems. The aimed standardization also led to the definition of a

xix



INTRODUCTION

general API that can be used to access NoSQL system in a JDBC-like fashion.

The pursuit of model management problems with respect to NoSQL databases also

gave the opportunity to give a contribution to improved scalability and performance

of tools and methodologies in this field with particular respect to RDF querying.

Obtained results are, to the best of our knowledge, of noticeable interest for the

achieved performance.

In particular, a study visit at INRIA Saclay in Paris was the chance for an industry-

like experimentation of the cited performance contributions. Amazon S3 was consid-

ered as a third-party storage system for RDF documents that had to be queried with

SPARQL triples. The study converged in the definition of four indexing strategies for

RDF documents and, technically, they were implemented in SimpleDB and presented

in [BGKM12].

Overview of the dissertation

The remainder of the work is organized as follows. In Chapter 1 we present our

original contributions in the context of the translation tool MIDST. The metamodel

approach is presented and a complete description of the dictionary is provided.

In Chapter 2 introduce the formal definition of model management operators and

face the major problems in a model-independent fashion. MISM, an evolution of

MIDST, is presented as a model management framework.

In Chapter 3 performance issues are dealt with. MIDST and MISM off line ap-

proach consisting in an initial import of the data into the supermodel is evolved.

MIDST-RT is proposed as a runtime translation tool.

Chapters 5 and 4 discuss non relational databases and encompass them in MIDST

supermodel. A common programming interface for NoSQL systems is motivated.

Then, in 6 a particular non relational DBMS, SimpleDB, is pursued and several

indexing strategies are presented. In 7 some related works are and in 8 we draw up or

conclusions.

xx



CHAPTER 1

MIDST and the metamodel approach

In this Chapter we present our metamodel approach by means of MIDST, our model-

inpdependent schema and data translation tool. The methodology behind MIDST is

based on the idea of a metamodel defined as a set of constructs that can be used to

define models which are instances of the Metamodel [ACB06, ACT+08, AGC09].

Here we present a description of the metamodel adopted in MIDST to implement

the MODELGEN operator, the one devoted to generate a schema of a model given a

schema of another model.

1.1 The metamodel

MIDST adopts a model-generic representation of schemas based on a combination of

constructs. Its founding observation is the similarity of features which arises across

different data models. This means that all the existing models can be represented with

a rather small set of general purpose constructs [HK87] called metaconstructs (or sim-

ply constructs when no ambiguity arises). Let us briefly illustrate this idea. Consider

the concept of entity in the ER model family and that of class in the OO world: they

both have a name, a collection of properties and can be in some kind of relationship

between one another. To a greater extent, it is easy to generalize this observation to

any other construct of the known models and determine a rather small set of general

1



1. MIDST AND THE METAMODEL APPROACH

Metaconstruct Relational Object- ER XSD
Relational

Abstract - typed entity root
table element

Lexical column column attribute simple
element

BinaryAggregation- - - binary -
OfAbstracts relationship

AbstractAttribute - reference - -
Generalization - generalization generalization -

Aggregation table table - -
ForeignKey foreign foreign - foreign

key key key
StructOfAttributes - structured - complex

column element

Figure 1.1: Simplified representation of MIDST metamodel

constructs. Therefore models are defined as sets of constructs from a given universe, in

which every construct has a specific name (such as “entity” or “object”): for instance

a simple version of the ER model may be composed of Abstracts (the entities), Aggre-

gations of Abstracts (the relationships) and Lexicals referring to Abstracts (attributes

of entities); instead the relational model could have Aggregations (the tables), Lex-

icals referring to Aggregations (the columns), and foreign keys specified over finite

sets of Lexicals. Thus schemas are collections of actual constructs (schema elements)

related to one another. Figure 1.1 lists a subset of MIDST metaconstructs giving the

intuition about how model representation is hanlded.

1.2 The supermodel

The set of all the possible constructs in MIDST forms the supermodel, a major concept

in our framework. It represents the most general model, such that any other model is

a specialization of it (since a subset of its constructs). Hence a schema S of a model

2



1.2. The supermodel

M is necessarily a schema of the supermodel as well.

Figure 1.3 describes all the constructs of the supermodel in the form of a UML

class diagram. The complete description of them follows:

Abstract Any autonomous concept of the scenario.

Aggregation A collection of elements with heterogeneous components. It make no

sense without its components.

StructOfAttributes A structured element of an Aggregation, an Abstract, or another

StructOfAttributes. It could be not always present (isOptional) and/or admit

null values (isNullable). It could be multivalued or not (isSet).

AbstractAttribute A reference towards an Abstract that could admit null values (is-

Nullable). The reference may originate from an Abstract, an Aggregation, or a

StructOfAttributes.

Generalization It is a “structural” construct stating that an Abstract is a root of a

hierarchy, possibly total (isTotal).

ChildOfGeneralization Another “structural” construct, related to the previous one

(it can not be used without Generalization). It is used to specify that an Abstract

is leaf of a hierarchy.

Nest It is a “structural” construct used to specify nesting relationship between

StructOfAttributes.

BinaryAggregationOfAbstracts Any binary correspondence between(two) Ab-

stracts. It is possible to specify optionality (isOptional1/2) and functionality

(isFunctional1/2) of the involved Abstracts as well as their role (role1/2) or

whether one of the Abstracts is identified in some way by such a correspon-

dence (isIdentified).

AggregationOfAbstracts Any n-ary correspondence between two or more Abstracts.

3



1. MIDST AND THE METAMODEL APPROACH

ComponentOfAggregationOfAbstracts It states that an Abstract is one of those in-

volved in an AggregationOfAbstracts (and hence can not be used without Ag-

gregationOfAbstracts). It is possible to specify optionality (isOptional1/2) and

functionality (isFunctional1/2) of the involved Abstract as well as whether the

Abstract is identified in some way by such a correspondence (isIdentified).

Lexical Any lexical value useful to specify features of Abstract, Aggregation, StructO-

fAttributes, AggregationOfAbstracts, or BinaryAggregationOfAbstracts. It is a

typed attribute (type) that could admit null values, be optional, and identifier

of the object it refers to (the latter is not applicable to Lexical of StructOfAt-

tributes, BinaryAggregationOfAbstracts, and AggregationOfAbstracts).

ForeignKey It is a “structural” construct stating the existence of some kind of ref-

erential integrity constraints between Abstract, Aggregation and/or StructOfAt-

tributes, in every possible combination.

ComponentOfForeignKey Another “structural” construct, related to the previous

one (it can not be used without ForeignKey). It is used to specify which are

the Lexical attributes involved (i.e. referring and referred) in a referential in-

tegrity constraint.

XMLAttribute The last “structural” construct, used in the current version of the

tool only in ObjectRelational-XML model and qualified by it. It relates a

Struct to an Abstract.

MIDST manages the information of interest in a rich dictionary. Let us summarize

its main features. It has two layers, both implemented in the relational model: a basic

level and a metalevel (Figure 1.2).

The basic layer of the dictionary has a model-specific part (some tables of which

are shown in Figure 1.5 with reference to a simple example in Figure 1.4), where

schemas are represented with explicit reference to the various models, and, more im-

portant, a model-generic one, where there is a table for each construct in the super-

4



1.2. The supermodel

Figure 1.2: The four parts of the dictionary

model: so there is a table for SM_ABSTRACT (the SM_ prefix emphasizes the fact that

we are in the supermodel portion of the dictionary) a table for SM_AGGREGATION

and so on (with an example in Figure 1.6). These tables have a column for each prop-

erty of interest for the construct (for example, a Lexical can be part of the identifier of

the corresponding Abstract, or not, and this is described by means of a boolean prop-

erty). References are used to link constructs to one another, for example an attribute of

entity in the ER model has to belong to a parent construct, which could be an Abstract

(an entity). In both parts, constructs are organized in such a way they guarantee the

acyclicity constraint, meaning that no cycles of references are allowed between them.

This is convenient in situations where a complete navigation through the schemas is

necessary and a topological order is helpful.

The two parts of the dictionary play complementary roles in the translation pro-

cess, which is MIDST’s main goal: the model specific part is used to interact with

source and target schemas and databases, whereas the supermodel part is used to per-

form translations, by referring only to constructs, regardless of how they are used in

the individual models. This allows for model-independence.

5



1. MIDST AND THE METAMODEL APPROACH

Figure 1.3: The supermodel

6



1.2. The supermodel

Figure 1.4: A simple example

MIDST dictionary includes a higher layer, a metalevel, which gives a characteri-

zation of the construct properties and relationships among them [ACB05b, ACT+08].

It involves few tables, each with few rows, which form the core of the dictionary. A

significant portion is shown in Figure 1.7. Its main table, named MSM_CONSTRUCT

(here, the MSM_ prefix denotes that we are in the “metasupermodel” world, as we

are describing the supermodel) stores the name and a unique identifier (OID) for each

construct, so this table actually memorizes every allowed construct; indeed, the rows

of this table correspond essentially to those in Figure 1.1. Each construct is also char-

7



1. MIDST AND THE METAMODEL APPROACH

ER_ENTITY

OID Entity-Name Schema
e1 Professor s1
e2 Department s1
... ... ...
ER_ATTRIBUTEOFENTITY

OID Entity Att-Name Type isKey Schema
a1 e1 PID int true s1
a2 e1 FirstNane string false s1
a3 e2 LastName string false s1
a4 e2 DID int false s1
a5 e2 Name string false s1
... ... ... ... ... ...

ER_BINARYRELATIONSHIP

OID Rel-Name Entity1 IsOpt1 IsFunctional1 Entity2 ... Schema
b1 R1 e1 false true e2 ... s1
... ... ... ... ... ... ... ...

REL_TABLE

OID Table-Name Schema
t1 Professor i1
t2 Department i1
... ... ...

REL_COLUMN

OID Table Col-Name Type isKey Schema
c1 t1 PID int true i1
c2 t1 FirstName string false i1
... ... ... ... ... i1
c7 t2 Name string false i1
... ... ... ... ... ...

Figure 1.5: A portion of a model-specific representation of schemas S1 and I1 of
Figure 1.4

acterized by a set of properties describing the details of interest. There is a table,

MSM_PROPERTY, reporting name, type and owner construct for each property. The

properties, for example, allow to define whether an entity attribute is identifier or not

8



1.2. The supermodel

SM_ABSTRACT

OID Abs-Name Schema
e1 Professor s1
e2 Department s1
... ... ...

SM_AGGREGATION

OID Aggr-Name Schema
t1 Professor i1
t2 Department i1
... ... ...

SM_LEXICAL

OID Abstract Aggr Lex-Name Type isId Schema
a1 e1 - PID int true s1
a2 e1 - FirstName string false s1
a3 e2 - LastName string false s1
... ... ... ... ... ... ...
c1 - t1 DID int true i1
... ... ... ... ... ... ...
c7 - t2 Name string false i1
... ... - ... ... ... ...

SM_BINARYAGGREGATIONOFABSTRACTS

OID Aggr-Name Abstract1 IsOpt1 IsFunctional1 Abstract2 ... Schema
b1 R1 e1 false true e2 ... s1
... ... ... ... ... ... ... ...

Figure 1.6: A portion of a model-generic representation of the schemas S1 and I1 of
Figure 1.4

and to specify the cardinality of relationships. Constructs refer to one another with

references, recorded in the table MSM_REFERENCE.

As we have illustrated, the metalevel lays the basis for the definition of constructs

which can be then used in defining models and so on the structure of the lower layer of

the dictionary: in fact, the model-generic layer (Figure 1.6) has one table for each row

9



1. MIDST AND THE METAMODEL APPROACH

MSM-CONSTRUCT

OID Construct-Name IsLex
mc1 Abstract false
mc2 Lexical true
mc3 BinaryAggregationOfAbstracts false
mc4 AbstractAttribute false
... ... ...

MSM-PROPERTY

OID Prop-Name Constr Type
mp1 Abstract-Name mc1 string
mp2 Att-Name mc2 string
mp3 IsId mc2 bool
mp4 IsFunctional1 mc3 bool
mp5 IsFunctional2 mc3 bool

... ... ... ...
MSM-REFERENCE

OID Ref-Name Constr ConstrTo
mr1 Abstract mc2 mc1
mr2 Abstract1 mc3 mc1
mr3 Abstract2 mc3 mc1
... ... ... ...

Figure 1.7: The supermodel part of the metalevel portion of the dictionary of MIDST

in MSM_CONSTRUCT (and so we have, as we said, tables named SM_ABSTRACT,

SM_AGGREGATION, SM_LEXICAL, and so on), with columns corresponding to the

properties and references of the construct, as described in MSM_PROPERTY and

MSM_REFERENCE, respectively.

1.3 The translations

To manage heterogeneous data, many applications need to translate data and their

descriptions from one model, to another. The metamodel approach was conceived

in order to define a common layer among the various datamodels in such a way that

10
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model-independent schema translation was possible. According to the model manage-

ment terminology, this translation is performed by MODELGEN operator: given two

models M1 and M2 and a schema S1 of M1, MODELGEN translates S1 into a schema

S2 of M2 that properly represents S1.

Defining the MODELGEN operator for all the couples of models is a complex op-

erations so the a major benefit of the supermodel is the fact that it can be used as a

pivot model so that it is sufficient to have translation of each model to and from the

supermodel. This approach is implemented in MIDST.

In the tool translations are composed of three phases: first of all schemas in their

model-specific representation are imported into the translation tool. Model specific

representation are mapped into a model independent one. With reference to the super-

model illustrated before the process of importing a specific metamodel leads to use

only a subset of its constructs. Then in this phase the actual translation takes place.

According to our methodology model translations are described as a decomposi-

tion of elementary steps transforming typical structural patterns into others. Therefore

a complex translation is divided into many declarative mappings that are executable

within the supermodel.

Each translation step in MIDST is specified as a Datalog program, which is a set

of Datalog rules. The language was chosen for two reasons: first, it matches in an

effective way the structure of our data model and dictionary (which is implemented in

relational form); second, its high level of abstraction and the declarative form allow

for a clear separation between the translations and the engine that executes them.

Moreover, Datalog can be straightly translated into SQL and the original choice was

aimed at covering the widest spectrum of application scenarios. However, other syntax

or specification formalisms could be adopted as well. More precisely, we use a variant

of Datalog with “value invention” [Cab98, HY90], where values for new OIDs are

generated.

We use Skolem functors to generate OIDs and literals can be qualified with at-

tributes. For example, the following rule translates an Abstract (an entity in an ER

11



1. MIDST AND THE METAMODEL APPROACH

model) into an Aggregation (a simple table):

Aggregation (
OID: SK1(oid),
Name: name

)
<-
Abstract (

OID: oid,
Name: name

);

Notice the use of a Skolem functor, SK1 in the example, which, given the OID of an

Abstract, produces a corresponding OID for an Aggregation. We use Skolem func-

tions to generate new identifiers for constructs, given a set of input parameters, as well

as for referring to them whenever needed, given the same set of parameters. Skolem

functions are injective. So, in this case SK1 will generate a different OID, and so a

different new Aggregation, for each Abstract in the source schema. For a given target

construct many functors can be defined (denoted by numeric suffixes in the examples),

each taking different parameters in dependence on the source constructs the target one

is generated from. As a consequence, in order to guarantee the uniqueness of the

OIDs, the ranges of the Skolem functions are disjoint. Other functors for Aggregation

generate a different set of OIDs.

Translations taking place in real scenarios require several Datalog programs to

specify the transformation of each construct. We pursue a modular approach and de-

compose translations into simple steps (each returning a coherent schema of a specific

model that is then used by the subsequent step). This is done by means of a library of

Datalog programs implementing elementary steps and of an inference engine which

can determine the appropriate sequence of steps to be applied.

For example, assume we have as the source an ER model with binary relationships

(with attributes) and no generalizations and as the target is the Relational model. To

perform the task, we would first translate the source schema by renaming constructs

12
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into their corresponding homologous elements (abstracts, binary aggregations, lexi-

cals, generalizations) in the supermodel and then apply the following steps:

1. eliminate many-to-many aggregations, by introducing new abstracts and one-

to-many aggregations

2. eliminate attributes of aggregations,by introducing new lexicals to the corre-

sponding abstract Ş

If instead we have a source ER model with generalizations but no attributes on rela-

tionships (still binary), then, after the copy in the supermodel, we can apply steps (2)

and (3) above, followed by another step that takes care of generalizations:

4. eliminate generalizations (replacing them with references)

5. eliminate abstracts by introducing new aggregations

6. eliminate aggregation of attributes by introducing foreign keys and component

of foreign keys

It is important to note that the basic steps are highly reusable. Here is an example of

Datalog Rule that translates a BinaryAggregationOfAbstract in ForeignKey.

R2 ForeignKey (
OID: SKi(aggrOID),
Name: aggName,
AggregationFrom: #SKj(absOid1),
AggregationTo: #SKj(absOid2)

)
<-
BinaryAggregationOfAbstract (

OID: aggrOID,
Name: aggName,
Abstract1: absOid1,
IsOptional1: isOpt1,
IsFunctional1: ‘‘TRUE’’,
Abstract2: absOid2

);

13



1. MIDST AND THE METAMODEL APPROACH

In the rule, the # symbol denotes a Skolem functor, which is used to generate new

identifiers (in the same way as we did in MIDST [ACT+08]). Indeed, the functor

is interpreted as an injective function, in such a way that the rule produces a new

construct for each different source construct on which it is applicable. The various

functions also have disjoint ranges.
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CHAPTER 2

A model-independent approach for model
management

Model management is a metadata-based approach to database problems aimed at sup-

porting the productivity of developers by providing schema manipulation operators

aiding the automation of high level tasks.

Here MIDST is pursued on the perspective of describing a new platform for model

management: MISM (Model Independent Schema Management). It offers a set of

operators to manipulate schemas, in a manner that is both model-independent (in the

sense that operators are generic and apply to schemas of different data models) and

model-aware (in the sense that it is possible to say whether a schema is allowed for a

data model). This is the first proposal for model management in this direction.

We consider the main operators in model management: merge, diff, and modelgen.

These operators play a major role in solving various problems related to schema evo-

lution (such as data integration, data exchange or forward engineering), and we show

in detail a solution to a major representative of the class, the round-trip engineering

problem.
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2.1 Model Management

The need for complex transformations of data arises in many different contexts, be-

cause of the presence of multiple representations for the same data or of multiple

sources that need to coexist or to be integrated [BM07, Haa07, HAB+05]. A major

goal of technology in the database field is to enhance the productivity of software

developers, by offering them high-level features that support repetitive tasks. This

has been stressed since the introduction of the relational model, with the emphasis

on set-oriented operations [Cod70, Cod82], but it was pursued, at least implicitly, in

earlier developments of generalized techniques [McG59]. The model management

proposal [BHJ+00, Ber03] is a recent, significant effort in this direction: its goal

is the development of techniques that consider metadata and operations over them.

More precisely, a model management system [BM07] should handle schemas and

mappings between them by means of operators supporting operations to discover cor-

respondences between schemas (MATCH), performing the most common set-oriented

operations (such as union of schemas, MERGE, and difference of schemas, DIFF) and

translating them from a data model to another (MODELGEN). These operations should

be specified at a high level, on schemas and mappings, and should allow for the (sup-

port to the) generation of data-level transformations. Many application areas can ben-

efit from the use of model management techniques, including data integration over

heterogeneous databases, data exchange between independent databases, ETL (Ex-

tract, Transform, Load) in data warehousing, wrapper generation for the access to

relational databases from object-oriented applications, dynamic Web site generation

from databases.

Most of the work in model management has considered the need for model inde-

pendence, that is, the fact that the techniques do not refer to individual data models,1

but are more general. In detail, this requires that a single implementation of the oper-

ators should fit (i.e. be applicable) to any schema regardless of the specific data model

1There is some disagreement on terminology in the literature: we use the term data model here for
what is often called just model [ACB06, AT96] and in some papers metamodel [BM07].
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it belongs to. This has usually been done by adopting some “universal data model,”

a model that is more general than the various models of interest in a heterogeneous

framework. In the literature, such a data model is called universal metamodel [BM07]

or supermodel [ACB06, AT96]. If the operations of interest also include translations

from a data model to another (the MODELGEN operator), it is important that the indi-

vidual data models are represented, in such a way that it becomes possible to describe

the fact that a schema belongs to a data model. We will call this property model-

awareness. The various proposals for MODELGEN [ACB06, AT96, MBM07b, PT05]

do include the model independence feature, to a larger or lesser extent. For the other

operators, the major efforts in the model management area (as summarized by Bern-

stein and Melnik [BM07]) do not handle the explicit representation of data models nor

generic definitions of the operators.

The goal of the approach described in this chapter is to show a model independent

and model aware approach to model management, thus providing concrete details to

Bernstein’s original proposal [Ber03] and contributing to support its feasibility.

Motivating examples

In order to have a context for specific examples and a complete solution, we will refer

to the “round-trip engineering” problem [Ber03], which can be defined as follows:

given two schemas, where the second is somehow obtained from the first (for exam-

ple, generated in a semiautomatic way, with standard rules partially overridden by

human intervention), the problem has the goal of “repairing” the first if the second is

modified. This problem is often considered in model management papers [Ber03] as

a representative of the “schema evolution” family. These problems arise in all appli-

cation settings and therefore can be used to demonstrate the effectiveness of model

management, in terms of both individual operators and compositions of them.

Let us consider an example derived from an academic scenario (see Figure 2.1):

a university has various schools and one of them has a relational database with a

portion containing all the information of interest about its departments, courses, and
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Figure 2.1: The round-trip engineering problem
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professors. Its schema is shown in the box labeled S1 in Figure 2.1. It is composed of

three tables, Professor, Course, and Department. Apart from the specific attributes,

each relation has a key, denoted by the “ID” suffix and underlined in the figure. As

each course is offered by a specific department and given by a professor, there are

foreign keys from Course to the other two tables, denoted by arrows in the figure.

Assume now that this portion of the database is used (together with other goals) as

the source to send data on courses to a central office in the university, which gathers

data from all schools. This office requires data in an XML format, which is the one

sketched in the box labeled I1 in Figure 2.1. There is indeed a close correspondence

between S1 and I1 (possibly because they were designed together). In fact, I1 can

be obtained by means of a nesting operation based on departments, each with the

associated set of courses and with the instructor for each course. Clearly, this is one

natural way to transform the relational data in S1 into XML, but not the only one,

as there would be other solutions that involve course or professor as the root. In

this sense, we can say that this is not the result of an automated translation, but of a

customization, that is, a choice among a few standard alternatives. Let us also observe

that in S1 we have attributes FirstName and LastName for Professor, whereas in I1
we have the element FullName. There could be various reasons for this, but the only

aspect relevant here is that, again, the transformation has been customized, with the

concatenation of the two attributes in S1 into a single element in I1.

Then, assume that the exchange format is modified, with a new version, I2, also

shown in Figure 2.1. There are a few differences between I2 and I1. First, we have

that Address is a simple element in I1, while it is a complex element in I2, composed

of Street, Zip, and City. The second, and most important, difference is the presence of

a complex element Section nested in Course and containing Professor. A course can

be composed of various sections. Each section has a single professor, and therefore

Professor, which in I1 was directly contained in Course, is part of Section. Each

section of a course takes place in a different room so the element Room is now in

Section.
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Now, the goal is to obtain a schema in the relational model (for example the one

shown in the box labeled S2 in Figure 2.1) that properly corresponds to S1 as modified

by the changes in I2. It should be clear that S2 cannot be obtained by applying to I2
a standard, automatic translation from XML to the relational model (an application

of the MODELGEN operator), because we could not keep track of the customizations

we mentioned above. The idea for a solution to this problem was proposed by Bern-

stein [Ber03], in terms of a script of model management operators, using DIFF to

compute differences, MODELGEN to translate and MERGE to integrate. Intuitively,

we have to detect the actual differences between the original and the modified target

schemas I1 and I2 respectively. Then we have to translate these differences back to

the specification model (in our case the relational one) and finally integrate the trans-

lated differences with the original specification S1 obtaining a revised specification

S2. The requirement is that we should obtain I2, if we apply to S2 the sequence of

translations and customizations used to obtain I1 from S1. With reference to our ex-

ample, applying the sequence of operators as described in the algorithm, we produce

indeed the relational schema illustrated in the box labeled S2 in Figure 2.1. Schema

S2 includes new tables Section and Address corresponding to the new complex ele-

ments in I2. Department has a foreign key to Address and Section to Course. Also,

attribute Room is in Section and not anymore in Course.

In the existing literature, the proposals for the various operators are not general

and accurate enough, as they refer to a rather limited set of models and do not have

features that support the description of models, and so the plan proposed by Bernstein

has not yet been implemented in a general way.

With the twofold goal of using a different model and of presenting a simpler exam-

ple, let us consider another scenario. Let us assume we have a high level specification

tool that translates ER schemas into relational tables by generating appropriate SQL

DDL, allowing some customization. Again, if changes are made to the SQL imple-

mentation, then we want them to be propagated back to the ER specification.

This is illustrated in Figure 2.1, where S1 represents a specification in the ER
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model and I1 represents its relational implementation. The customization in the trans-

Figure 2.2: A simple scenario for the round-trip engineering problem

lation produces two columns FName and LName in I1 for the single attribute Name

in S1. Then, if I1 is modified to a new version I2, the latter is not coherent with S1.

The main difference between I2 and I1 is in the key for the Manager table and, as a

consequence, in the foreign key structure that refers to it. Also, Manager has a new at-

tribute, Title. The goal is to find a specification S2 from which I2 could be generated,

in the same semiautomatic way as I1 was obtained from S1.

Indeed, what we want to obtain is an ER schema S2, which differs from the orig-

inal one in the attributes of the entity Manager: the identifier is EID instead of SSN
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and there is the new attribute Title.

In the remainder of this chapter we will follow this second example, which will

allows us to explain completely the approach, without taking too much space.

The approach

The solution that is proposed includes a definition and implementation of the ma-

jor model management operators (DIFF, MERGE, and MODELGEN). It is based on

our experience in the MIDST platform [ACB06, ACG07, ACT+08], where a model-

independent approach for schema and data translation was introduced (with a generic

implementation of the MODELGEN operator). MIDST adopts a metalevel approach in

which the artifacts of interest are handled in a repository that represents data models,

schemas, and databases in an integrated way, both model-independent and model-

aware. This is a fundamental starting point, as stated before, in order to be able to

define a model management system. This repository is implemented as a multilevel

dictionary. Data models are defined in terms of the constructs they involve. A schema

of a specific data model is allowed to use only the constructs that are available for that

model. In this framework, the supermodel is the model that includes the whole range

of constructs, so that every schema in every model is also a schema in the supermodel.

Then, all translations are performed within the supermodel, in order to scale with re-

spect to the size of the space of models [ACT+08]. In this chapter, we show how the

dictionary and the supermodel provide grounds for the model-independent definition

of the other operators of interest, namely MERGE and DIFF.

MISM is based on MIDST but extends it in a significant way. We start from

MIDST’s representation for data models, schemas, and databases and define model

management operators by means of Datalog programs with respect to such repre-

sentation. Specifically, we leverage on the features of MIDST’s dictionary for the

uniform representation of models as well as the infrastructure for the definition and

the application of schema manipulation operators. MISM offers all the major oper-

ators, including MERGE, DIFF, and a basic version of MATCH, all implemented in a
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model-generic way.

The structure of the dictionary also allows for the automatic generation of Datalog

programs implementing the new operators, with respect to the given supermodel, in

such a way that, if the supermodel were extended, the operators would be automati-

cally extended as well.

Contribution

This is the first proposal for a model-independent platform for model management.

Specifically, this the approach offers three main contributions:

• The model-independent definition and implementation of important model

management operators. In fact, we define them by means of programs with

predicates acting on the constructs of the supermodel.

• The automatic generation of the programs implementing the operators only us-

ing the supermodel as input. These programs are valid for any schema defined

in terms of model-generic constructs.

• A complete solution to the round-trip engineering problem as a representative

of the problems that can be solved with this approach. It is based on a script

defined in terms of a convenient combination of our operators and allows a walk

through of our implementation.

2.2 Operators

Model management refers to a wide range of problems, which share the need for

high level solutions. Therefore many operators have been proposed, depending on

the family of problems of interest. Here we concentrate on schema evolution, where

proposals [Ber03, BHP00] require MATCH, DIFF and MERGE and, if an explicit rep-

resentation of models is needed, also MODELGEN. In such proposals, the MATCH

operator is used to discover mappings between the elements of the involved schemas.
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In fact, mappings play a major role, as they provide the operators with essential in-

formation about the relationships between the involved schemas. For example, an

operator that computes the difference between two schemas needs to know the cor-

respondences between constructs in order to subtract them correctly. Likewise, an

operator that combines schemas must know those correspondences in order to avoid

the generation of duplicates.

Here, exploiting our construct-based representation of data models, we can pro-

pose definitions of the main operators (DIFF, MERGE, and MODELGEN) that compare

constructs on the basis of their names and structures. In fact, we assume that if two

constructs have different names or different structures, they should be considered as

different.

In this way, as we clarify in the next subsection, our approach considers MATCH

as complementary.

We already have an implementation for MODELGEN in our MIDST proposal (and

hence in MISM as well), and so we have to concentrate on DIFF and MERGE.

In the rest of this section we will present specifications for these operators that re-

fer to MIDST dictionary, preceded by the discussion of a preliminary notion, equiva-

lence of schema elements. Then, in Section 2.3 we will show how to generate Datalog

implementations for them.

Equivalence of schema elements

The basic idea behind the DIFF and MERGE operators is the set-theoretical one. In fact,

we can consider each schema as composed of a set of schema elements (the actual con-

structs it involves), and then consider DIFF as a set-theoretic difference (the elements

that are in the first schema and not in the second) and MERGE as a union (the elements

that are at least in one of the two schemas). In general, we might be interested in com-

paring schemas that represent the concepts of interest by means of different elements.

In such a case, a preliminary step would require the identification or specification of

the correspondences between them. This is usually done by means of an application
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of the MATCH operator, which, in general, can produce correspondences of various

types (i.e. one-to-one, one-to-many, or even many-to-many) and may require a hu-

man intervention in order to disambiguate or to better specify. Besides, in MIDST

context, let us recall that each schema element is represented with respect to a spe-

cific model-generic construct (i.e. an element refers to an Abstract, another one refers

to an Aggregation and so on): in this sense we say that an element is an instance of

a construct. Consequently, we distinguish between construct-preserving correspon-

dences and non construct-preserving ones. The first type maps elements, instances

of a certain construct, only to elements that are instances of the same model-generic

construct; viceversa, correspondences not satisfying this property belong to the sec-

ond type. For example in the XML schemas of Figure 2.1 the correspondence between

the simple element Address and the complex one (again called Address), composed of

Street, Zip, and City, is not construct-preserving. In fact the address is represented

by a simple element in the first schema (i.e. a Lexical in MIDST), while in the sec-

ond one it requires a complex element (i.e. a StructOfAttributes in MIDST) with its

components (i.e. some Lexicals in MIDST). Clearly, non construct-preserving cor-

respondences denote different ways to organize the data of interest and therefore the

involved constructs of the two schemas have to be considered as different. On the

other hand, constructs that have different names but the same structure while handling

the same data, have to be considered as equivalent. These are one-to-one correspon-

dences, which can be discovered manually or by means of a matching system (among

the many existing ones [RB01]).

The arguments above lead to a notion of renaming of a schema: given a corre-

spondence c, the renaming of a schema S with respect to c is a schema where the

names of the elements in S are modified according to c. Then, we have a basic idea

of equivalence conveyed by the following recursive statement:

two schema elements are equivalent with respect to a renaming if: (i) they are in-

stances of the same model-generic construct; (ii) their names are equal, after the

renaming; (iii) their features (names and properties) are equal; and (iv) they refer to
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equivalent elements.

For the sake of simplicity, we can assume that the renaming is always applied to

one of the schemas, in order to guarantee that corresponding constructs with the same

type also have the same name. In some sense this would correspond to a unique name

assumption. Then, equivalence would be simpler, as name equality would be required:

two schema elements are equivalent if their types, names and features are equal and

they refer to equivalent elements.

It is important to observe that the definition is recursive, as equivalence of pairs

of elements requires the equivalence of the elements they refer to. This is well de-

fined, because the structure of references in our supermodel is acyclic, and therefore

recursion is bounded. Let us consider few cases from our running example, namely

schemas I1 and I2 in Figure 2.2. We have a column Title for a table Project in both

schemas, and the two are equivalent, as they have the same name, the same properties

(they are both non-key), and refer to equivalent elements (the tables named Project).

Instead, the column Title of Project in I1 is not equivalent to Title of Manager in I2,

because Project and Manager are not equivalent. Also, the two columns named SSN

are not equivalent, because the one in I1 is key and that in I2 is not.

Definitions of the operators

We are now ready to give our definitions and show some examples. According to what

we said in the previous section, we assume that suitable renamings have been applied

in such a way that a unique name assumption holds. We start with a preliminary

notion, to be revised shortly.

Given two schemas S and S′, the difference DIFF(S, S′) is a schema S′′ that contains

all the schema elements of S that do not appear in S′.

This first intuitive idea must be refined, otherwise some inconsistencies could

arise. In fact, it may be the case that a schema element appears in the result of a
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difference while an element it refers to does not. This causes incoherent schemas with

“orphan” elements. With respect to the schemas in our running example, this hap-

pens for the column MgrID in the difference DIFF(I2, I1), which belongs to the result,

while the table Project does not. Instead we want to have coherent schemas, where

references are not dangling.

In order to solve this difficulty, we modify our notion of a schema, by introducing

stub elements (similar to the support objects of [Ber03]). Specifically, we extend

the notion of schema element, by allowing two kinds: proper elements (or simply

elements), those we have seen so far, and stub elements, which are essentially fictitious

elements, introduced to guarantee that required references exist. We say that a schema

is proper if all its elements are proper.

According to this technique, the result of DIFF(I2, I1) contains the stub version of

Project in order to avoid the missing reference of MgrID.

The definition of the difference should therefore be modified in order to take into

account stub elements both in the source schemas and in the result one.

Given S and S′, DIFF(S, S′) is a schema S′′ that contains: (i) all the schema elements

of S that do not appear in S′; (ii) stub versions for elements of S that appear also

in S′ (and so should not be in the difference) but are referred to by other elements in

DIFF(S, S′).

The notion is recursive, but well defined because of the acyclicity of our refer-

ences.

In the literature [Ber03], the DIFF operator is often used in model management

scripts to detect which schema elements have been added to or removed from a schema.

Our definition addresses this target. Given an “old” schema S and a “new” one S′, the

“added” elements (also called the positive difference) can be obtained as DIFF(S′, S)

whereas the “removed” ones (the negative difference) are given by DIFF(S, S′).

With respect to the running example in Figure 2.2, the negative difference,

DIFF(I1, I2), contains the columns MgrSSN of Project and SSN (key) and EID (non-
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key) of Manager. Column MgrSSN belongs to the difference since it belongs to I1
and there is no attribute with the same name in I2. Instead, EID and SSN belong to

DIFF(I1, I2) because the attributes with the same respective names in I2 have prop-

erties that differ from those in I1: EID is key in I1 and not key in I2, whereas the

converse holds for SSN. The negative difference does not contain the two tables as

proper elements, because they appear in both schemas, but it needs them as stub el-

ements because the various columns have to refer to them. The negative difference

also includes the foreign key in I1 since it does not appear in I2 (the foreign key in I2
involves different columns).

Similarly, the positive difference includes the columns MgrID of Project and SSN

(non-key), EID (key) and Title of Manager, both tables as stub elements, and the

foreign key in I2.

An important observation is that the definition we have given here is model-

independent, because it refers to constructs as they are defined in our supermodel.

At the same time, it is model-aware, because it is always possible to tell whether a

schema belongs to a model, on the basis of the types of the involved schema elements.

As a consequence, it is possible to introduce a notion of closure: we say that a model

management operator O is closed with respect to a model M if, whenever O is ap-

plied to schemas in M , then the result is a schema in M as well. Given the various

definitions, it follows that the difference is a closed operator, because it produces only

constructs that appear in its input arguments.

Let us now turn our attention to the second operator of interest, MERGE. We start

again with a preliminary definition.

Given S and S′, their merge Merge(S, S′) is a schema S′′ that contains the schema

elements that appear in at least one of S or S′, modulo equivalence.2

2Technically, both here and in the difference, we should note that schema elements have their identity.
Therefore, in all cases we have new elements in the results; so, here, we copy in the result schema the
elements of the two input schemas, and “modulo equivalence” means that we collapse the pairs of elements
of the two schemas that are equivalent (only pairs, with one element from each schema, as there are no
equivalent elements within a single schema).
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It is clear that merge is essentially a set-theoretic union between two schemas,

with the avoidance of duplicates managed by means of the notion of equivalence of

schema elements.

Since our schemas might involve stub elements, as we saw above, let us consider

their impact on this operator. Clearly, the operator cannot introduce new stub ele-

ments, as it only copies elements. However, stubs can appear in the input schemas,

and the delicate case is when equivalent elements appear in schemas, proper in one

and stub in the other.3

Given S and S′, their merge MERGE(S, S′) is a schema S′′ that contains the schema

elements that appear in at least one of S or S′, modulo equivalence. An element in

S′′ is proper if it appears as proper in at least one of S and S′ and stub otherwise.

As an example, consider the following schemas, each composed of a single table. S:

Project(PCode, Title) and S′: Project(PCode, MgrSSN). Their merge will be another

schema S′′ containing the table Project(PCode, Title, MgrSSN). Notice that the table

Project and the column PCode appear both in S and in S′ and, since they are recog-

nized as equivalent, there are no duplicates in S′′. The column Title appears only in

S while MgrSSN only in S′; therefore one copy of each is present in the result schema

S′′. We will see a complete example of MERGE in Section 2.4, while discussing the

details of our running example.

For this operator, arguments for model independence and model closure can be

made in the same way as we did for DIFF: specifically, only schema elements deriving

from schemas S and S′ will appear in the result and, consequently, if they belong to a

given model, then S′′ will belong to that model as well.

For the sake of homogeneity in notation, let us define also the operator that per-

forms translations between models:

Given a schema S of a source model M and a target model M ′, the translation

3Equivalence of elements neglects the difference between stub and proper elements, as it is not relevant
in this context.
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MODELGEN(S,M ′) is a schema S′ of M ′ that corresponds to S.

We have discussed at length MODELGEN elsewhere [ACB06, ACT+08]. Here we

just mention that this notation refers to a generic version of it that works for all source

and target models (the source model is not needed in the notation as it can be inferred

from the source schema), thus avoiding different operators for different pairs of mod-

els. Indeed, our MIDST implementation [ACG07, ACT+08] of MODELGEN includes

a feature that can select the appropriate translation for any given pair of source and

target models.

2.3 Model-independent operators in MISM

In this section we show how the definitions of the operators can be made concrete,

in a model-independent way, in our tool, leveraging on the structure of its dictionary.

The implementation has been carried out in Datalog, and here we concentrate on its

main principles, namely the high-level declarative specification, and the possibility of

automatic generation of the rules, on the basis of the metalevel description of models.

The Datalog specification of each operator is composed of two parts:4

1. equivalence test;

2. procedure application.

The first part tests the equivalence to provide the second part with necessary prelimi-

nary information on the elements of the input schemas.

We first illustrate how the equivalence test can be expressed in Datalog, and then

proceed with the discussion for the specific aspects of DIFF and MERGE. At the end of

the section, we discuss how all these Datalog programs can be automatically generated

out of the dictionary.

4For the sake of readability we describe them in a procedural way, even if the specification is clearly
declarative.
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Equivalence test

The first phase involves the implementation of a test for equivalence of constructs,

according to the definition we gave in Section 2.2. Given the definition, all we need

is a rule for each model-generic construct that compares the schema elements that are

instances of such a construct. It refers to two schemas, denoted by the “schema vari-

ables” SOURCE_1 and SOURCE_2, respectively. DEST refers to the target schema

where the results will be stored. If a rule is applied with reference to only one source

(target) schema the keywords SOURCE (DEST) can be omitted. It generates an in-

tensional predicate (a view, in database terms) that indicates the pairs of OIDs of

equivalent constructs. As an example, let us see the Datalog rule that compares Ag-

gregations.

EQUIV_Aggregation [DEST] (
OID1: oid1,
OID2: oid2

)
<-
Aggregation [SOURCE_1] (

OID: oid1,
Name: name

),
Aggregation [SOURCE_2] (

OID: oid2,
Name: name

);

Aggregation has no references (and also no properties) and so the comparison is

based only on name equality (verified with the variable name). If the names of the

two Aggregations are equal, then they are equivalent, and so their OIDs are included

in the view for equivalent Aggregations. In the running example, tables Project and

Manager of the two schemas are detected as equivalent since they have the same

names, respectively.
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The situation becomes slightly more complex when constructs involve references.

This is the case for Lexicals of Aggregation (in the running example, the various

columns of Project and Manager).

EQUIV_Lexical [DEST] (
OID1: oid1,
OID2: oid2

)
<-
Lexical [SOURCE_1] (

OID: oid1,
Name: name,
isIdentifier: isId,
isNullable: isNull,
type: t,
aggregationOID: oid3

),
Lexical [SOURCE_2] (

OID: oid2,
Name: name,
isIdentifier: isId,
isNullable: isNull,
type: t,
aggregationOID: oid4

),
EQUIV_Aggregation (

OID1: oid3,
OID2: oid4
);

The first and the second body predicates compare names and homologous prop-

erties of a pair of Lexicals, one belonging to I1 (SOURCE_1) and the other to I2
(SOURCE_2). Comparisons are made by means of repeated variables (such as name,

isId, isNull, t). Moreover, as Lexicals involve references to Aggregations (as no col-

umn exists without a table, in the example), we need to compare the elements they

refer to. The last predicate in the body performs this task by verifying that the Aggre-

gations (tables) referred to by the Lexicals (columns) of I1 and I2 are equivalent (i.e.

the corresponding pair of OIDs is in the equivalence view for Aggregation).
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If the constructs under examination belonged to a deeper level, there would be a

predicate to test the equivalence of ancestors for each step of the hierarchical chain.

Each predicate would query the appropriate equivalence view to complete the test.

Termination is guaranteed by the acyclicity of the supermodel.

Let us observe that the Datalog program generated in this way is model-aware

since it takes into account the type of constructs when performing comparisons. In

fact, as it is clear in the examples, Datalog rules are defined with specific respect to

the type of the constructs to be compared: a Lexical is compared only with another

Lexical and so for an Abstract or other constructs.

The program is model generic as well, since the set of rules contains a rule for each

construct in the supermodel. Then a given pair of schemas will really make use of a

subset of the rules, the ones referring to the constructs they actually involve according

to their model.

The DIFF operator

The DIFF operator is implemented by a Datalog program with the following steps:

1. equivalence test (comparison between the input schemas);

2. selective copy.

The first step is the equivalence test we have described in Section 2.3.

As for the second step, there is a Datalog rule for each construct of the supermodel,

hence taking into account each kind of schema element: the rule verifies whether the

OID of an element of the first schema belongs to a tuple in the equivalence view. If

this happens, this means that there is an equivalent construct in the second schema,

implying that the difference must not contain it, otherwise the copy takes place. For

example, the rule for Aggregations results as follows:

Aggregation [DEST] (
OID: #AggregationOID_0(oid),
Name: name
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)
<-
Aggregation [SOURCE_1] (

OID: oid,
Name: name

),
!EQUIV_Aggregation (

OID1: oid
);

The rule copies into the result schema all the Aggregations of SOURCE_1 that are

not equivalent to any Aggregation of SOURCE_2. The condition of non-equivalence

is tested by the negated predicate (negation is denoted by “!”) over the equivalence

view; in fact, if the OID of an Aggregation of the first source schema is present in the

view, then it has a corresponding Aggregation in the second source schema, and so it

must not belong to the difference.

With reference to the running example, let us compute DIFF(I1, I2). The rule

above represents the computation of the difference with respect to tables. Since in

Figure 2.2 both Project and Manager in I1 have an equivalent table in I2, then the

difference does not contain any Aggregation.

Consider now the rule for Lexicals (columns):

Lexical [DEST] (
OID: #LexicalOID_0(oid),
Name: name,
isIdentifier: isId,
isNullable: isNull,
type: t,
aggregationOID: #AggregationOID_0(oid1)

)
<-
Lexical [SOURCE_1] (

OID: oid,
Name: name,
isIdentifier: isId,
isNullable: isNull,
type: t,
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aggregationOID: oid1
),
Aggregation [SOURCE_1] (

OID: oid1
),
!EQUIV_Lexical (

OID1: oid
);

It copies into the result schema all the Lexicals of SOURCE_1 that are not equivalent

to any Lexical of SOURCE_2.

In the example of Figure 2.2, the Lexical MgrSSN has been removed from Project.

Also, SSN of Manager is key in I1 but not in I2 and the converse for EID. Conse-

quently all of the mentioned Lexicals will belong to the difference DIFF (I1, I2).

For the sake of simplicity, we have omitted from the above rules the features that

handle stub elements. However the actual implementation of the difference requires

them in order to address the consistency issues we have discussed in the previous

section. The strategy we adopt is the following: when a non-first level element (that

is, one with references) is copied, the procedure copies its referred elements too if

they are not copied for another reason. Then, unless they are proper parts of the result,

the procedure marks the referred elements as stub. The following rule exemplifies this

with respect to Aggregations.

Aggregation [DEST] (
OID: #AggregationOID_0(oid),
Name: name,
isStub: true

)
<-
Aggregation [SOURCE_1] (

OID: oid,
Name: name

),
EQUIV_Aggregation (

OID1: oid,
isStub: false

);
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If a Lexical (referring to an Aggregation) belongs to the difference, then the re-

ferred Aggregation must be copied into the difference as stub (if it has not been copied

directly). The rule above copies from the first schema every Aggregation that would

not belong to the difference since it has an equivalent (non stub) element in the second

schema (which is verified by the predicate over the view, which also contains informa-

tion on whether the equivalence involves stub elements) and marks it as stub. As for

the input, we must subtract schemas with stub elements properly. Thus the selective

copy in step 2 must be adapted: it should copy (into the result schema) a non-stub

element in the first schema only if the second schema does not contain a non-stub

equivalent element. This last condition is tested by a predicate over an equivalence

view like the one in the above Datalog rule.

The techniques described refer to the rules for the specification of the difference

of schemas. Indeed, as our dictionary includes also a data level which lists all data

items that instantiate a given construct, it is interesting to see how the operator could

be specified in such a way that the result is a schema, as we saw above, together with

the associated data. While working at MODELGEN, we tackled the same issue, and we

developed a technique that generated data level Datalog programs out of schema level

ones [ACB06]. In such a context, correctness was a delicate issue, as each translation

has its own specific features, and the tool administrator has the responsibility of ver-

ifying the correctness. Here we are interested in a general program, that implements

difference, and therefore we cannot rely upon the approval of a human. However,

things are indeed easier, as the difference needs to include all instances of the con-

structs that appear in the result schema: for example, if the result of DIFF includes

table Manager, then we need all its instances in the result database, but this is just a

copy, as Manager is a table in the source schema as well. So, data level rules for DIFF

could be produced as rules that copy all instances of constructs, with the condition

that the construct appears in the result schema, which is easy to express, as it is indeed

the condition in the body of the schema rule. Therefore, while we omit the details for

the sake of space, we can safely claim that we can generate correct rules that operate
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on data from those that operate on schemas.

The MERGE operator

The approach we follow for MERGE is based on the same ideas as the one for DIFF. We

code it in terms of Datalog rules defined over the constructs of MIDST supermodel.

Rules copy elements of one type to elements of the same type and we guarantee the

needed model closure.

The MERGE operator, as defined in Section 2.2, is represented by a Datalog pro-

gram with the following tasks:

1. equivalence test (comparison between the input schemas);

2. selective copy from the first argument;

3. selective copy from the second argument.

The first step involves the computation of an equivalence view containing the cor-

respondences between the elements of the input schemas.

Assume we are computing S′′ = MERGE(S, S′). In step 2 the procedure copies

into the destination schema S′′ all the elements in S, except those that are stub in S

and non-stub in S′. In step 3 the procedure copies all the elements of S′ that are not

present in S and those that are non-stub in S′ and stub in S.

The combination of these two steps implies that in S′′ there will not be duplicates

of any element. If an element is present both in S and S′, in S as a stub and in S′ as

a non-stub, it will be present in S′′ as a non-stub. A stub element will appear in the

result as stub as well, if an element is present only in S or S′ as a stub or both in S

and S′ as stub.

In such an implementation of the MERGE, a thorough handling of references is

important and we achieve this by means of Skolem functions, which are injective as

we said in the previous section.
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In fact, it may happen for an element of the result schema to have a stub parent in

the first source schema and a non-stub parent coming from the second source schema:

let E be an element of S which is copied into the result schema. E has a stub parent

P in S and there is another element P ′ which is the equivalent non-stub element of

P in S′. P will not be copied from S, but there will be its equivalent P ′ coming

from S′. As a consequence, the reference of E to P must use an OID that is derived

from the OID of P ′ in S′ and not from the OID of P in S. As we have seen for the

difference, this logic can be implemented in Datalog on the basis of a predicate over

the equivalence views.

By following arguments similar to those for DIFF, we can claim that, from the

schema level Datalog programs for MERGE, we can generate programs that implement

the operator on data, thus performing the merge of the actual databases (in the internal

representation in our dictionary). The reason is that the operator is again a sort of

selective copy.

Automatic generation of Datalog programs for the operators

The implementations of both the phases of the operators are based on comparisons

and copies of schema elements considered in terms of constructs of the supermodel.

We have seen in Chapter 1 that MIDST handles the descriptions of these constructs

in a dictionary, defining their names, features and references to one another. An au-

tomatic generation of the Datalog programs we have presented is possible and indeed

represents a key point of the approach we propose here. Concretely, we propose a new

module of MISM, OpGen, that automatically generates the rules according to the su-

permodel constructs. OpGen reads the information in the dictionary about constructs,

their references, and their properties, and uses it to produce appropriate Datalog rules

in the right order, according to the structure of constructs. As we said in the respective

sections, for each operator we can generate data level rules that perform the selective

copy of the instances of the involved constructs.

Automatically generated operators are not only model-independent but also

38



2.4. A model-independent solution to the round-trip engineering problem

supermodel-independent. In fact, in case of extensions to and modifications of the

supermodel, all we need is to use OpGen to generate an updated version of the opera-

tors.

It is worth noting that our model-generic operators are scalable, since their internal

complexity does not depend on the size of the input schemas nor on the number of

modifications. In fact, they are generated by OpGen once and work for every possible

set of input schemas defined in terms of constructs of MIDST supermodel. Moreover,

although more efficient implementations of them could be designed, their application

is entirely devoted to the database system which addresses, as a consequence, all the

optimization issues.

2.4 A model-independent solution to the round-trip engineering
problem

In the previous sections we described the most common model management operators.

We have shown that since they are defined over the constructs of MIDST supermodel,

they are model-independent; moreover we have shown that it is possible to exploit

their model awareness in order to satisfy the model closure property. This implies

that solutions to model management problems, given in terms of these operators, are

model-independent.

Here we show how our approach can be used to provide a model-independent

solution to the round-trip engineering problem, illustrated in the introduction as one

of the most representative ones in the model management area.

The general procedure

Consider Figure 2.3: S1 is the specification schema and I1 the implementation schema

obtained from S1 with the application of the transformation (a translation and, possi-

bly, some customizations) map1. Let I2 be a modified version of I1. The goal is to

determine a specification S2 from which I2 could be derived.
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Figure 2.3: A procedure for the round-trip engineering problem

Operationally, we assume that I1 has been generated from the specification schema

by the MODELGEN operator, possibly followed by a customization step; viceversa, we

make no specific assumption on how I2 has been obtained: it could be some transfor-

mation (specified by means of a Datalog program or in some other way), or a manual

modification or evolution of I1, or it could even come from an external input.

Then the procedure is as follows.

1. G′−2 = DIFF(I1, I2)

Here we use the DIFF operator to detect which elements of the implementa-

tion schema I1 do not appear in the revised version I2: these are the elements
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belonging to I1 but not to I2 (i.e. the removed elements).

2. G′+2 = DIFF(I2, I1)

This difference (with parameters swapped with respect to the previous one)

allows to compute which elements have been added in the revision which led

from I1 to I2. In fact, these elements are all the ones present in I2 but not in

I1.

3. S′−3 is obtained by applying to G′−2 the reverse of the mapping map1. The

details then depend on the way map1 is defined. In the common case where it

is an automatic translation from the specification model to the implementation

one (an application of MODELGEN), possibly followed by a customization, we

have that reverse can be done with MODELGEN as well, with a translation from

the implementation model to the specification one. This ignores the possible

customizations, under the assumption that changes in I1 (yielding I2) do not

involve customized elements. In fact, if this is the case,G′−2 will not include the

customized elements, since they are removed by the difference step. It should

be noted that in general the existence of the inverse of a given translation is not

guaranteed. We will discuss this issue later in this section.

4. Similarly for the other difference: S′+3 is obtained by applying to G′+2 the re-

verse of the mapping map1.

5. H = MERGE(S1, S
′+
3 )

H is the union of the original specification S1 with the reversed difference S′+3
containing the added elements. Therefore, H contains all the original elements

plus the added ones.

6. S2 = DIFF(H,S′−3 )

The last operation of the procedure subtracts S′−3 from the temporary result H ,

because the elements in S′−3 are those that correspond to the elements removed

in the implementation.
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It is clear that this procedure does not require information about the models of the

source schemas, since the operators act at MISM metalevel, dealing with constructs

directly, however the model awareness of MISM guarantees the model closure. In

fact, in the same way as we do for translations in our previous tool MIDST (see Sec-

tion 1.1), we apply our operators in the supermodel framework, and the procedure is

preceded and followed by copy steps, the first from the specific source model to the

supermodel and the second from the supermodel to the specific model, which essen-

tially rename constructs. An example should get the meaning across: suppose the

specification data model is ER, while the implementation belongs to the relational

model. Before applying the DIFF between I1 and I2, we rename all the elements in

terms of constructs of the supermodel. After this step, there is no need to take into

account the model-specific constructs anymore and the procedure can continue with

respect to model-generic constructs only. Then, since the operators are defined in such

a way that the difference between two schemas of a model belongs to that model, then

we are guaranteed that the two differences in the procedure belong to the relational

model as well. Finally, we apply MERGE and DIFF on ER schemas. These operators

work independently of the model. However, we are sure that the results will also be-

long to the ER model because, as we have illustrated, the operators do not add any

new element.

Moreover, it is important to observe that, if S1, I1 and I2 are proper (and coher-

ent,5 as we always assume) schemas, then the result S2 of the script is a proper schema

as well. Consider the last two steps of the procedure ((i) H = MERGE(S1, S
′+
3 ), (ii)

S2 = DIFF(H,S′−3 )): S1 is assumed to be proper (the script starts from a specifica-

tion without stubs). S′+3 contains added elements which may refer to stub parents.

However, as I1 and I2 are coherent, we have that non-stub equivalents for these stub

parents are already present in S1. Therefore H is proper. S′−3 contains the removed

constructs. Then, as I2 is coherent, in S′−3 we cannot come across the removal of

5As we said in Section 2.2, a schema is coherent if all its constructs have no dangling references to
other constructs.
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parent elements when their descendants are preserved. Therefore S2 is proper.

In the above procedure, we have referred to applications of MODELGEN from the

specification model to the implementation one and viceversa, as if they were one the

inverse of the other. This need not be always the case, because models have different

expressive power. However, from the practical point of view, we have reasonable so-

lutions, as follows. A preliminary observation is that our translations can be seen as

schema mappings where the correspondences are represented by Skolem functions.

In general, schema mappings are not always invertible according to the strict defini-

tion, but in the literature there are proposals for relaxed constraints guaranteeing the

existence of a kind of inverse mapping. According to Fagin et al. [FKPT07] a Lo-

cal As View (LAV) schema mapping, having a set of Tuple Generating Dependencies

(TGDs) where their left-hand sides are singleton, always admits a quasi-inverse cor-

responding mapping. Let us consider a mapping m and a source schema S; applying

m to S we obtain another schema T . A quasi-inverse mapping does not permit to

reobtain S (with its original data) from T , however, it allows to obtain a schema S∗

such that applyingm to it we have T again (with all its data). In our approach the only

translation rules dealing with the actual data are the ones involving Lexicals. All these

rules are LAV TGDs and therefore the whole translation is a LAV schema mapping

and so each translation admits at least a quasi-inverse one that is part of the MISM

repository. In general, a translation can lead to loss of information (i.e. when we

translate a model into a less expressive one); in such cases it is not possible to define

an inverse translation, but only a quasi-inverse one. It is worth noting that this loss

of information has already been accepted by the user of the system when performing

the first translation (from the specification to the implementation). Moreover, this is

the only loss of information of the whole process. In fact after the first translation, it

is possible to apply the quasi-inverse translation and the direct one repeatedly always

obtaining the same schemas (with the same data). The inverse (quasi-inverse) transla-

tion does not cause loss of information even if it turns a model into a more expressive

one. In fact, the input schema of the inverse translation has been obtained from a
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schema of a less expressive model; therefore it contains only structures that can be

represented in such a model.

Application of the round-trip solving procedure

Now we present the details of the application of the round-trip solving procedure to the

case already shown in Figure 2.2. The specification domain is the ER model, while the

implementations are relational schemas. It is a common scenario in which high level

specifications are conceptually designed with an ER schema. The implementation,

which in this situation belongs to the relational model, is then derived from the ER

through the application of a translation rule.

The various steps are shown in Figure 2.4. Schema S1 is composed of two entities,

Project and Manager, and has a relationship R between them. PCode and Title are

Project attributes (PCode is key), while SSN, Name and EID are Manager attributes

(SSN is key).

Map1 is implemented in two parts: a first part of the transformation is represented

by ER-to-relational translation rule. A second part of it consists of the customization

step which splits Name into FName and LName.

The transformation from the old to the new implementation modifies the table

Project by changing the name of its column MgrSSN (to MgrID); it also modifies the

Manager by adding the column Title and changing its key (from SSN to EID). The

foreign key that in I1 connects the column SSN with the table Manager, does not exist

anymore, it is replaced by a new foreign key from the column MgrID of Project to the

table Manager.

The first step of the solving procedure is the double application of the DIFF rules

to I1 and I2 which yields G′−2 (negative difference) and G′+2 (positive difference), as

we have already seen with examples for the operator in Section 2.2.

Then each semi-difference is reversed with the application of the MODELGEN op-

erator, with the ER model as a target. In the case under examination, the reverse

translation is simple, while in general it might be much more complex. Notice that in
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Figure 2.4: An example of application of the round-trip solving procedure
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the application of the reverse rule, the stubness property of elements is preserved, then

for example the entity Project in S′+3 is stub as well as in G′+2 . Notice that the foreign

key of G′−2 is reversed into the relationship R (that is the same as in S1,6 while the

foreign key of G′+2 is reversed into the relationship R1 (that is different from the one

in S1).

Now we have three different versions of the specification: the original one, S1,

together with S′−3 , including all the elements that have to be removed, and S′+3 , con-

taining all the added elements.

The set-oriented merge of schemas S1 and S′+3 leads to an updated specification,

H , containing all the initial elements plus the added ones. Then in H we have Project

with PCode (coming from S1) and Title (from S1) (the table Project is not stub any-

more since it comes from S1); moreover, there is the table Manager (non-stub for the

same reason as Project) with the attributes Name (coming from S1), SSN (from S+
3 ),

SSN (key) (from S1), EID (from S1), EID (key) (from S+
3 ) and Title (from S+

3 ). H

also contains two relationships, R (coming from S1) and R1 (from S′+3 ).

Finally, we need to subtract from H all the non-stub elements in S′−3 . Therefore,

SSN (key) and EID are not present in the obtained result S2. The relationship R of

H is also present in S′−3 , so the only relationship between Project and Manager in S2

will be R1.

2.5 Conclusions

In this chapter we moved from the classical Bernstein’s definition of model man-

agement and illustrated MISM, a model management system based on MIDST. As

a concrete example of a major model management problem we considered round-

trip engineering; indeed, many other problems such as data integration, forward en-

gineering and so on, can be considered a specialization of it. MISM, also presented

6We can get back the “original” name because each construct has a name property; hence also the
foreign key has a name property (not shown in figure) in our construct-based representation; in detail, we
instantiated the name of the foreign key during the translation from S1 to I1 and we did the same during
this step.
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in [ABBG08, ABBG09b], is the technical opportunity to describe a completely model-

independent but model-aware approach to model management that, to the best of our

knowledge, is the first proposal in this direction.
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CHAPTER 3

A run-time approach to model and schema
translation

MIDST, the platform we described in the previous chapters, was conceived to perform

translations in an off-line fashion. In such an approach, the source database (both

schema and data) is imported into a repository, where it is stored in a universal model.

Then, the translation were applied within the tool as a composition of elementary

transformation steps, specified as Datalog programs. Finally, the result (again both

schema and data) was exported into the operational system.

In this chapter we illustrate a new, lightweight approach where the database is not

imported. MIDST-RT needs only to know the schema of the source database and the

model of the target one, and generates views on the operational system that expose the

underlying data according to the corresponding schema in the target model. Views are

generated in an almost automatic way, on the basis of the Datalog rules for schema

translation.

The proposed solution can be applied to different scenarios, which include data

and application migration, data interchange, and object-to-relational mapping between

applications and databases.
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3.1 The scenario

The problem of translating schemas between data models is acquiring progressive sig-

nificance in heterogeneous environments. This is motivated by the fact that applica-

tions are usually designed to deal with information represented according to a specific

data model, while the evolution of systems (in databases as well as in other technol-

ogy domains, such as the Web) led to the adoption of many representation paradigms.

For example, many database systems are nowadays object-relational (OR) and so it

is reasonable to exploit their full potentialities by adopting such a model while most

applications are designed to interact with a relational database. Also, object-relational

extensions are often non-standard, and conversions are needed. Moreover, there is

currently a significant adoption of XML repositories that manage native XML data.

This fact has increased the heterogeneity of representations.

In general, the presence of several coexisting models introduces the need for

translation techniques and tools. In fact, Model Management (Bernstein [Ber03]), a

high-level approach to meta data management that offers high-level operators to deal

with schemas and mappings, includes an operator (called ModelGen) for translating

schemas from a model to another.

MIDST adopts a metalevel approach towards translations by performing them in

the context of a universal model (called the supermodel1), which allows for the man-

agement of schemas in many different data models. The tool has been experimented

with many models, including relational, object-oriented (OO), object-relational, entity-

relationship (ER), XML-based, each in many different variants. Translations are or-

ganized according to the following pattern. First, the source database is imported into

the tool and described in its dictionary in terms of the supermodel. Then, the trans-

lation is performed by means of a sequence of elementary steps (rules), each dealing

with a specific aspect to be eliminated or transformed. Finally, the obtained database

1The use of a universal model has been adopted, in different forms, by the various projects mentioned
above [ACT+08, AT96, Hai06, MP99, MBM07b, PT05, SM08].
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is exported into the target operational system.2 This approach provides a general so-

lution to the problem of schema translation, with model-genericity (as the approach

works in the same way for many models) and model-awareness (in the sense that the

tool knows models, and can use such a knowledge to produce target schemas and

databases that conform to specific target models). However, as pointed out by Bern-

stein and Melnik [BM07], this approach is rather inefficient. In fact, the necessity to

import and export a whole database in order to perform translations is out of step with

the current need for interoperability in heterogeneous data environments.

Here we illustrate an evolution of MIDST, leading to a new platform, MIDST-

RT [ABB+12, ABBG09a]: it is based on a runtime approach to the translation prob-

lem, where data is not moved from the operational system and translations are per-

formed directly on it. What the user obtains at runtime is a set of views (defining

the target schema) conforming to the target model. The approach is model-generic

and model-aware, as it was the case with MIDST, because we leverage on MIDST

dictionary for the description of models and schemas and also on its key idea of hav-

ing translations based on the supermodel, obtained as composition of elementary ones.

However, the management of the involved data is completely different. In fact, the im-

port process concerns only the schema of the source database. The rules for schema

translation are used here as the basis for the generation of views in the operational

system. In such a way, data is managed only within the operational system itself. In

fact, our main contribution is the definition of an algorithm that generates executable

data level statements (view definitions) out of schema translation rules.

A major difference between an off-line and a runtime approach to translation is the

following. For an off-line approach, as translations are performed within the transla-

tion tool (MIDST in our case), the language for expressing translations can be chosen

once, for all models. A significant difficulty is in the import/export components, which

have to mediate between the operational systems and the tool repository, in terms of

2We use the term operational system to refer to the system that is actually used by applications to
handle their data.
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both schemas and data. In fact, in the development of the original, off-line version

of MIDST, a lot of effort was devoted to import/export modules, whereas all transla-

tions were developed in Datalog. In a runtime approach, instead, the difficulties with

import/export are minor, because only schemas have to be moved, but the translation

language depends on the actual operational systems. In fact, if there is significant

heterogeneity, then stacks of languages may be needed (involving for example, SQL,

SQL/XML, XQuery, and combinations of them). Also, different dialects of the vari-

ous languages may exist, and our techniques need to cope with them.

In order to handle the heterogeneity of the involved languages, we propose an

approach that, after a preliminary abstract representation, first generates views orga-

nized according to the target model, but independent of the specific languages, and

then actually concretizes them into executable statements on the basis of the specific

language supported by the operational system.

In this Chapter we describe a general solution to the language independent step,

whereas for the final one we concentrate on SQL, with respect to a set of models that

include many variations of the object-relational model and of the relational one, and

their extension with XML.

3.2 Application cases

The main result of our work is the ability to define views over the operational system,

in order to execute a light transformation that needs only to import the source schema

in our dictionary. The meaning of “view” depends on the operational system: for an

RDBMS or an ORDBMS, a “view” is a stored query leading to a virtual table that

shows data in a different way; for an object-oriented language, a “view” is a set of

objects that reference each other; for the Web, a “view” can be an XML document

that shows data extracted from a relational database.

In this section we briefly describe some representative problems in this context

and explain how MIDST-RT can support them.

52



3.2. Application cases

Data and application migration

“Data-migration” is a process of data movement between different storage systems

(and different technologies) caused by changes in the technology or in the organi-

zation of data. In order to obtain an effective migration, it is important to keep in

mind that applications have to be migrated as well. As argued by Brodie and Stone-

braker [BS95], migration needs to be incremental, and some legacy functions should

coexist with the newly developed ones. MIDST-RT can support this, by offering two

different interfaces to the same database. Let us consider the following practical prob-

lem in order to see how to solve it using MIDST-RT:

• let A be an ORDBMS used by some applications of an enterprise;

• the enterprise decides to change its commercial partner, so it will use B, an-

other DBMS (with a different version of the object-relational model or with the

relational one);

• given the actual differences between systems A and B, the original schema is

not compatible with B and so current applications do not work with it. New

applications need to be developed and tested, without interrupting operation.

Figure 3.1 explains how we can support this problem:

1. MIDST-RT can generate a set of views over system A that show a schema com-

patible with the specification of system B. In such a way, the enterprise can

gradually update its applications: the modified components will use the new

schema shown by the set of generated views, while the other ones will use the

original schema;

2. then, after all applications have been modified, the data can be actually mi-

grated, by executing the same queries that define the views, this time material-

izing their results.
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Figure 3.1: The data migration scenario

It is important to observe that this approach would support the intermediate phase

where the old data exist together with the new schema, while off-line or data-exchange

approaches [ACT+08, HHH+05, Hai06, SM08] would support only the last step.

XML for data interchange

XML is widely used in the process of data movement between applications or DBMSs,

especially via a network. Thus, a user can benefit from the usage of XML formats for

different reasons: she can migrate a database using the network, she can allow the

communication between incompatible systems, she can use such an XML file as an

input for an application, and so on. MIDST-RT is able to create an XML view over

a relational or object-relational database. We talk about an “XML view” because we

perform a runtime translation: first, we do not import data into MIDST-RT, but only

the schema of the source database; then, we produce executable statements, so the

XML file is always up to date even when the source database is frequently updated.

As an example, we can consider the following simple scenario. A user has a relational

database and she wants to send data to a Java application through the network. She

needs to produce an XML document that contains such a data, and then she needs

a framework for the marshalling/unmarshalling of the document. MIDST-RT helps

54



3.2. Application cases

the creation of the XML document in a flexible way with three interesting features

which differentiate this approach from the data exchange one [MHH00]: the dynamic

generation, the handling of various source models and the possibility of customiz-

ing translations. Such a document will be processed by the destination application,

possibly by taking advantage of the document schema (XSD).

In Subsection 3.7 we will show a concrete example for this scenario by using

MIDST-RT.

O/R mapping

The need for mapping object-oriented applications and relational databases arises in

many contexts [MAB07, MBM07b], and various technologies have been developed to

support it. The problem can be seen in two major forms: (i) given a relational schema

(or an object-relational one) it is convenient to produce object-oriented wrappers, that

is, software artifacts that ensure an object-oriented access to a relational database;

(ii) given a set of classes that define objects in an object-oriented language it is often

useful to obtain the schema of a relational database for the persistent storage of the

corresponding data.

As far as the first scenario concerns, MIDST-RT can contribute with the generation

of wrappers, which can be seen as a form of views, with benefits in the flexibility both

in the source model (many variations of the relational and object-relational ones) and

in the target model (different languages and programming conventions), as well as in

the mapping (which can be customized, for example for performance issues). We will

see in Subsection 3.7 a concrete example for this scenario.

In the second scenario we want to automatically generate a database from a set

of classes. Even with respect to existing technologies that support this problem (such

as JDO [Jor03], Hibernate [BK06], or ADO.NET Entity Framework [MAB07]), or in

combination with them, MIDST-RT can provide specific benefits:

• flexibility in the database management, thanks to the knowledge of different

representations of the object-relational model;
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Figure 3.2: The runtime translation procedure

• flexibility in the definition of the target schema, thanks to the possibility of

transforming the source schema before the creation of the mapping.

At the moment, we have not implemented this scenario in MIDST-RT, but we are

working on it, since it is an important application for our tool. This can be realized by

introducing an object-oriented importer that translates a set of Java or C# classes into

MIDST-RT internal representation.

3.3 Outline

The starting point for this work is MIDST [ACT+08], a platform for model-

independent schema and data translation based on a meta-level approach over a wide

range of data models as described in Chapter 1.

Here is described a new approach and an enhanced version of the platform (called

MIDST-RT) which enables the creation of executable statements generating views in

the operational system. Let us illustrate the runtime translation procedure, by follow-

ing the main steps it involves, with the help of Figure 3.2:
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1. given a schema Ss (of a source model Ms) in the operational system, the user

(or the application program) specifies a target model Mt;

2. schema Ss (but not the actual data) is imported into MIDST-RT, and specifically

in its dictionary, where it is described in supermodel terms;

3. MIDST-RT selects the appropriate translation T for the pair of models (Ms,Mt),

as a sequence of basic translations available in its library;

4. the schema-level translation T is applied to Ss, still within the tool, to obtain

the target schema St (according to the target model Mt);

5. on the basis of the schema-level translation rules in T, MIDST-RT generates

views in the specific language available in the operational system;

6. MIDST-RT exports and executes the produced statements over the operational

system, in order to create a set of views that perform the translation.

Let us observe that steps 1-4 appear also in the previous version of MIDST,

whereas 5 is completely new, in all its phases, and clearly significant. Step 6 is a

revised form of the export step of MIDST: it exports and executes the view creation

statements, rather than exporting the data.

As a running example, let us consider an environment where some applications

interact with an object-relational database. Then, assume we want to write an appli-

cation that uses the same data but interacting with a relational data model. We can

consider a version of the OR model that has the following features:3 tables, typed

tables (i.e. tables with identifiers), references and foreign keys between typed tables

and generalizations over typed tables.

In this scenario, our tool generates relational views over the object-relational

schema, which can be directly used by the new application program.

3This is just a possible version of the OR model, and our tool can handle many others.
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Figure 3.3: An object-relational schema

A concrete case for this example involves the OR schema sketched in Figure 3.3.

The boxes are typed tables: employee (EMP) is a generalization for engineer (ENG),

which is in turn a generalization for IT-engineer (IT_ENG); office (OFFICE) is refer-

enced by employee.

The goal of the runtime application of MIDST is to obtain a relational database for

this, such as the one that involves the following tables with the foreign keys suggested

by the names of the attributes (details omitted for the sake of space):4

OFFICE (OFFICE_OID, offName, city)

EMP (EMP_OID, lastName, OFFICE_OID_fk)

ENG (ENG_OID, school, EMP_OID_fk)

IT_ENG (IT_ENG_OID, specialty, ENG_OID_fk)

Given the schema in Figure 3.3, our tool first imports it into its dictionary. Then,

given the specification of the target model (the relational one), the tool automatically

selects an appropriate schema-level translation, which is a sequence of basic trans-

lations, each specified by means of a Datalog program. The user can customize the

4As it is well known, there are various ways to map generalizations to tables, and this is one of them.
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proposed sequence, in order to execute a personalized translation. The customization

may include the addition, removal or reorder of the basic translations of the sequence

chosen by the tool.

In the example, the schema-level translation performs the following tasks: it first

eliminates the multiple levels of generalizations (in the example, the one between

ENG and EMP and the one between IT_ENG and ENG) and then transforms the

typed tables (all tables in the source) into value-based tables. In MIDST this would be

done in four steps, with a first Datalog program for the elimination of generalizations

and a fourth one for the transformation of typed tables into value-based ones with

two auxiliary intermediate steps for the introduction of keys and the replacement of

references with foreign keys, respectively. The tool we propose here generates a set

of view statements for each of these Datalog programs.

The following is a sketch of one of the view definitions generated in the first step:

CREATE VIEW ENG_A ... AS
SELECT ... SCHOOL, ... EMP_OID
FROM ENG ;

We use the name ENG_A to distinguish the new version from the original one.5 View

ENG_A extends ENG with a supplementary attribute, EMP_OID. It implements a

strategy for the elimination of generalizations, where both the parent and child typed

tables are kept, with a reference from the child to the parent.

In Section 3.5 and 3.6, we will see in detail how we produce views of this kind,

by showing the principles, the complete description of the algorithm, and the specific

details that are needed for the SQL statements.

3.4 Translations

As described in Chapter 1 MIDST translation procedure is based on the generic con-

structs defined in the supermodel. Let us illustrate the main constructs and the main

5In the technical sections, we use this convention, with the suffix, when needed for the sake of read-
ability and conciseness. In the tool, names are repeated and distinguished by using different schema names.

59



3. A RUN-TIME APPROACH TO MODEL AND SCHEMA TRANSLATION

Metaconstruct Relational OR
Abstract - typed table
Lexical column column

BinaryAggregationOfAbstracts - -
AbstractAttribute - reference

Generalization - generalization
Aggregation table table
ForeignKey foreign key foreign key

StructOfAttributes - structured column

Figure 3.4: Simplified representation of MIDST metamodel

translation rules used in the running example, the object-relational schema of Fig-

ure 3.3. Figure 3.4 reports a list of MIDST for Relational and ObjectRelational mod-

els. Each of the typed tables (EMP, ENG, IT_ENG and OFFICE) is seen as an Abstract

in the supermodel. Then, each column of the typed tables (Specialty for IT_ENG,

School for ENG, LastName for EMP, OffName and City for OFFICE) is a Lexical and

is related to the corresponding Abstract. Similarly, reference fields (Office in this case)

are modeled as AbstractAttributes (of EMP in the example). Finally, Generalizations

appear in the supermodel: ENG is a child of EMP and IT_ENG is a child of ENG.

With reference to our running example, let us take into account the translation

from the version of the OR model we are considering towards a classical relational

model. In MIDST [ACT+08] this could be done as a process in four steps:

A elimination of generalizations;

B generation of identifiers for typed tables;

C elimination of reference columns with the introduction of value-based columns

and foreign keys;

D transformation of typed tables into tables.

In each translation step we copy, with a simple “copy rule”, all the constructs that

are not modified. For example, in order to copy an Abstract, we have the copy-abstract
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rule (R1):

R1 Abstract (
OID: SK2(oid),
Name: name

)
<-

Abstract (
OID: oid,
Name: name

);

The tool has a copy rule for each construct automatically generated out of the

definition of the supermodel.

When actual transformations are needed, rules are more complex. Let us illustrate

the main points.

As for Step A, there are various ways to eliminate generalizations. Let us refer to

the one that keeps both the parent and the child typed tables and connects them with

a reference. This requires that we copy all typed tables with their columns and then

add a new column for each child typed table with a reference to the respective parent

typed table. In terms of MIDST constructs, this means that, for each Generalization

between two Abstracts, an AbstractAttribute (a reference column) referring to the

parent Abstract must be added to the child Abstract. The Datalog rule implementing

this last step is the following (in the following denoted as R4, or elim-gen):

R4 AbstractAttribute (
OID: SK3(genOID, childOID),
Name: name,
IsNullable: "false",
AbstractOID: SK2(childOID),
AbstractToOID: SK2(parentOID)

)
<-

Generalization (
OID: genOID,
ParentAbstractOID: parentOID,
ChildAbstractOID: childOID
),
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Abstract (
OID: parentOID,
Name: name

),
Abstract (

OID: childOID
);

Let us observe that the Skolem functor SK3 has two arguments, because we need

to create a new AbstractAttribute for each Generalization and for each of its child

Abstracts: indeed a Generalization may have various children and an Abstract may be

a child in various Generalizations.

In order to obtain a coherent schema we also need to copy all the constructs in the

schema, other than generalizations. This is done by the copy-abstract rule (R1) we

have seen above, together with similar ones for the other constructs, copy-lexical (R2)

and copy-abstractAttribute (R3) reported below.

R2 Lexical (
OID: SK7(lexOID),
Name: name,
IsNullable: isN,
IsIdentifier: isI

)
<-

Lexical (
OID: lexOID,
Name: name,
IsIdentifier: isI,
IsNullable: isN,
AbstractOID: absOID

),
Abstract(

OID:absOID
);

R3 AbstractAttribute(
OID: SK8(oid),
Name: name,
IsNullable: isN,
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AbstractToOID: SK2(absToOID),
AbstractOID: SK2(absOID)

)
<-

AbstractAttribute (
OID: oid,
Name: name,
IsNullable: isN,
AbstractToOID: absToOID,
AbstractOID: absOID

),
Abstract(

OID:absOID
),
Abstract(

OID:absToOID
);

Step B is needed because it is not guaranteed that typed tables (in the OR model)

have key attributes, whereas, in order to transform references into value-based corre-

spondences (subsequent Step C), keys are a precondition. The following Datalog rule

(R5), where the “!” character denotes a negation, implements this strategy: for each

Abstract without any identifier, it generates a new key Lexical for it.

R5 Lexical ( OID: SK4(absOID),
Name: name + "_OID",
IsNullable: "false",
IsIdentifier: "true",
Type: "integer",
AbstractOID: SK2(absOID)

)
<-

Abstract (
OID: absOID,
Name: name

),
! Lexical (

IsIdentifier: "true",
AbstractOID: absOID

);
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As in the previous step, we need copy rules for all the constructs in the model (the

same as above, R1, R2, R3).

Step C replaces reference columns with value-based ones and connects them to

the target table with a referential integrity constraint. The following rule (R6) speci-

fies this: for each AbstractAttribute (reference), it replicates the key Lexicals of the

referred typed table into the referring one.

R6 Lexical (
OID: SK5(oid,lexOID),
Name: lexName,
IsIdentifier: "false",
Type: type,
AbstractOID: SK2(absOID)

)
<-

AbstractAttribute (
OID: oid,
AbstractOID: absOID,
AbstractToOID: absToOID),

Lexical (
OID: lexOID,
Name: lexName,
AbstractOID: absToOID,
IsIdentifier: "true",
Type: type

),
Abstract(

OID:absOID
),
Abstract(

OID:absToOID
);

Here we just need the application of two copy rules (R1 and R2).

Finally, in Step D, typed tables are eliminated and this is simply performed by

means of two Datalog rules. The first translates Abstracts into Aggregations (R7), the

second transforms Lexicals referring to Abstracts into Lexicals referring to Aggrega-

tions (R8). We omit R7 and R8 for sake of space, as they would not add much to the
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discussion.

With respect to the running example of Figure 3.3, we have the following:

• Step A eliminates the hierarchies, hence connects ENG to EMP with a reference

and IT_ENG to ENG with another reference;

• Step B creates an identifier for each of the typed tables: EMP_OID for EMP,

ENG_OID for ENG, and so on;

• in Step C, references are translated into value-based correspondences: a new

Lexical EMP_OID_fk is added to ENG, with foreign key constraint towards the

identifier EMP_OID of EMP; similarly OFFICE_OID_fk is added to EMP and

ENG_OID_fk to IT_ENG, each with the appropriate foreign key;

• finally, Step D performs the actual translation of EMP, ENG, IT_ENG and OF-

FICE into tables.

The final result is indeed the relational schema we have already seen in Section 3.3:

OFFICE (OFFICE_OID, offName, city)

EMP (EMP_OID, lastName, OFFICE_OID_fk)

ENG (ENG_OID, school, EMP_OID_fk)

IT_ENG (IT_ENG_OID, specialty, ENG_OID_fk)

3.5 Generating views

As we said, the core goal of the runtime translation procedure is to generate executable

statements defining views. This is obtained by means of an analysis of the Datalog

programs used to translate schemas as discussed in Section 3.4.

In this section we discuss the major ideas of how views are constructed: which

views, which components for them, where values come from and how they have to

be correlated if needed (in the relational case, in SQL terms: which views, and, for
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each of them, which columns, which sources in the FROM clause and which join con-

ditions). Then, in the next section, we will discuss the details in terms of a complete

algorithm.

The general approach

The first issue to be considered is how to find which views are needed in a translation

step, on the basis of the Datalog program that implements it. A key idea in this re-

spect is a classification of MIDST metaconstructs (those in Figure 3.4) according to

the role they play. There are three categories: container, content, and support con-

structs.6 Containers are the constructs that correspond to sets of structured objects

in the operational system (i.e. Aggregations and Abstracts corresponding to tables

and typed tables, respectively). Content constructs represent elements of more com-

plex constructs, such as columns, attributes, or references: usually a field of a record

(i.e. Lexical and AbstractAttribute) in the operational system. Support constructs

do not refer to structures where data are logically stored in the system (for exam-

ple relations), but are used to model relationships and constraints between them in a

model-independent way. Examples are Generalizations (used to model hierarchies)

and ForeignKeys (used to specify referential integrity constraints). This sharp distinc-

tion is not sufficient in practice, since there are some constructs that can be content

and container at the same time: we call them dual constructs. For example, we model

nested structures using the metaconstruct StructOfAttributes: a StructOfAttributes is

a content for the construct in which it is contained (an Abstract or another StructO-

fAttributes) and a container for the constructs it aggregates.

In turn, Datalog translation rules can be classified according to the construct their

head predicate refers to. Therefore, we have container- (for example, rules R1 and R7

in Section 3.4), content- (all other rules in Section 3.4) , support- and dual-generating

rules.

6This classification shares some similarity with that proposed by McBrien and Poulovassilis [MP99],
which has however a different goal.
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The introduction of this classification is motivated by the observation that in all

models we have constructs that have an independent existence (and are used to or-

ganize data or to represent real-world concepts), other constructs that exist only as

components of independent constructs (and maintain component information), con-

structs that play both these roles, and finally constructs that describe properties of

constructs of the previous two categories. These are the four categories we have just

illustrated: container, content, dual, and support, respectively.

Exploiting the above observations, the procedure defines a view for each container

construct, with fields that derive from the corresponding content (and dual) constructs.

Instead, as support constructs do not store data, they are not used to generate view

elements (while they are kept in the schemas). More precisely, given a Datalog schema

rule H ← B, if H refers to a container construct, we will generate one view for each

instantiation of the body of the rule. If H refers to a content or a dual, then we define

a field of a certain view.

We will present the translation procedure with its technical details in Section 3.6.

In the rest of this section, we first illustrate the procedure with reference to the running

example, and then discuss two major issues in the procedure, namely: (i) the prove-

nance of data (that is, where to derive the values from or how to generate them) for

the single field and (ii) the appropriate combination of the source constructs, which,

from a relational point of view, corresponds to a join.

Let us consider the running example again. Step A includes rules R1, R2, R3, R4.

The only container-generating rule is R1, which copies all the typed tables, hence we

generate a view for each typed table of the operational system: EMP_A, ENG_A,

IT_ENG_A and OFFICE_A.7

The other rules are content-generating. Rules R2 and R3 copy Lexicals (simple

fields) and AbstractAttributes (references), respectively. From rule R2, the procedure

infers the owner view, name, and type for each field. For AbstractAttributes the proce-

dure works likewise (rule R3) with the addition that it has to handle the values encoding

7As we said, we use the suffix here to distinguish the versions of tables and views in the various steps.
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the references between constructs in an object-oriented fashion.

The main rule of Step A is R4, which eliminates generalizations by maintaining

the parent and the child and connecting them with a reference. Here the problem of

data provenance for fields is evident: while in rules R2 and R3 the values are copied

from the source fields, in rule R4 an appropriate value that links the child table with

the parent one has to be generated. We will discuss this issue later in this Section.

Let us now extend the same reasoning to the non-copying rules of the other steps.

In Step B we generate a key attribute for each typed table using rule R5. It is a

content-generating rule since it generates a key Lexical for every Abstract without an

identifier. Hence we add another field to the views that correspond to those Abstracts.

Once Step B has guaranteed the presence of a key, in Step C we translate refer-

ences into value-based (foreign-key) correspondences.8 Rule R6 addresses the need

to copy the identifier values of the referred construct into the referring one in order to

allow for the definition of value-based correspondences. It implies the addition of a

new field to the view that corresponds to the referring Abstract.

Step D is simpler, since the only transformation involves turning typed tables into

tables once they do not have any generalizations nor references and the presence of

identifiers is guaranteed. The issue is then limited to the internal representation of

views handled by the operational system. In fact, many systems have both views and

typed views, and so we have to transform the former into the latter, or vice versa,

according to the target model.

This procedure does not depend on the specific constructs nor on the operational

system or language. It is not related to constructs because we only rely on the concepts

of container and content to generate statements. Other constructs may be added to

MIDST supermodel without affecting the procedure: it would be sufficient to classify

them according to the role they play (container, content, support, or dual). Moreover, it

is not related to the operational system constructs or languages since the statements are

8Notice that we refer to foreign-key values, as we use them, but not to foreign-key constraints because
they are not usually meaningful in views.
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designed as system-generic structures. A specification step, exploiting the information

coming from the operational system, will then be needed to generate system-specific

statements. Furthermore, this approach is flexible because (as we will see shortly) it

allows annotations on Datalog programs whenever conditions get more complex and

in order to handle specific cases.

The provenance of field values

In this subsection we consider the problem of the data provenance of the individual

fields. We discuss how the procedure finds for every value either a source field to

derive the value from or a generation technique for it. Our procedure, for a given rule,

collects information about the provenance of values by analyzing the Skolem functor

used in the head of the rule.

If the Skolem functor has only one parameter and this parameter is the OID of an-

other content field, then the value comes from the instance of the construct having that

OID. In the example, this is what happens whenever a Lexical is copied using rule R2

(with the functor SK7(lexOID) that copies the content construct Lexical from a unique

source content). Similarly, if the Skolem functor has more than one parameter and

only one of them refers to a field, then a source construct can be determined as well.

For example, let us refer to a translation step in our repository, which implements the

elimination of hierarchies by removing parent Abstracts and moving their attributes

to child Abstracts. Such a step includes the following rule, shown here in simplified

form:

R18 Lexical(
OID: SK15(lexOID, childOID),
...
AbstractOID: SK2(childOID)

)
<-

Lexical(
OID:lexOID,
...
AbstractOID:parentOID
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),
Generalization( OID: genOID,

ParentAbstractOID: parentOID,
ChildAbstractOID: childOID

),
Abstract (

OID: childOID
),
Abstract (

OID: parentOID
);

In the rule, the functor SK15 has two parameters: lexOID, referring to a content

(the attribute), and childOID, referring to a container (the child Abstract). Clearly, the

value is derived from the attribute, in many cases just copied. Concretely, this could

have been used to copy the attribute School into IT_ENG.

Instead, if more than two or none of the functor parameters refer to a content

construct, the result value has to be retrieved in some other way. This is exactly

what happens in steps A and B with rules R4 (functor SK3(genOID,childOID)) and

R5 (SK4(absOID)) respectively. This case can be handled with the use of annotations,

which specify where values come from. Here we present an informal description of

this approach to give an intuition of the adopted strategy while technical details will

be shown in Subsection 3.6. In rule R4, functor SK3 generates the OID for a reference

field (AbstractAttribute) from the OID of a Generalization (a support construct) and

from the OIDs of an Abstracts (container construct). Here an annotation is used to

specify that the reference from the child table to the parent can be implemented by

means of the tuple ID (TID)9 used as value for the field. A reason for this choice is

the fact that every instance of a child typed table is an instance of the parent table too.

Then for each tuple of the child container there is a corresponding tuple in the parent

one with a restricted set of attributes, but with the same TID. Therefore, the reference

9In OR systems, every typed table usually has a supplementary field, which we call TID, a system-
managed identifier which can be used to base reference mechanisms on.
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can be made by means of some manipulation of this TID. In detail, the rules of Step A

in the running example lead to the following system-generic pseudo-SQL statements:

CREATE VIEW ENG_A ... AS
SELECT ... SCHOOL,

REF(ENG_OID) AS EMP_OID
FROM ENG ;

CREATE VIEW IT_ENG_A ... AS
SELECT ... SPECIALTY,

REF(IT_ENG_OID) AS ENG_OID
FROM IT_ENG ;

ENG participates in a Generalization with EMP, so the rule copies its attributes and

adds the values for the field referencing the parent EMP by casting the tuple TID. A

similar thing happens for IT_ENG, which participates in a Generalization with ENG.

Similarly, in rule R5, the functor generates the OID for a Lexical from the OID of

an Abstract therefore it conveys the fact that the value of the field corresponding to

that Lexical derives from a container. Our strategy involves the transformation of the

TID into a value for this field. This solution would guarantee the presence of a unique

identifier.

Combining source constructs

On the basis of the discussion in the previous subsection, it turns out that, for each

field in a view, we have either a provenance or a generation. Provenance can refer to

different source constructs, in which case it is needed to correlate them. In database

terms, a correlation intuitively corresponds to a join. However, in practice, this is not

always necessary. If two fields can be accessed from the same container, then the join

can be avoided. For instance, considering an object-relational schema, if a construct

C has a reference to a construct D, then we can use that reference to derive the values

c of C and d of D, without any join.
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In our paradigm we associate join conditions to Datalog rules and Skolem functors

whenever necessary. In fact we handle typed functors, in the sense that they generate

OIDs for specific constructs given the OIDs of a fixed set of constructs.

Let us see an example with an application of this technique. Consider another

way of eliminating generalizations: moving the child attributes into the parent and

deleting the child; obviously the parent will preserve its original attributes as well. In a

multilevel case, this means that only the “top ancestor” is maintained, and attributes of

all the “descendants” are moved to it. This requires, as a preliminary step (handled by

a recursive rule), to detect the top ancestor for each child. These pairs are maintained

in an auxiliary table and the Lexicals are copied from a child to the corresponding

ancestor by means of a rule that uses a Skolem functor SK6(ancestorOID, childOID,

lexOID). Conversely, Lexicals from the source ancestor would be copied to the target

one by means of the simpler functor SK7(lexOID). Functor SK6 relates two Abstracts

(containers) and generates a new OID for the Lexical whose OID is lexOID. Instead,

SK7 generates OIDs for Lexicals given the OID of another Lexical.

The adopted combination of content-generating functors {SK6, SK7} encodes the

sourcing of data as follows: as we will clarify in Section 3.6, it is a left join on TIDs

between the ancestor and the child; in such a way, all the instances of the ancestor that

are also instances of the child, appear in the result view as a single tuple. Moreover, the

left join guarantees the inclusion of the tuples that represent instances of the ancestor

that do not belong to the child.

In the running example, we have a two level generalization and so Lexicals have

to be copied (if they exist) from two different child tables, thus leading to two left

joins:

CREATE VIEW EMP_A
(. . . , LASTNAME, SCHOOL, SPECIALTY) AS

SELECT ...EMP.LASTNAME,
ENG.SCHOOL, IT_ENG.SPECIALTY

FROM (EMP LEFT JOIN ENG ON
(CAST (EMP.OID AS INTEGER) =
CAST (ENG.OID AS INTEGER)))
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LEFT JOIN IT_ENG ON
(CAST (EMP.OID AS INTEGER) =
CAST (IT_ENG.OID AS INTEGER)) ;

Notice that, in this statement, the pattern bases joins on the sharing of TIDs that takes

place between parent and child instances. Moreover, consider that it is not always

necessary to perform a join operation. In fact, there are some ORDBMSs (like DB2)

that allow to perform our translation by accessing only the top level table of the hier-

archy. For example, our query in DB2 will be characterized by the use of the OUTER

keyword in the FROM clause, which exposes all the columns of the parameter table

and of its subtables:

CREATE VIEW EMP_A
(. . . , LASTNAME, SCHOOL, SPECIALTY) AS

SELECT ...EMP.LASTNAME,
EMP.SCHOOL, EMP.SPECIALTY

FROM OUTER(EMP) ;

As mentioned before, there might be cases in which fields of different containers

can be accessed by just referring to a single container by means of references. This is

what happens in Step C where the values for the fields in the referring typed table can

be derived from the key fields in the referred one (rule R6).

The following statement is among the ones generated for Step C:

CREATE VIEW EMP_C ... AS
SELECT ... LASTNAME,

OFFICE->OFFICE_OID AS OFFICE_OID
FROM EMP_B ;

Indeed, EMP has references towards OFFICE (which does not appear in the state-

ment) via the field Office and OFFICE_OID is the identifier for OFFICE added by

rule R5. Then, we need to copy OFFICE_OID values into a field of EMP according

to the semantics of the rule. It is clear that there are two sources: EMP and OFFICE.

However OFFICE_OID can be accessed via Office, therefore the join between the two

containers is not needed.

73



3. A RUN-TIME APPROACH TO MODEL AND SCHEMA TRANSLATION

In this way, joins are avoided when possible, by exploiting dereferencing (as in

the example) when such a feature is supported by the operational system. Otherwise,

when they are necessary, their treatment is globally encapsulated in Skolem functors

that relate constructs in a strongly-typed fashion. In general, we can provide a different

combination of Skolem functors for each needed join condition. The concept is that

we exploit functor expressivity and strong typing to understand how to combine the

containers of the different fields.

3.6 The view-generation algorithm

We now illustrate our algorithm for generating views at runtime from Datalog rules

encoding schema-level translations. The procedure is shown in Figure 3.5 and in-

cludes tasks from the previous version of MIDST (Tasks 0 and 1) as well as new ones

(all the others). Let us comment on them.

The algorithm takes as input the name of the source schema and the indication of

the desired target model and of the target DBMS. The "import" subprocedure (Task

0 in the figure) is a function already in the previous version of MIDST, adopted here

in order to build an internal representation of the source schema. It maps each con-

struct of the source schema in terms of supermodel constructs. Then (Task 1) we

use the target model parameter to invoke another existing MIDST function: findAu-

tomaticTranslation. It produces a translation (for translating the source schema into

the target model), which is composed of a sequence of elementary steps. Each step

is, in turn, a set of Datalog rules. The rest of the procedure generates the views, on

the basis of the Datalog rules in the translation steps. This is done in various tasks,

with a process that finds general features first and then specializes them to the actual

target context. Specifically, Task 2 produces language-independent views, and this is

done in two subtasks: we first produce “view-generators” (Subtask 2.a), which de-

pend only on the model at hand, and then instantiates them to (language-independent)

views, which refer to the schema elements of interest (Subtask 2.b). Then, Task 3
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Procedure translateAsV iew(source_schema, target_model, targetDBMS)

Input: a source schema, a target model and a target DBMS
Output: SQL statements that perform the runtime translation

0 schema := importFromTargetSystem(schema_name);
1 translation := findAutomaticTranslation();

for each translation_step in translation do
2.a view_generators := computeViewGenerators(translation_step);

for each view_generator in view_generators do
2.b l_independent_views.add(

instantiateViewGenerator(view_generator, source_schema));
for each l_independent_view in l_independent_views do

3 pseudoSQL_statements.add(
computePseudoSQLstatement(l_independent_view));

for each pseudoSQL_statement in pseudoSQL_statements do
4 executable_statements.add(

computeExecutableStatement(pseudoSQL_statement, targetDBMS));
5 return executable_statements

Figure 3.5: The view-generation algorithm

transforms these views into statements in pseudo-SQL.10 Finally, Task 4 compiles ex-

ecutable statements in the specific language (e.g. SQL, SQL/XML, XQuery) of the

target operational system.

We describe the technical details of the procedure in the next subsections, as fol-

lows: the generation of language-independent views (Task 2) in Subsection 3.6, their

conversion to pseudo-SQL views (Task 3) in Subsection 3.6, and finally the compila-

tion of the executable view-creation statements (Task 4) in Subsection 3.6.

Language-independent views

As we said, language-independent views are built in two subtasks. The first of them,

which produces “view-generators” (Subtask 2.a), is performed by means of the algo-

10As we will clarify later, this is essentially a simplified version of SQL, which has the goal of general-
izing in a declarative syntax the various languages of the commercial DBMS’s.
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Procedure computeV iewGenerators(translation_step)

Input: a set of Datalog rules of a translation step
Output: the view-generators corresponding to the translation step

1. containerRules := findContainerRules(translation_step);
2. for each containerRule in containerRules do;
3. contentRules := findContentRules(containerRule, translation_step);
4. view_generator := createViewGenerator(containerRule, contentRules);
5. view_generators.add(view_generator);
6. return view_generators;

Figure 3.6: The algorithm for finding view-generators

rithm shown in Figure 3.6. Its input is an elementary translation step T, which is a set

of Datalog rules. As we said in Section 3.5, our goal is to produce a view for each

container construct in the head of rules in T with components (columns in relational

terms) for each of its content constructs. The classification of constructs is part of

our supermodel, and so it is immediate for our procedure to discover which schema

elements have to become views and which components thereof. In fact, line 1 in the

algorithm finds container-generating rules by means of a simple inspection. Then, the

loop in lines 2-6 builds a view-generator for each container rule. The most delicate

step is to associate components with views, that is, to establish, for each component,

which is the view it belongs to. This is done by finding the content-generating rules

associated with the container rule at hand (line 3) and then building a view generator

for the container rule and the associated content rules (line 4).

Let us introduce a bit of notation. Given a translation T, we denote the set of

content-generating and dual-generating rules in it as Contents(T) and the set of

container-generating rules as Containers(T). Given T and a container-generating rule

R in T, we denote as content(R,T) the set of rules in Contents(T) generating content

(and dual) constructs for R.

So, line 3 in the algorithm computes the association between container and content

rules: given a container rule in a translation step, it finds the corresponding content
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rules. This is is determined by analyzing the Skolem functors in the rules in T. In our

context, each Skolem functor SK is associated with a given construct, the one which it

generates OIDs for. Each functor always appears with the same arity and arguments,

each one having a fixed type. The associated function is injective and function ranges

are pairwise disjoint. For example, consider functor SK5 of Section 3.4, used in rule

R6 (which eliminates the references). As it can be seen from the rule, and especially

its head, SK5 takes as input the OID of an AbstractAttribute and the OID of a Lexical

and generates a unique OID for another Lexical:

SK5 : AbstractAttribute × Lexical→ Lexical

The relationship between content and container constructs is determined by the

OIDs. Container constructs have one main OID whose uniqueness is guaranteed by

a primary Skolem functor (the one that generates the OID in the head). On the other

hand, content constructs have more than one OID: one of them identifies the content

itself while the others relate it to other constructs such as the container. This sec-

ond category of OIDs is generated by a family of secondary Skolem functors. Our

procedure includes in content(R,T) the content rules in T that involve, as secondary

functor, the primary functor of the container rule R.

For example, the head of the rule R1 (which copies Abstracts) has the form:

Abstract ( OID: SK2(oid),
Name: name )

and it is apparent that it is only characterized by its OID, the one that identifies it.

Conversely, a content construct has at least two functors (one for each characterizing

OID). This is the case for example for Lexical as mentioned in the head of rule R2

(repeated here for the sake of convenience):

R2 Lexical (
OID: SK7(lexOID),
Name: name,
IsNullable: isN,
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IsIdentifier: isI,
AbstractOID: SK2(absOID)

)
<-

Lexical (
OID: lexOID,
Name: name,
IsIdentifier: isI,
IsNullable: isN,
AbstractOID: absOID

),
Abstract(

OID:absOID
);

Here, SK7 is the primary functor, used to generate unique OIDs for instances of Lexi-

cal from OIDs of other Lexicals; SK2 is a secondary one, used to connect each instance

of Lexical (content) to the appropriate Abstract (container) by retrieving the OID of

the target Abstract (abstractOID) from the one of the source (absOID).

Therefore, in our running example, if T is the translation of Step A, we have that

Containers(T) = {R1} and Contents(T) = {R2, R3, R4} and content(R1,T) = {R2,

R3, R4}. In fact, each of the rules R2, R3, R4 has SK2 (the primary functor of R1) as a

secondary functor.

This completes the discussion of line 3 of the algorithm in Figure 3.6. The rest

of the algorithm is pretty easy. Line 4 is based on a definition, as follows. For each

R ∈ Containers(T) (that is, for each container generating rule) we define a view-

generator as a pair VG = (R, content(R,T)), composed of the rule itself and of a

set of rules, those that define contents for its container. Essentially, a view-generator

tells which rules define containers (and so will lead to views in the target schema) and

which are the rules that define the respective contents (and so will lead to fields of

the corresponding views). Finally, line 5 just prepares the result to be returned by the

algorithm.

In the example, our algorithm will determine, for Step A, the following view-
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generator: VG1 = (R1, {R2, R3, R4}). Intuitively, this view-generator says that in the

target schema we have container constructs as generated by rule R1 (and so, Abstracts),

each with content constructs generated by R2, R3, and R4 (Lexicals and AbstractAt-

tributes).

Let us now move to the actual construction of language-independent views, Sub-

task 2.b in the main algorithm in Figure 3.5. This does not require procedural details,

and is based on some definitions.

Given a Datalog rule R, we define an instantiated body IB as a specific assignment

of values for the constructs appearing in the body of R. It means that, for each con-

struct in the body, we have values for name, properties, references, and OID that sat-

isfy the predicates in the body of the rule itself with respect to the considered schema.

For example, given the body of rule R2 (copy-lexical), an instantiated version of it is

the following one:

Lexical (
OID: 100,
Name: "lastName",
IsIdentifier: "false",
IsNullable: "false",
AbstractOID: 3

),
Abstract(

OID: 3
);

In the running example, it expresses the fact that we are copying the Lexical “last-

Name” (with OID 100) from the Abstract “EMP” (with OID 3). We remark that in

general the conditions expressed in the bodies of Datalog rules (which are evaluated

within MIDST-RT supermodel) may refer to container, content, and dual constructs

as well as to support ones.

We define an instantiated head IH for a given instantiated body IB, as a construct

whose name, properties, references, and OID are instantiated as a consequence of the

79



3. A RUN-TIME APPROACH TO MODEL AND SCHEMA TRANSLATION

instantiation of variables in IB. Again with reference to R2, we have the following

instantiated head:

Lexical ( OID: SK7(100),
Name: "lastName",
IsNullable: "false",
IsIdentifier: "false",
AbstractOID: SK2(3)

)

This head defines a new Lexical for a given Abstract (with OID obtained applying the

functor SK2 to the argument 3) that is a copy of the original Lexical of the Abstract

with OID 3.

Finally, an instantiated Datalog rule IR is a pair (IH, IB) where IH is an instantiated

head for the instantiated body IB of R.

Then, Subtask 2.b in the algorithm in Figure 3.5 computes a set of language-

independent views for a view-generator VG, where each of them is defined as V = (IR,

{c1, c2, . . . cn}), and is composed of an instantiation IR of rule R and of the set of

all the possible instantiations of rules in content(R,T) that are coherent with IR.

In the example, the language-independent views for VG1 are:11

V1 = (EMP → copy-abstract EMP ,

{ EMP(lastName) → copy-lexical EMP(lastName),

EMP(office) →copy-abstractAttribute EMP(office)})

V2 = (OFFICE → copy-abstract OFFICE ,

{ OFFICE(offName) → copy-lexical OFFICE(offName),

OFFICE(city) →copy-lexical OFFICE(city)})

V3 = (ENG → copy-abstract ENG ,

{ ENG(school) → copy-lexical ENG(school),

Gen(EMP,ENG) →elim-gen ENG(EMP)})

11The descriptive names of the rules are inserted for the sake of readability of the example. Notice that
we have omitted the suffix _A as no ambiguity arises.
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V4 = (IT_ENG → copy-abstract IT_ENG ,

{ IT_ENG(specialty) →copy-lexical IT_ENG(specialty),

Gen(ENG, IT_ENG) → elim-gen IT_ENG(ENG)})

In plain words, this means that we will have to produce four views, each with the

associated components. For example, V1 says that there will be a view EMP, with

columns lastName and office.

It is worth noting that in our tool language-independent views contain additional

information besides the one shown above. In particular, a language-independent view

is a map of actual values assigned to the variables of the rules (content- and container-

generating) that belong to the view-generator. As a concrete example, the language-

independent view V4 is represented in our tool as:

CONTAINER: [oid=75; name = IT_ENG;
internal_oid = IT_ENG_OID ]

CONTENTS: {
[oid=332; name = SPECIALTY;
absOID=75; isN = false; isId = false],
[oid=6; parentOID=74; childOID=75;
genOID=6; parentName = ENG ]

};

where “CONTAINER” represents the instantiation of the container-generating rule

that copies the Abstracts (in the example the typed table IT_ENG), while “CON-

TENTS” represent the useful instantiations of the content-generating rules that copy

Lexicals and remove Generalizations.

Pseudo-SQL view creation statements

Let us now devote our attention to Task 3 of the procedure in Figure 3.5. It per-

forms the translation of a language independent view into a pseudo-SQL view-creation

statement and it follows the algorithm shown in Figure 3.7. Its input is a language-

independent view, V = (IR, {c1, c2, . . . cn}) instantiation of a view-generator
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Procedure computePseudoSQLstatement(l_independent_view)

Input: a language-independent view
Output: the pseudo-SQL view creation statement

1. name := l_independent_view.getContainerName();
2. columns := l_independent_view.getContentNames();
3. sourceContainers := instantiated_container_rule.getSource();
4. for each instantiated_content_rule in l_independent_view do
5. targetList.add(instantiated_content_rule.calculateSource());
6. fromClause.add(sourceContainers);
7. for each instantiated_content_rule in l_independent_view do
8. if instantiated_content_rule.getSourceContainer 6∈ sourceContainers

then
9. fromClause.add(instantiated_container_rule.getJoinCondition());

10. fromClause.simplify();
11. pseudo-SQL_statement :=

create pseudo-SQL_statement(name, columns, targetList, fromClause);
12. return pseudo-SQL_statement;

Figure 3.7: The creation of pseudo-SQL view statement

VG = (R, content(R,T)), for a container rule R. The resulting pseudo-SQL state-

ment has the following structure:

CREATE VIEW name(col1, col2, . . . , coln) AS
SELECT a1(sj1 .col1), a2(sj2 .col2), . . ., an(sjn .coln)
FROM sources;

Line 1 of the algorithm in Figure 3.7 obtains name from V (the variable named

l_independent_view) by retrieving the name of the head construct of the instantiation

Ir of the container-generating ruleR. This is the name of the actual view to be created.

Next, line 2 derives the names for the columns of the view, col1, col2, . . . , coln,

by getting the names of the constructs generated by the heads of the instantiated rules

{c1, c2, . . . cn} in V , and so each of them is a content (or dual) construct.

In line 3, the algorithm identifies, on the basis of the primary Skolem functor of

the container rule R, the main source containers for the view: essentially, these are
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the containers (usually just one12) in the source schema that are transformed in to the

view being constructed here. In the example, we will have that EMP_A is the source

container for EMP_B and so on.

Then the algorithm proceeds by producing the details for the SELECT statement

in the view:

(a) the identification of the source container (let us call it source(sji .coli)) for the

provenance of each content element coli and of the respective actual value for

it (indicated with the functional symbols ai); this is done in lines 4-5, discussed

in detail in Subsection 3.6

(b) the actual construction of sources in the FROM clause, with a refinement and the

merge of the various elements source(sji .coli), with the possible use of suitable

join conditions (lines 6-10, illustrated in Subsection 3.6).

At the end the procedure creates and returns the pseudo-SQL statement putting

together the elements produced in the previous steps (lines 11-12).

Let us consider the aspects, (a) and (b) above, in turn.

Finding value provenance

Let us now discuss how the algorithm identifies, in lines 4-5, the sources of each con-

tent coli. Specifically, this involves the decision on whether the value can be copied

(if so, from where) or has to be generated (if so, how). This is done on the basis for

the information given by the Skolem functors of the rules that generate coli and the

annotations possibly specified on them. Let us provide some detail. Given a content-

generating rule R′, its secondary functor links the generated content to its source con-

tainer (the one the functor is applied to). The parameters of the functor are instantiated

as a consequence of the instantiation of the body of R′. The primary functor conveys

information about the provenance of data (that is, the content to derive the value from)

12In the sequel, in order to simplify the discussion, we will assume that there is only one main source
container for each view. The more general case is intricate but straightforward.
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for the content under examination. In general, the joint instantiation of both primary

and secondary functors indicates where to retrieve the values from. Specifically, if the

primary functor can link the head content to a source construct, then the secondary

functor allows to determine the corresponding container construct. It may happen that

it is not possible to associate the primary functor to a source content (and thus to a

source container) uniquely. In such cases the strategy we follow relies on the possi-

bility of using of annotations, fragments of pseudo-SQL code that can be associated

with Datalog rules, and more precisely to functors in them. Specifically it is possi-

ble to associate the primary functor with a generation technique for the value. This

is essential for the functors that have two or more content arguments (or no content

arguments at all). For example in Rule R4 we have the primary functor SK3 that has

no content argument. As we will shortly see, an annotation is needed here.

Then, our algorithm proceeds as follows.

(a.1) Default case: there is no annotation on the primary functor; this is possible

when (i) the functor has exactly one parameter, a content, or (ii) it has more

parameters, with at least a content one and at most a container one. In case

(i) the column of the view comes from the container in the source indicated

by the secondary functor. In case (ii) the column of the view comes from the

container mentioned in the functor. In both cases, the algorithm finds a target list

element for the SQL statement composed of the names (in the source schema)

of the container and of the content element. The algorithm computes also the

provenance for such an element (to be used in the subsequent steps to build the

FROM clause): it is the container mentioned above; if it does not coincide with

the main source container for the view, the provenance is defined as a join of the

two containers (and possibly others) on the basis of repeated OIDs in the body

of the rule.

(a.2) Annotation case: if the primary functor is annotated with a query fragment a,

then a is applied in order to calculate the value. Notice that the query can

be written referring to all the literals in the instantiated content-generating rule.
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Usually, these queries are simple and involve a small number of parameters. The

provenance is handled as in case (a.1), on the basis of the containers involved

in the rule and in the annotation.

As an example of case (a.1), consider again the rule R3 of Step A (which we

partially show here again for convenience), which copies the AbstractAttributes:

R3 AbstractAttribute(
OID: SK8(oid),
Name: name,
IsNullable: isN,
AbstractToOID: SK2(absToOID),
AbstractOID: SK2(absOID)

)
<- ...

This rule is not annotated and its functor SK8 takes in input the OID of the Abstrac-

tAttribute. In this case, in the target list of the view we will have an element s.col,

where s is the name of the Abstract and col the name of the AbstractAttribute. The

provenance of such an element will be the Abstract s. In the actual example, we will

have, in the construction of the view EMP_A, an element in the target list of the form

(EMP.Office) and its provenance would be EMP.

On the other hand, as an example of case (a.2), consider the rule R4 of Step A

which replaces the generalizations between two typed tables by adding a specific ref-

erence field (AbstractAttribute) in the child table:

R4 AbstractAttribute (
OID: SK3(genOID, childOID),
Name: name,
IsNullable: "false",
AbstractOID: SK2(childOID),
AbstractToOID: SK2(parentOID)

)
<-

Generalization (
OID: genOID,
ParentAbstractOID: parentOID,
ChildAbstractOID: childOID
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),
Abstract (

OID: parentOID,
Name: name

),
Abstract (

OID: childOID
);

Here, SK3, the primary functor, takes in input the OID of the Generalization and the

OID of an Abstract. In this case, the functor is annotated with:

SELECT INTERNAL_ID FROM ABSTRACT(parentOID)

This annotation specifies that the value of the reference (indeed AbstractAttributes

represent references) must coincide with the OID of the Abstract that is the parent of

the generalization. In this case, in the target list, we will have the parent Abstract (in

the sense that, as allowed by most OR systems, we will use the system managed TID

as a value). Such an Abstract will also be the provenance for the value. However,

as the main container for the view to be generated is the child Abstract, the actual

provenance is the join of the two Abstracts. In the actual example, in the elimination

of the Generalization between ENG and EMP, we would have the element EMP in the

target list for view ENG_A and its provenance would be the join between ENG and

EMP.

A similar strategy should be followed to cope with rule R5 of Step B. As we have

seen, such a rule generates a key field for every typed table without an identifier: thus

the problem of generating a unique value at data level arises. In the head of the rule,

the primary functor SK4 takes an Abstract as input parameter, and so there are no

natural sources for the values. A possible annotation could be the following one:

SELECT INTERNAL_ID FROM ABSTRACT(absOID)

This implies the adoption of the values of internal tuple identifiers (INTERNAL_ID)

as elements for the key of the typed table as explained at the end of Subsection 3.5.
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Building the FROM clause

Let us now discuss how point (b) above is performed, that is, how sources for the

various elements are constructed and combined.

The FROM clause is initialized (line 6 in Figure 3.7) with the source containers

for the language-independent view at hand. Then, the instantiated content rules in

the view are examined one at the time (lines 7-9) and if the source container is not a

main source container, then the join condition (computed in line 5, as we said above)

involving both containers (and additional ones of needed) is added to the FROM clause.

Let us show a result of the application of this step, both to illustrate it and to

motivate the next one. In the first example in Subsection 3.5, the algorithm would

generate three elements for the source clause, namely the main source container EMP,

and the two left joins between EMP and ENG, and between EMP, ENG and IT_ENG.

Finally (line 10), the algorithm examines the elements in the FROM clause that

has been initially generated, and performs simplifications by merging the various join

conditions, on the basis of common containers and of subsumed expressions. In the

example, the simple element EMP and the left join between EMP and ENG would

be removed because they are subsumed by the double left join over EMP, ENG, and

IT_ENG.

At the end (lines 11-12), the procedure creates the pseudo-SQL statement com-

bining the information retrieved on the previous steps and returns the statement.

Executable view-creation statements

After a system-generic SQL statement has been generated for a Datalog translation,

it is customized according to the specific language and structures of the operational

database system in order to be finally applied.

With respect to a complex translation involving more than one phase, each system-

generic SQL statement encoding an elementary step is translated in terms of a system-

specific and executable one.
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The following SQL statements exemplify the elimination of hierarchies (rule R4)

which takes place in step A with reference to IBM DB2. This DBMS adopts the

concept of typed view, which is a view whose type has to be defined explicitly. This

motivates the presence of the two initial statements defining the types EMP_A_t and

ENG_A_t in the result schema. The statements below implement the strategy consist-

ing in using the internal OID to make the child refer to its parent. It is apparent that a

lot of DB2 technical details are introduced in this last phase (for example, the use of

type constructors, the various cast functions and explicit scope modifiers).

CREATE TYPE EMP_A_t AS (lastName varchar(50))
NOT FINAL INSTANTIABLE
MODE DB2SQL WITH FUNCTION ACCESS REF USING

INTEGER;

CREATE TYPE ENG_A_t AS (
toEMP REF(EMP_A_t),
school varchar(50))

...;

CREATE VIEW EMP_A of EMP_A_t MODE DB2SQL
(REF is EMPOID USER GENERATED) AS

SELECT EMP_A_t(INTEGER(EMPOID)), lastName
FROM EMP;

CREATE VIEW ENG_A of ENG_A_t MODE DB2SQL
(REF is ENGOID USER GENERATED,
toEMP WITH OPTIONS SCOPE EMP_A) AS

SELECT ENG_A_t(INTEGER(ENGOID)),
EMP_A_t(INTEGER(EMPOID)), school

FROM ENG;

The produced statements are finally sorted in order to take care of the dependen-

cies between views, so that a view that refers to another one is created later.
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Figure 3.8: An object-relational schema: OR_DEMO

3.7 Views for the example scenarios

In this section we consider three scenarios of executable statements, in order to better

understand the concept of “view” with respect of the motivating examples proposed

at the beginning of this chapter.

Relational views

Let us consider the object-relational schema OR_DEMO shown in Figure 3.8, where

we have three typed tables and two structured types. We have a generalization (ENG

is a subtable of EMP) and a reference (from EMP to OFFICE). Structured types are

used to build a two-level complex object (the value of Address comes from the Address

type whose values involve the Street type). We want a translation that produces a set

of relational views with reference to IBM DB2 [CRV00]. MIDST-RT completely

supports this activity, with a component whose interface is shown in Figure 3.9. The

user would perform the following sequence of steps, which are highlighted in the
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21

3

4

5

Figure 3.9: A screenshot of MIDST-RT

figure:

0. Import of the source schema from the operational system into the tool dictionary

(this step is not shown in the figure).

1. Selection of the source schema (the one imported in step 0).

2. Selection of the target schema (relational).

3. Automatic selection of the programs to apply. The user can modify the set of

selected programs in order to customize some steps of the translation.13

4. Insertion of useful information for the generation of the statements, such as the

DB name and the path in which the statements will be produced.
13For example, the system proposes to remove generalizations merging the children into the parent,

while the user wants to keep both the children and the parent.
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5. Generation of the statements in a text file or direct execution over DB2.

Let us comment on the produced statements.14 For brevity and without loss of
generality, we describe only the first step of the translation (that is, the removal of
generalizations). DB2 handles object views with the concept of typed view, which
is a view whose type has to be defined explicitly. This motivates the presence of the
“create type” statements defining the types OFFICE_t, EMP_t and ENG_t in the result
schema. The statements below implement the strategy consisting in using the internal
OID to make the child refer to its parent.

-- ******************************************************
-- STEP 1: removing generalizations
-- ******************************************************
CREATE TYPE OR_DEMO_1.OFFICE_t AS(

CITY varchar(50),
OFFNAME varchar(50))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.OFFICE of
OR_DEMO_1.OFFICE_t MODE DB2SQL

(REF is OIDOFFICE USER GENERATED) AS
SELECT

OR_DEMO_1.OFFICE_t(
CAST(OR_DEMO.OFFICE.OIDOFF AS INTEGER)),

OR_DEMO.OFFICE.CITY,
OR_DEMO.OFFICE.OFFNAME

FROM OR_DEMO.OFFICE;

CREATE TYPE OR_DEMO_1.EMP_t AS(
LASTNAME varchar(50),
FIRSTNAME varchar(50),
ADDRESS OR_DEMO.ADDRESS_t,
OFFICE REF(OR_DEMO_1.OFFICE_t))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.EMP of
OR_DEMO_1.EMP_t MODE DB2SQL

(REF is OIDEMP USER GENERATED,
OFFICE WITH OPTIONS SCOPE OR_DEMO_1.OFFICE) AS

SELECT

14Notice that, as we anticipated in Section 3.3, in the tool the names are distinguished by means of
schema names, and so there is no need to use suffixes.
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OR_DEMO_1.EMP_t(
CAST(OR_DEMO.EMP.OIDEMP AS INTEGER)),

OR_DEMO.EMP.LASTNAME,
OR_DEMO.EMP.FIRSTNAME,
OR_DEMO.EMP.ADDRESS,
OR_DEMO_1.OFFICE_t(
CAST(OR_DEMO.EMP.OFF AS INTEGER))

FROM OR_DEMO.EMP;

CREATE TYPE OR_DEMO_1.ENG_t AS(
SCHOOL varchar(50),
YEARDEGREE integer,
to_EMP REF(OR_DEMO_1.EMP_t))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.ENG of
OR_DEMO_1.ENG_t MODE DB2SQL

(REF is OIDENG USER GENERATED,
to_EMP WITH OPTIONS SCOPE

OR_DEMO_1.EMP) AS
SELECT

OR_DEMO_1.ENG_t(
CAST(OR_DEMO.ENG.OIDEMP AS INTEGER)),

OR_DEMO.ENG.SCHOOL,
OR_DEMO.ENG.YEARDEGREE,
OR_DEMO_1.EMP_t(
CAST(OR_DEMO.ENG.OIDEMP AS INTEGER))

FROM OR_DEMO.ENG;

The subsequent steps of the translation process will refer to the previous ones.

This means that, after the removal of generalizations, we will have a set of views that

represents a new schema without generalizations. We call this schema OR_DEMO_1.

The next step is the elimination of nested types: we define a new set of views over the

views previously defined. Thus, we will have a schema OR_DEMO_2 composed of

a set of views defined over OR_DEMO_1. Then we must eliminate all the references

(we introduce foreign-keys) and we must transform typed tables into simple tables.

At the end, we have four new schemas (because the translation is composed of four

steps), but only the last one, OR_DEMO_4, represents our target schema, a relational
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Figure 3.10: An object-relational schema

one.

XML views

Consider the object-relational schema shown in Figure 3.10 and suppose we need an

XML document that contains all its data in a structured way.

We can do this with MIDST-RT by choosing XSD as the target model. In this way,

the tool produces a statement that, executed over DB2, will create an XML document

with all data directly extracted from the original schema. This can be possible by using

an SQL/XML language, specific for the operational system, that contains functions

that help the user to create XML elements from relational data. The tool produces the

following statement:

SELECT XMLELEMENT(
name "orxml",
XMLCONCAT(

XMLAGG(
XMLELEMENT(

name "emp",
XMLELEMENT(name "OIDEMP",e.OIDEMP),
XMLELEMENT(name "firstName",e.firstName),
XMLELEMENT(name "lastName",e.lastName),
XMLELEMENT(name "offref",e.off),
XMLELEMENT(

name "address",
XMLELEMENT(name "city", e.address..city),
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XMLELEMENT(name "street",e.address..street)
)

)
),
(SELECT XMLAGG(

XMLELEMENT(
name "office",
XMLELEMENT(name "OIDOFF",d.OIDOFF),
XMLELEMENT(name "offName",d.offName),
XMLELEMENT(name "city",d.city)

)
)
FROM OR_XML.OFFICE d)

)
)
FROM OR_XML.EMP e;

The produced XML document will be:

<orxml>
<emp>

<OIDEMP>1</OIDEMP>
<firstName>Mark</firstName>
<lastName>Brown</lastName>
<offref>2</offref>
<address>

<city>Rome</city>
<street>Viale Marconi 1</street>

</address>
</emp>
...
<office>

<OIDOFF>2</OIDOFF>
<offName>ROMA TRE</offName>
<city>Rome</city>

</office>
...

</orxml>

94



3.7. Views for the example scenarios

Figure 3.11: The produced Java class

Object-oriented views

In this last scenario we start from an object-relational schema in order to obtain a set

of Java classes that allows an object-oriented access to the database. This example
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briefly sketches how the generation process of a piece of Java code from relational

tables may be performed.

The example we show produces some classes that contain CRUD methods (create,

retrieve, update, delete) to access the database. Thus, we are following the DAO (data

access object) design pattern. We are also able to produce classes by referring to

other technologies, for example using Hibernate annotations. Moreover, thanks to an

object-oriented importer, we can import the schema from the Java classes and produce

an object-relational database: this is very simple, in fact, inside our metamodel, the

object-oriented model is entirely contained into the object-relational one, so we do not

need any translation.

This problem has a lot of solutions in the literature, but MIDST-RT ensures flex-

ibility: in fact, thanks to the internal set of rules, the user can decide to modify the

source schema to obtain the preferred translation, or can perform a translation towards

a model that presents some non-standard features.

Starting from the object-relational schema shown in Subsection 3.7, one possibil-

ity is the creation of three Java classes using the DAO pattern. So we will have the

objects Emp, Office and Address. Figure 3.11 shows the source code of the Java class

EmpDAO.

3.8 Conclusions

In this chapter we have shown a runtime enhancement of MIDST which led to the

design of MIDST-RT tool. The chapter showed as, moving from original framework

of MIDST, where translation are applied within a supermodel that physically contains

data, it was possible to comprise the theory in a more efficient one. Executable state-

ments are generated for any possible translation and so the approach aims at being

a step forward in runtime implementations of model management operators. How-

ever, for the proposed algorithms, more complex reasonings on view update would be

necessary.
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CHAPTER 4

NoSQL systems

Relational database systems (RDBMSs) dominate the market by providing an inte-

grated set of services that refer to a variety of requirements, which mainly include

support to transaction processing but also refer to analytical processing and decision

support. From a technical perspective, all the major RDBMSs on the market show a

similar architecture (based on the evolutions of the building blocks of the first systems

developed in the Seventies) and do support SQL as a standard language (even if with

dialects that differ somehow). They do provide reasonably general-purpose solutions

that balance the various requirements in an often satisfactory way.

Basically, relational systems are well suited for transactional work, consisting in a

great number of small, short-lived transactions; in this disguise, they are often called

OLTP systems. Other scenarios of use see relational databases as decision support

systems, where a batch workload is present consisting in read-only queries on a huge

sample of data often involving time-consuming aggregations and calculations. Indeed,

although both these scenarios are properly addressed by relational systems with a lot

of offered features, database configuration, modeling and tuning diverge a lot. What is

noticeable is that in most cases modeling techniques and patterns are driven by archi-

tectural, then non-functional, reasons. A major example is the common dimensional

modeling. In data warehouses, the designer gives up to normalized fashion of rela-
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tional data and adheres its project to safe patterns, star schemas, snowflakes and so

forth, that are known to convey the best performance within a relational storage sys-

tem when tested against analytical queries. Although there are also business reasons

motivating dimensional modeling, being the simplicity of inspection for non technical

users, the main driver is performance in a typical analytical scenario.

Some concerns have recently emerged towards RDBMSs. First, it has been ar-

gued that there are cases where their performances are not adequate, while dedicated

engines, tailored for specific requirements (for example decision support or stream

processing) behave much better [SMA+07] and provide scalability [SC11]. Second,

the structure of the relational model, while being effective for many traditional ap-

plications, is considered to be too rigid or not useful in other cases, with arguments

that call for semistructured data (in the same way as it was discussed since the first

Web applications and the development of XML [ABS00]). At the same time, the full

power of relational databases, with complex transactions and complex queries, is not

needed in some contexts, where “simple operations” (reads and writes that involve

small amount of data) are enough [SC11]. Also, in some cases ACID consistency, the

complete form of consistency guaranteed by RDBMSs, is not essential, and can be

sacrificed for the sake of efficiency. It is worth observing that many Internet applica-

tion domains, for example, that of social networking, require both scalability (indeed,

Web-size scalability) and flexibility in structure, while being satisfied with simple op-

erations and weak forms of consistency.

With these motivations, a number of new systems, not following the RDBMS

paradigm (neither in the interface nor in the implementation), have recently been de-

veloped. Their common features are scalability and support to simple operations only

(and so, limited support to complex ones), with some flexibility in the structure of

data. Most of them also relax consistency requirements. They are often indicated as

NoSQL systems, because they can be accessed by APIs that offer much simpler opera-

tions than those that can be expressed in SQL. Probably, it would be more appropriate

to call them non-relational, but we will stick to common usage and adopt the term
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There are fields where relational systems offer poor performance, even when

equipped with an ad hoc design. Critical applications involve text indexing, web

pages generation, code storage and object serialization, document search, scientific

calculations.

Nowadays the market is particularly appreciating these segments, firmly linked

to the cloud service provision. Cloud approaches are meant to provide efficiencies

to information providers by means of scale economy in the procurement of hardware

and IT commodities, while providing software and data as a service. In information

management, the current orientation of cloud service tends to reach a cost/benefit

balance, by limiting the provided features in force of a minor cost of administration.

Of course, cloud services are contexts where relational systems do not scale well but,

actually, even in case they scaled, they would require a higher total cost of ownership

leading to a slower responsiveness to business changes.

Therefore, the community is assisting to the rise of many specialized information

management systems, each addressing one or more non functional requirements. In

many of them, relational DBMS’ are not IT- and cost-efficient and so are replaced by

specialized products.

There is a variety of systems in the NoSQL arena [Cat10, SC11], more than fifty,

and each of them exposes a different interface (different model and different API).

Indeed, as it has been recently pointed out, the lack of standard is a great concern

for organizations interested in adopting any of these systems [Sto11b]: applications

and data are not portable and skills and expertise acquired on a specific system are

not reusable with another one. Also, most of the interfaces support a lower level than

SQL, with record-at-a-time approaches, which appear to be a step back with respect

to relational systems.

Globally, it is possible to characterize data management systems according to

some categories.

Feature-first. Systems such as Oracle, SQL server, DB2, PostgreSQL, etc. These
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products focus on consolidated enterprise functional requirements; enforcement of

transactional properties and structure prevail on other non functional requirements.

They are well suited for the largest range of problems and, generally try to fit all

situations. Feature-rich solutions are not necessarily divergent from cloud services;

Amazon RDS is an example of generalist database system in a cloud environment.

The core data model in this category of systems is, of course, relational.

Scale-first. Systems where scalability is paramount. They are born to provide an

infrastructure to highly concurrent, distributed and million-users applications. Exam-

ples are platforms like Facebook, Google, Twitter, Yahoo, Amazon, etc.

The characterizing point in this category is that scalability is much more important

than features. In fact, needed functionalities are almost elementary and do not imply

complex representation and transaction models; on the other hand, the number of con-

current users can and will scale in a small amount of time. Quite obviously, systems

like these cannot be based on a unique relational DBMS instance.

The most direct approach to scale-first requirements is sharding, also known as

horizontal partitioning. It consists in splitting table rows in different instances and

route the specific queries to the right database instance according to partitioning cri-

teria. This architecture draws the maximum benefit from distribution, since queries

and application workload is effectively partitioned, using physical resources effec-

tively. Geographical distribution is facilitated by physical distribution of machines

and so data is where they are needed, minimizing network traffic. Sharding archi-

tecture gives up to any effective possibility of intersecting partitioned data. In fact,

inter-instance joins or comparisons are excluded by definition. Even more, replication

and synchronization may be needed to some extent and must be then carefully han-

dled; automatic software support is seldom present and hand coding is often required.

Sharding approach is not easy to implement and its difficulties mainly lie in the in-

dividuation of candidates for distribution that, sometimes, might even be impossible.

Substantially, a sharded database can be implemented as a collection of independent

relational databases. Globally considered, they do not have the properties of a single
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relational system, in particular they lack consistency. CAP Brewer’s theorem asserts

that there are three systemic requirements, consistency, availability and network parti-

tion tolerance that are in a particular relationship when designing distributed systems.

This relationships specifies that only two of them can be guaranteed at a time, one

must be dropped. Sharded architectures drop consistency since involved databases are

in fact separated and these architectures are often referred to as shared-nothing. Thus,

a sharded system is tolerant to network partition, since it continues to operate even

if the nodes cannot reach one another; such a system is available even when the net-

work is not working, since no synchronization among nodes is needed. By contrast,

it not consistent, since a transaction cannot involve data distributed in several nodes

while guaranteeing ACID properties. Notice that if a DTP protocol (such as 2PC com-

mit) had been fostered, it would have exposed the architecture to network partitioning

intolerance.

A second approach to scale-first architectures is giving up to network partition

tolerance adopting a DTP protocol. DB2 parallel or Oracle RAC follow this path and

try to offer a scalable relational database system. This architecture is indicated when

rich features offered by relational systems are so necessary to address requirements

and, in some sense, lie on the same level of scalability. Actually, relational features

are too difficult to scale and solutions like these are only suitable for small scenarios.

The third approach consists in using a scalable key-value store system. A key-

value store is a mainstream in NoSQL systems. They support simple read and write

operations on data items, identified by a key. All operations span a single data item

and no joins or relationships are present. From the transactional perspective, these

systems tend to adopt a weaker, eventual, consistency resulting in higher availability.

A key element in any scalable key-value store is the partitioning algorithm. The store

must be capable of scaling up incrementally and so different systems foster various

algorithm to distribute data on nodes. Similarly, retrieval algorithm must be able to

individuate the actual node where the needed value resides. Such algorithms may

involve key sharding on every node or the presence of a coordinator node, routing
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the requests to the appropriate server. Famous examples of this class of solutions are

Amazon Dynamo and Redis.

Simple structured storage. There are contexts where the storage features and data

model of relational systems are not needed by applications. They may only need

to store pieces of data with fast access and low operational effort or performance

overhead. BerkeleyDB is a major example in this field, while SimpleDB is what

cloud world offers. In particular, SimpleDB tries to offer the lowest maintenance cost

with the simplest access primitives achieved with a query language that is a simplified

form of SQL.

Document stores. They are commonly adopted when applications would not bene-

fit from the complete spectrum of RDBMS’ features, but would only use their storage

capabilities to save BLOBs. Data models of document stores are very simple, and

basically offer features to query documents in their native formats. Also, document

stores support the application of highly optimized programming models such as map

reduce directly on documents. MongoDB is an important example. It allows to store

document encoded in BSON, a derivation of JSON format. CouchDB, another exam-

ple of document store, directly support JSON.

Wide column and column families. In some sense they can be classified as a subset

of Simple structured storage systems, however they are more focussed on scalability

and on high performance queries. Database systems falling in this category, tend

to reconcile the benefits of row and column physical handling of data. This leads

to conceptual data models that mix physical aspects. For example, Apache HBase

structures data in tables and columns, as for relational systems. However, it stores

them in column fashion and groups columns in families. Whereas pieces of data

are structured in tables and columns according to a conceptual design of the domain

model, family partitioning respond to performance and scalability previsions. Unlike

relational model, wide-column databases only offer simple primitives, get and put, to

retrieve data from tables. Apache Cassandra is another example of column families

NoSQL database system that strongly adopts HBase assumptions.
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One of the most heard of system in this category is Hadoop. Hadoop is the

Apache programming framework for distributed elaboration of large data sets. It is

based on a revised implementation and theorization of Map Reduce algorithm by

Google. Hadoop project comprises an elaboration engine and Hadoop file system,

HDFS. Over this file system, the engine provides two components: JobTracker and

TaskTracker that, working in strict cooperation with the file system, allow to imple-

ment a highly specialized instance of the map reduce algorithm. Indeed, Hadoop is

neither a database nor a data management system, so it is probably not completely

correct to characterize it among NoSQL systems. However NoSQL database systems

can be based on it. This is not the case of HBase though it might seem. In fact,

HBase can only be used as input or output of Hadoop algorithms, but its kernel is not

based on map reduce strategies. The most significant example is Hive, a data ware-

housing and business intelligence engine built on top of Hadoop algorithms. Hive

reimplements relational algebra primitives such as JOIN and SQL features like aggre-

gation and sorting in a distributed and parallel fashion using map reduce algorithms

in Hadoop framework. This would not formally prevent Hive from exposing a re-

lational interface to the user and, in facts, Hive language is a direct derivation from

SQL. Howerver Hadoop backend privileging scalability and performance forces Hive

to give up to transactional features of relational systems; since its target and audience

is the data warehousing world, where transactionality is somehow deemed, Hive is a

very interesting example of a formally justified architectural style for analytical data

management.

Purpose-optimized stores. In [SMA+07] Stonebraker pointed out how relational

DBMS’ performance can be easily beaten by many market products when referring to

a specific field. He underlines the fact that relational system are the best option to face

general data management requirements, whereas for special purpose calculations, ad

hoc products beat relational stores in benchmarks by several factors. Examples are

Vertica for data warehouse analytical queries, VoltDB for transactional processing or

StreamBase for processing stream of media.
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CHAPTER 5

Towards a uniform programming interface
for NoSQL databases

Non-relational databases (often termed as NoSQL) have recently emerged and have

generated both interest and criticism. Interest because they address requirements that

are very important in large-scale applications, criticism because of the comparison

with well known relational achievements. One of the major problems often mentioned

is the heterogeneity of the languages and interfaces they offer to developers and users.

Different platforms and languages have been proposed, and applications developed for

one system require significant effort to be migrated to another one. Here we propose

SOS as a common programming interface to NoSQL systems (and also to relational

ones), in order to support application development by hiding the specific details of the

various systems. It is based on a metamodeling approach, in the sense that the specific

interfaces of the individual systems are mapped to a common one. The tool provides

interoperability as well, since a single application can interact with several systems at

the same time.
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5.1 SOS platform

The observations of Chapter 1 have motivated us to look for methods and tools that

can alleviate the consequences of the heterogeneity of the interfaces offered by the

various NoSQL systems and also can enable interoperability between them together

with ease of development (by improving programmers’ productivity, following one of

the original goals of the relational databases [Cod82]). As a first step in this direction,

we present here SOS (Save Our Systems), a programming environment where non-

relational databases can be uniformly defined, queried and accessed by an application

program.

The programming model is based on a high-level description of the interfaces of

non-relational systems by means of a generic and extensible meta-layer, based on

principles that are inspired by those our group has used in the MIDST and MIDST-RT

projects [ABBG09a, ACT+08]. The focus in our previous work was on the structure

of models and was mainly devoted to the definition of techniques to translate from a

representation to another one. Here, the meta layer refers to the basic common struc-

ture and is then concerned with the methods that can be used to access the systems.

The meta-layer represents a theoretical unifying structure, which is then instantiated

(indeed, implemented) in the specific underlying systems; we have experimented with

various systems and, in this work, we will discuss implementations for three of them

with rather different features within the NoSQL family: namely, Redis,1 MongoDB,2

and HBase.3

Indeed, the implementations are transparent to the application, so that they can

be replaced at any point in time (and so one NoSQL system can be replaced with

another one), and this could really be important in the tumultuous world of Internet

applications. Also, our platform allows for a single application to partition the data of

interest over multiple NoSQL systems, and this can be important if the application has

1http://redis.io
2http://www.mongodb.org
3http://hbase.apache.org
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contrasting requirements, satisfied in different ways by different systems. Indeed, we

will show a simple application which involves different systems and can be developed

in a rapid way by knowing only the methods in our interface and not the details of the

various underlying systems.

To the best of our knowledge, the programming model we present is original, as

there is no other system that provides a uniform interface to NoSQL systems. It is also

a first step towards a seamless interoperability between systems in the family. Indeed,

we are currently working at additional components that would allow code written for

a given system to access other systems: this will be done by writing a layer to translate

proprietary code to the SOS interface; then, the tool proposed here would allow for

the execution on one system of code developed for another one.

5.2 The common interface

As we said, the goal of our approach is to offer a uniform interface that would allow

access to data stored in different data management systems (mainly of the NoSQL

family, but possibly also relational), without knowing in advance the specific one, and

possibly using different systems within a single application. In this section we discuss

on the desirable features of such an interface and then present our proposal for it.

In the next section we will then describe the underlying architecture that allows for

mapping it to the various systems.

NoSQL systems have been developed independently from one another, each with

specific application objectives, but all with the general goal to offer rather simple oper-

ations, to be supported in a scalable way, with possibly massive throughput.4 Indeed,

there are many proposals for them, and effort have been devoted to the classification of

them into various categories, the most important of which have been called key-value

stores, document stores and extensible record stores, respectively [Cat10]. The three

4Our interest here in in the features related to how data is modeled and accessed. So, we will not
refer further refer to the attention to scalability nor to another important issue, the frequent relaxation
of consistency, which are both orthogonal to the aspects we discuss. Because of this orthogonality, our
approach preserves the benefits of scalability and relaxation of consistency.
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families share the idea of handling individual items (“objects” or “rows”) and on the

need for not being rigid on the structure of the items, while they differ on the features

that allow to refer to internal components of the objects.5 Most importantly, given

the general goal of concentrating on simple operations, they are all based on simple

operations for inserting and deleting the individual items, mainly one at the time, and

retrieving them, one at the time or a set at the time. Therefore, it simple yet powerful

common interface can be defined on very basic and general operations:

• put to insert objects

• get to retrieve objects

• delete to remove objects

Crucial issues in this interface are (i) the nature of the objects that can be handled,

which in some systems are allowed to have a rather complex structure, not fixed in

advance, but with components and some forms of nesting, and in others are much

simpler and (ii) the expressivity of the get operation, which in some cases can only

refer to identifiers of objects and others can be based on conditions on values. This

second issue is related to the fact that operations can also be specified at high level

with reference to a single field of a structured object. Our platform can perform this

scenario inferring from the meta-layer all the involved structures and defining coher-

ently the sequence of operations on them.

The simple interface we have just described is the core component of the architec-

ture of the SOS system, which is organized in the following modules (Figure 5.1):

• the common interface that offers the primitives to interact with NoSQL stores

• the meta-layer that memorizes the form of the involved data

5We will give some relevant details for the three families and their representative systems in the next
section, while discussing how the common interface can be implement in them, thus validating it.
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Figure 5.1: Architecture of SOS

• the specific handlers that generate the appropriate calls to the specific database

system

The interface is the component that exposes methods to applications and that in-

teract with the meta-layer allowing to store data and define high level operations with
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Figure 5.2: The schema for the data in the example

reference to general constructs. The meta-layer stores data and shows to the interface

a uniform data model for performing operations on objects. The specific handlers sup-

port the low level interactions with specific NoSQL storage systems mapping meta-

layer generic calls to system specific queries.

In order to show how MIDST-RT can support application development, in this

chapter we will refer to an example regarding the definition of a simplified version

of Twitter,6 the popular social network application. We will adopt the perspective of

a Web 2.0 development team that wants to benefit from the use of different NoSQL

systems. Transactions are short-lived and involve little amount of data, so the adoption

of NoSQL systems is meaningful. Also, let us assume that quantitative application

needs have led the software architect to drive the decision towards the use of several

NoSQL DBMSs, as it turned out that the various components of the application can

benefit each from a different system.7

The data of interest for the example have a rather simple structure, shown in Fig-

ure 5.2: we have users, with login and some personal information, who write tweets;

every user “follows” the tweets of a set of users and can, in turn, “be followed” by

another set of users. In the example, in Section 5.5, we will show how this can be

implemented by using three different NoSQL systems in one single application.

6http://twitter.com/
7For the sake of space here the example has to be simple, and so the choice of multiple systems is

probably not justified. However, as the various systems have different performances and different behavior
in terms of consistency, it is meaningful to have applications that are not satisfied with just one of them.
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5.3 Meta-layer

In this Section we give some formal explanation of the meta-layer structure and we

contextualize it with respect to the NoSQL system our platform handles.

Our approach leverages the genericity of the data model to allow for a standard

development practice that is not bound to a specific DBMS API, but to a generic one.

Application programming interfaces are built over and in terms of the constructs

of the meta-layer (without explicit reference to lower level constructs); in this way,

programs are modular and independent of the particular data model; reuse is maxi-

mized.

According to the literature, a data model can be represented as the collection of

its characterizing constructs, a set of constraints and a set of operations acting over

them [TL82]. A construct is an entity that has a conceptual significance within the

model. A construct can be imagined as the elementary outcome of a structural de-

composition of a data model. A construct is relevant in a data model since it is a

building block of its logical structures.

Thus, the aim of the meta-layer is to reconcile the relevant descriptive elements of

mainstream NoSQL databases: key-value stores, document stores and record stores.

In the following paragraphs, we will describe concisely their data models, and we

will show how their constructs and operations can be effectively modeled through our

meta-layer.

In key-value stores, data is organized in a map fashion: each value is identified

by a unique key. Keys are used to insert, retrieve and remove single values, whereas

operations spanning multiple ones are often not trivial or not supported at all. Values,

associated to keys, can be whether simple elements such as Strings and Integers, or

structured objects, depending on the expressive power of the DBMS considered. We

chose Redis as a representative of key-value stores, being one of the richest in terms

of data structures and operations. Redis supports various data types such as Set, List,

Hash, String and Integer, and a collection of native operations to manipulate them.
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Document stores handle collections of objects represented in structured formats

such as XML or JSON. Each document is made of a (nested) set of fields and is as-

sociated to a unique identifier, for indexing and retrieving purposes. Generally, these

DBMSs offer a richer query language than other NoSQL categories, being able to ex-

ploit the structuredness of the objects they store. Among document stores, MongoDB

is one of the most adopted, offering a rich programming interface for manipulating

both entire documents either single fields.

Extensible Record Stores offer a relaxation of the relational data model, allowing

tables to have a dynamic number of columns, grouped in families. Column families

are used for optimization and partitioning purposes. Within a table, each row is iden-

tified by a unique key: rows are usually stored in lexicographic order, which enables

single accesses and sequential scans as well. HBase, being modeled after Google

BigTable, belongs to this category and supports most of the features described above.

Moving from the data models described above, our meta-layer is designed for

dealing with them effectively, allowing to manage collections of objects having an

arbitrary nested structure. It turns out that this model can be founded on three main

constructs: Struct, Set and Attribute.

Instances of each construct are given a name associated to a value. The structure

of the value depends on the type of construct itself: Attributes contain simple values,

such as Strings or Integers; Structs and Sets, otherwise, are complex elements whose

values may contain both Attributes and Sets or Structs as well, as shown in Figure 5.3.

Each database instance is represented as a Set of collections. Each collection is

a Set itself, containing an arbitrary number of objects. Each object is identified by a

key, which is unique within the collection it belongs to.

As it turns out, specific non-relational models can be represented as a particular

instance of the meta-layer, where generic constructs are used in well-defined com-

binations and, if necessary, renamed. Simple elements, such as key-values couples

or single qualifiers can be modeled as Attributes. Groups of attributes, like HBase

column families or Redis hashes, are represented by Structs. Finally, collections of

112



5.3. Meta-layer

Figure 5.3: The metalayer

elements, as HBase tables or MongoDB collections are modeled by Sets. Accord-

ing to the specific structures the various NoSQL storage systems implement, from

meta-layer constructs we will define a translation process to coherent system-specific

NoSQL structures. In the remainder of this section it will be shown how this trans-

lation and data memorization works, moving from the model generic representation

to the system-specific ones, with reference to the example introduced in Section 5.2.

The meta-layer representation of the example is shown in Figure 5.4. A Struct Tweet

represents a tweet sent by a User and a Set Tweets contains all the tweets of a User.

Finally a simple Attribute is used for every non-structured information item of Users

and Tweets (First Name, Last Name, ...).

MongoDB

MongoDB handles Collections of structured documents represented in BSON8 and

identified by a global key. In our translation, every SOS Collection is implemented as

8BSON: a binary encoding of the popular JSON format
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Figure 5.4: The meta-layer representation

a MongoDB Collection. Each object in the meta-layer is then represented as a single

document within the collection itself. The structure of each object, implemented in

JSON, fits closely the BSON format, allowing seamless translations between the two

models.

HBase

In this context we model every SOS Collection as a Table. Objects within a Collection

are implemented as records in the corresponding Table: the structure of each object es-

tablishes which HBase constructs are involved in the translation. Top-level Attributes

are stored in a reserved column family named _top within a reserved qualifier named

_value; top-level Sets generate a reserved column family (named _array[]) that groups
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Figure 5.5: HBase Example

all the fields they further contain. Finally, each top-level Struct is represented as a sin-

gle column family; deeper elements it contains are further stored in qualifiers. In order

to store a nested tree in a flat structure (i.e. the qualifiers map) each field of the tree is

given a unique qualifier key made of the whole path in the tree that goes from the root

struct of the column family, to the field itself.

An example of translation is shown in Figure 5.5. The choice of storing top-level

elements into different column families is driven by some data modeling considera-

tions. In HBase, column families correspond to the first-class concepts each record is

made of; in fact, data partitioning and query optimization are tuned on a per-column-

family basis, considering each column family as an independent conceptual domain.

In tree documents, we assume that top-level structs and sets correspond to the most

significant concepts in the model, and therefore we represent each of them as a single

column family.

Redis

Redis, among the three DBMSs we consider, is arguably the most flexible and rich

in constructs: it is a key-value store where values can be complex elements such as
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Hashes, Sets9 or Lists.

For every object of the SOS Collections of the meta-layer, in Redis two R-Sets

are defined. The first one is used to store keys, therefore it indexes the elements.

The second one contains data: a Hash named _top with Attributes directly related to

the Struct and a different Hash for every Struct or Set it contains. The name of those

Hashes will be the concatenation of the name of the elements and the contained Struct.

The top Hash will contain all the first level attributes as following:

hash key: user:10001
hash values: [_top, info, twees[], ]

hash key: user:10001:\_top
hash values: username: foo

password: bar

hash key: user:10001:info
hash values: firstName: "abc"

lastName: "def"

hash key: user:10001:tweets[]
hash values: [0].tweet.id = "1234",

[0].tweet.content = "....",
[1].tweet.id = "1235"
[1] ...

Assumptions we made for defining Redis translation are somehow close to HBase

ones, discussed above. In fact, in our translation, Redis Hashes roughly correspond to

HBase column families (each containing the qualifiers map). Nevertheless, object data

in Redis is spread throughout many keys, whereas in HBase it is contained in a single

record. As a consequence, we have to define in Redis support structures to keep track

of the keys associated to each object, such as the R-set containing the hashes names.

9For the sake of readability we will refer to Redis set as R-Set.
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5.4 The platform

For the definition of SOSplatform we featured a Java API which exposes the following

methods corresponding to the basic operations illustrated in Section 5.2:

• void put (String collection, String ID, Object o)

• void delete (String collection, String ID)

• Object get (String collection, String ID)

• Set<Object> get (Query q)

The core class is NonRelationalManager. It supports put, delete and

get operations. Primitives are based on object identifiers, however multiple retrievals

are also possible by means of simple conjunctive queries (the second form of get).

These methods handle arbitrary Java objects and are responsible for their serialization

into the target NoSQL system. This process is based on the meta-layer, the data model

pivoting the access to the systems. It is implemented in JSON, as there are many off-

the-shelf libraries for Java object serialization into JSON. The implementation is based

on the following mapping between the meta-layer and JSON format:

• Sets are implemented by Arrays

• Structs by Objects

• Attributes by Values

As the final step, each request is encoded in terms of native NoSQL DBMS oper-

ations, and the JSON object is given a suitable, structured representation, specific for

the DBMS used. The requests and the interactions are handled by technology-specific

implementations acting as adapters for the DBMS API.

We have implementations for this interface in the three systems we currently sup-

port. The classes that directly implement the interface are the “managers” for the

various systems, which then delegate to other classes some of the technical, more

elaborate operations.
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For example, the following code is the implementation of the NonRelational-

Manager interface for MongoDb. It can be noticed that put links a content to a

resource identifiers, indeed creates a new resource. The adapter wraps the conversion

to a technical format (this responsibility is delegated to objectMapper) which is

finally persisted in MongoDB.

public class MongoDBNonRelationalManager
implements NonRelationalManager{

public void put(String collection, String ID, Object object){
DBCollection coll = db.getCollection(collection);

ByteArrayOutputStream baos =
new ByteArrayOutputStream();

this.objectMapper.writeValue(baos, object);

this.mongoMapper.persist(coll, getId(ID),
new ByteArrayInputStream(baos.toByteArray()));

}

As a second implementation of NonRelationalManger, let us consider the

one for Redis. As for MongoDb, it contains the specific mapping of Java objects

into Redis manageable resources. In particular, Redis needs the concept of collection,

defining a sort of hierarchy of resources, typical in resource-style architectures. It can

be seen that the hierarchy is simply inferred from the ID coming from the uniform

interface.

public class RedisNonRelationalManager
implements NonRelationalManager {

public void put(String collection, String ID, Object object){
Jedis jedis = pool.getResource();

try {

// the object is stored in the meta-layer
ByteArrayOutputStream baos =

new ByteArrayOutputStream();
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this.objectMapper.writeValue(baos, object);

ByteArrayInputStream bais =
new ByteArrayInputStream(baos.toByteArray());

this.databaseMapper.persist(jedis, collection, ID, bais);

baos.close();
bais.close();

} catch(JsonParseException ex){
ex.printStackTrace();

} finally {
pool.returnResource(jedis);

}
}

5.5 Application example

In this Section we present the real implementation of the Twitter example mentioned

in Section 5.2.

The application can be implemented by means of a small number of classes, one

for users, with a method for registering news ones and for logging in, one for tweets

with methods for sending them, and finally one for the “follower-followed” relation-

ship, for updating it and for the support to listening. Each of the classes is imple-

mented by using one or more database objects, which are instantiated according to

the implementation that is desired for it (MongoDB for users, Redis for tweets, and

HBase for the relationship). More precisely, the database objects are indeed handled

by a support class that offers them to all the other classes.

As an example, let us see the code for the main method, sendTweet() for the

class that handles tweets. We show the two database objects of interest, tweetsDB

and followshipsDB of the NonRelationalManager with the respective con-

structors, used for the storage of the tweets and of the relationships, respectively.

Then, the operations that involve the tweets are specified in a very simple way, in
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terms of put and get operations on the “DB” objects.

NonRelationalManager tweetsDB =
new RedisNonRelationalManager();

NonRelationalManager followshipsDB =
new HBaseNonRelationalManager();

...

public void sendTweet(Tweet tweet) {

// ADD TWEET TO THE SET OF ALL TWEETS
tweetsDB.put("tweets", tweet.getId(), tweet);

// ADD TWEET TO THE TWEETS SENT BY THE USER
Set<Long> sentTweets =

tweetsDB.get("sentTweets", tweet.getAuthor());
sentTweets.add(tweet.getId());
tweetsDB.put("sentTweets", tweet.getAuthor(), sentTweets);

// NOTIFY FOLLOWERS
Set<Long> followers =

followshipsDB.get("followers", tweet.getAuthor());

for(Long followerId : followers) {
Set<Long> unreadTweets =

tweetsDB.get("unreadTweets", followerId);
unreadTweets.add(tweet.getId());

}

tweetsDB.put("unreadTweets", followerId, unreadTweets);
}

It is worth noting that the above code refers to the specific systems only in the ini-

tialization of the objects tweetsDB and followshipsDB. Thus, it would possible

to replace an underlying system with another by simply changing the constructor for

these objects.

In a technical context, it is clear that an application such as the one described

above, can be easily implemented from scratch, given the managers for the various

systems. It is important to notice that systems built on this programming model ad-
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dress modularity, in the sense that the NoSQL infrastructure can be easily replaced

without affecting the client code.

5.6 Conclusions

The contribute of this chapter is the introduction of a programming model based on the

meta-layer that sustains homogeneity in treating non relational schemas. The original

contribution of the work is the design of a meta-level supporting programming inter-

faces. Great attention in the study was also devoted to supporting the simultaneous

use of multiple NoSQL system, a more and more common scenario in modern ap-

plications. We chose three systems as the most representative of specific classes of

NoSQL implementations.
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CHAPTER 6

Benchmarking of indexing strategies in
SimpleDB

This chapter in a complementary fashion with respect to the previous ones, faces a

new software paradigm from an architectural perspective, paying attention to various

alternatives.

Cloud computing has been massively adopted recently in many applications for

its elastic scaling and fault-tolerance. At the same time, given that the amount of

available RDF data sources on the Web increases rapidly, there is a constant need for

scalable RDF data management tools.

A novel architecture for the distributed management of RDF data is described in

this chapter, exploiting the Amazon Web Service (AWS) existing commercial cloud

infrastructure. We study the problem of indexing RDF data stored within AWS, by

using the key-value store provided by AWS for small data items, namely SimpleDB.

The goal of the index is to efficiently identify the RDF dataset(s) which may have

answers for a given query, and route the query only to those. We devised and experi-

mented with several indexing strategies; we discuss experimental results and avenues

for future work.
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6.1 Introduction

Cloud computing has been massively adopted recently in many applications for the

scalability, fault-tolerance and elasticity features it provides. Cloud-based platforms

free the application developer from the burden of administering the hardware and pro-

vide resilience to failures, as well as elastic scaling up and down of resources accord-

ing to the demand. The recent development of such environments has a significant

impact on the data management research community, in which the cloud provides

a distributed, shared-nothing infrastructure for scalable data storage and processing.

Many works have relied on cloud infrastructures focusing on different aspects such

as implementing basic database primitives in cloud services [BFG+08] or algebraic

extensions of the MapReduce paradigm [DG04] for efficient parallelized processing

of queries [AEH+11].

Within the wider data management field, significant effort has been invested in

techniques for the efficient management of Web data. A constantly increasing number

of sources expose and/or share their data represented in the W3C’s Resource Descrip-

tion Format (or RDF, in short) [KC04]. A well-known interesting RDF data source is

the billion triples of DBPedia (http://aws.amazon.com/datasets/2319), oth-

ers are catalogued in the Linked Open Data Web site (http://linkeddata.org)

etc. RDF has also been used in highly dynamic news management scenarios, such as

the BBC’s reporting on the World Football Cup [KAKK10]. Efficient systems have

been devised in order to handle large RDF volumes in a centralized setting, with RDF-

3X [NW09, NW10] being among the best-known.

To exploit ever-increasing volumes of data in a cloud, works such as [HKKT10,

LH11, MYL10, SZ10], either focus on MapReduce or use cloud-based key-value

stores to store RDF data. These works mostly target at designing parallel techniques

for efficiently handling massive amounts of data.

In this work, we explore an alternative and possibly complementary approach. We

envision an architecture where large amounts of RDF data reside in an elastic cloud-
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based store, and focus on the task of efficiently routing queries to only those datasets

that are likely to have matches for the query. Selective query routing reduces the

total work associated to processing a query, and in a cloud environment, total work

also translates in financial costs! To achieve this, whenever data is uploaded in the

cloud store, we index it and store the index in an efficient (cloud-resident) store for

small key-value pairs. Thus, we take advantage of: large-scale stores for the data

itself; elastic computing capabilities to evaluate queries; and the fine-grained search

capabilities of a fast key-value store, for efficient query routing.

Our implementation relies on the Amazon Web Services (AWS) cloud plat-

form [AWS], one of the most prominent commercial cloud platforms today, which

has been used in other data management research works [BFG+08, SDQR10]. We

store RDF files in Amazon Simple Storage Service (S3) and use Amazon SimpleDB

for storing the index. Finally, RDF queries are evaluated against the RDF files re-

trieved from S3, within the Amazon Elastic Compute Cloud (EC2). While our results

only hold within the Amazon platform, the architecture is quite generic and could be

ported to other similar cloud-based environment.

6.2 Preliminaries

In this section, we briefly introduce the basics of our supported data model and query

language as well as give a description of the Amazon cloud.

RDF and SPARQL

In order to lay the background and fix the terminology of the chapter, here we briefly

summarize some features of the Resource Description Framework (RDF) data model

[KC04, MM04]. RDF is a data model and formalism recommended by W3C and

designed for the exchange and reuse of structured data among web applications. It is

based on the concept of resource which is everything that can be referred to through a

Uniform Resource Identifier (URI). RDF data model is built on resources, properties

(a.k.a. predicates) and values. Properties can be seen as relations linking resources and
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values. The values can be either URIs, constants from primitive types called literals

(such as string or integers), or blank nodes. Blank nodes are identifiers for unknown

values. We use an underscore-prefixed notation to refer to them, as in _:bnodeID.

Information about resources is encoded using RDF triples, also called statements.

A statement is a triple of the form (subject, property, object), abbreviated as (s, p, o).

The subject of a triple identifies the resource that the statement is about, the property

identifies an attribute describing the subject, while the object gives the value of the

property.

More specifically, let U , L and B denote three (pairwise disjoint) sets of URIs,

literals, and blank nodes, respectively. A (well-formed) triple is a tuple (s, p, o) from

(U ∪ B) × U × (U ∪ L ∪ B), where s is the subject, p is the property and o is the

object of the triple.

A set of triples comprises a graph, which can be also called a dataset. Indeed,

a set of triples encodes a graph structure in which every triple (s, p, o) describes a

directed edge labelled with p from the node labelled with s to the node labelled with

o. A graph can be identified by a URI value. In RDF, graphs can be built from other

graphs through a merge operation. This is particularly useful for traversing various

data sources with queries through the integration of these data sources.

The merge of RDF graphs is as follows. If these graphs have no blank nodes in

common, then merging them results in their union. Otherwise, the graphs do share

blank nodes and merging them amounts to renaming the (shared) blank nodes within

the graphs with fresh identifiers, so that we fall into the previous case.

SPARQL [PS08] is the W3C standard for querying RDF graphs. In this approach,

we consider the Basic Graph Pattern (BGP) queries of SPARQL, i.e., its conjunc-

tive fragment allowing to express the core Select-Project-Join database queries. The

normative syntax of BGP queries is

SELECT ?v1 . . .?vm FROM uri1 . . .FROM urin WHERE {t1, . . . , to}

with {t1, . . . , to} an RDF graph whose triples can also use variables, ?v1 . . .?vm a
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set of variables occurring in {t1, . . . , to} that defines the output of the query, and

uri1, . . . , urin the URIs of the graphs whose merging must be queried. Here, the

notion of triple is actually generalized to that of triple pattern (s, p, o) from (U ∪B ∪
V )×(U ∪V )×(U ∪L∪B∪V ), where V is a set of variables. Observe that repeating

a variable in a SPARQL query is the way of expressing joins.

In the following, when a query has no FROM clause, we assume that it must be

evaluated against the merge of all the graphs whose URIs are known.

Let us now turn to the semantics of a BGP query. First, a mapping µ from B ∪ V
to U ∪B ∪ L is defined as a partial function µ : B ∪ V → U ∪B ∪ L. If o is a triple

pattern or a set of variables, µ(o) denotes the result of replacing the blank nodes and

variables in o according to µ. The domain of µ, dom(µ), is the subset of V where µ

is defined. Let q = SELECT ?v1 . . .?vm FROM uri1 . . .FROM urin WHERE {t1, . . . , to}
be a BGP query and D the graph obtained by merging the datasets whose URIs are

uri1, . . . , urin. The evaluation of q is: eval(q) = {µ(?v1 . . .?vm) | dom(µ) =

varbl(q) and {µ(t1), µ(t2), ..., µ(tn)} ⊆ D}, with varbl(q) the set of variables and

blank nodes occurring in q.

Notice that evaluation treats blank nodes in a query as non-distinguished vari-

ables. That is, one could consider without loss of generality queries without blank

nodes.

Notation. From now on, to avoid writing long URIs, we use namespaces. Names-

paces allow associating a short convenient prefix to the first part of a lengthy URI. Fol-

lowing the namespace usage, a URI can be replaced by the prefix to which is appended

the last part of the URI. For example, the URI http://xmlns.com/foaf/0.1/

name can be written foaf:name, provided that foaf has been declared as the

namespace for http://xmlns.com/foaf/0.1/.

Running Example

Throughout the chapter we rely on a simple running example consisting of three

datasets, representing: the articles published by Inria researchers, the books published
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Figure 6.1: Graph representation of the example RDF data.

by Inria researchers, and the Inria labs. The content of these datasets is depicted in

Figure 6.1.

The articles dataset describes the resource inria:article1 whose au-

thor (inria:hasAuthor) is represented by the resource inria:bar whose name

(inria:hasName) is “Bar” and whose nationality (inria:hasNationality) is

“American”. The namespace inria is used to abbreviate the URI prefix http://

inria.fr/.

The books dataset describes the resource inria:book1 whose author

(inria:hasAuthor) is inria:Foo, and for which there is an unknown (_:uid1)

contact author (inria:hasContact- Info) whose role (inria:hasRole) is “Pro-

fessor" and whose telephone number (inria:hasTel) is “+33 134879”. The re-

source inria:Foo has also a name (inria:hasName) which is “Foo", national-

ity (inria:hasNationality) “France” and telephone number (inria:hasTel)

“+33 12345678”. The resource inria:book2 is also described whose author

128



6.2. Preliminaries

db = dom+
dom = (name, item+)
item = (key, attribute+)
attribute = (name, value)

Figure 6.2: SimpleDB database layout.

(inria:hasAuthor) is the unknown author _:uid1.

Finally, the labs dataset describes the resource labInria:lab1 whose name

(labInria:hasName) is “ResearchLab” and whose location (labInria:hasLoc

ation) described by the resource http://labs.inria.fr/lab1/location has

the GPS coordinates (labInria:hasGPS) “48.710715,2.17545”. The namespace

labInria is defined by the URI http://labs.inria.fr /rdfExample/.

Amazon cloud

Amazon Web Services (AWS) provides since 2006 a cloud-based services platform

which organizations and individuals can take advantage of, in order to develop elastic

scalable applications. For the purpose of this work, we mostly relied on the Ama-

zon SimpleDB, a structured store for small atomic objects, and on Amazon’s Simple

Storage Service (S3).

Amazon SimpleDB

SimpleDB is a non relational data store provided by Amazon which focuses on high

availability (ensured through replication), flexibility and scalability. SimpleDB sup-

ports a set of APIs to query and store items in the database. A SimpleDB data store is

organized in domains. Each domain is a collection of items identified by their name.

Each item contains one or more attributes; an attribute has a name and a set of asso-

ciated values. Figure 6.2 outlines the structure of a SimpleDB database.
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In the sequel, we can thus summarize the layout of data within SimpleDB as a

four-level hierarchy D|I|A|V , where D is the domain name, I is the item name, A

and V are attribute name and attribute value, respectively.

SimpleDB API. The main operations of SimpleDB API are the following:

• ListDomains() retrieves all the domains associated to one AWS account.

• CreateDomain(D) and DeleteDomain(D) creates a new domain D or deletes

an existing one, respectively.

• PutAttributes(D, k, (a,v)+) inserts or replaces attributes (a,v)+ into

an item with name k of a domain D. If the item specified does not exist, Sim-

pleDB will create a new item. BatchPutAttributes performs up to 25

PutAttributes operations in a single API call, which allows for obtaining

a better throughput performance.

• GetAttributes(D, k) returns the set of attributes associated with item k in

domain D.

• select(expr) operation queries a specified SimpleDB domain using query

expressions similar to the standard SQL SELECT statements. We elaborate

more about this API operation in the next section.

It is not possible to execute an API operation across different domains. Therefore,

if required, the aggregation of results from API operations executed over different

domains has to be done in the application layer. AWS ensures that operations over

different domains run in parallel. Hence, it is beneficial to split the data in several

domains in order to obtain maximum performance.

As most non-relational databases, SimpleDB does not adopt a strict transactional

model based on locks or timestamps. It only provides the simple model of conditional

puts. It is possible to update fields on the basis of the values of other fields. It allows

for the implementation of elementary transactional models such as some entry level

versions of optimistic concurrency control.

130



6.2. Preliminaries

SimpleDB select statement. The select statement which can be used for querying

SimpleDB is similar to the standard SQL select statements and has the following

structure:

select (* | itemName() | count(*) | (attr1, ... attrN))
from domain_name
[where expression]
[sort_instructions]
[limit limit]

The expression can be any of the following:

(<simple comparison>)
(<select expression> intersection <select expression> )
(NOT <select expression>)
(<select expression>)
(<select expression> or <select expression>)
(<select expression> and <select expression>)

Comparison operators (=, !=,>, ..., like, in, is not null, is null, etc.)

are applied to a single attribute and are lexicographical in nature.

SimpleDB limitations. AWS imposes some size and cardinality limitations on Sim-

pleDB. These limitations include:

• Domains number: the default settings of a AWS account allow for at most 250

domains. While it is possible to negotiate more, this has some overhead (one

must discuss with a sale representative etc. - it is not as easy as reserving more

resources through an online form).

• Domain size: the maximum size of a domain cannot exceed 10 GB.

• Item name length: the name of an item should not occupy more than 1024 bytes.

• Number of (attribute, value) pairs in an item: this cannot exceed 256. As a

consequence, if an item has only one attribute, that attribute cannot have more

than 256 associated values.

• Length of an attribute name or value: this cannot exceed 1024 bytes.
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In addition, when we execute a select query in a domain, there are also some

limitations. Here we present only the ones related to our proposed architecture.

• The query cannot return more than 2500 items and the size of the result cannot

exceed 1MB. If any of these conditions are not met, it is possible to retrieve the

additional results by iterating the query execution using an identifier returned

from the previous round.

• The maximum query execution time is 5 seconds, i.e., if a query takes longer

than 5 seconds to be executed, it returns an error.

Amazon Simple Storage Service

Amazon S3 is a storage web service for raw data and hence, ideal for storing large

objects or files. S3 stores the data in named buckets. Each object stored in a bucket

has associated a unique name (key) within that bucket, metadata, an access control

policy for AWS users and a version ID. The number of objects that can be stored

within a bucket is unlimited.

If we want to retrieve an object from S3, we should access the bucket that contains

it and request it by its name. S3 allows to access the metadata associated to an object

without retrieving the complete entity. Unlike SimpleDB, there is no performance

difference in S3 between storing objects in multiple buckets and storing them in just

one.

S3 API. The S3 API includes the following basic operations:

• ListBuckets() returns the list of created buckets, Create-Bucket (B) cre-

ates a new bucket B and DeleteBucket(B) deletes an existing bucket.

• PutObject(buck, key, obj, meta) stores an object obj with name key

and metadata meta within bucket buck.

• GetObject(buck, key) retrieves object key from a bucket buck.

• GetObjectMetadata(buck, key) retrieves only the object’s metadata with-

out fetching the actual object.
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Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is a virtual computing environment that allows

the use of web service interfaces to launch virtual computer instances on which users’

applications can be run. The virtual machine images are stored in the cloud and it is

possible to configure them choosing hardware features such as RAM size, network

access, etc. The utilization cost is calculated on the basis of the configuration of the

machine, the running time of the application and the data transfer.

Amazon Simple Queue Service

Amazon Simple Queue Service (SQS) provides reliable and scalable queues that en-

able asynchronous message-based communication between the distributed compo-

nents of an application. This service prevents an application from message loss and

from requiring each component to be always available.

6.3 Architecture

Our envisioned architecture relies on the following services provided by Amazon: S3

for permanent storage, SimpleDB for storing structured information about the data

stored in S3, EC2 for running our modules and SQS for the communication between

the different modules.

RDF datasets are stored in S3 and each dataset is treated as a uninterpreted BLOB

object. As explained in Section 6.2, it is necessary to associate a key to every resource

stored in S3 in order to be able to retrieve it. For this reason, we assign to each dataset

as a key the URI of the dataset. In general we indicate asURI(dsj) the URI associated

to the dataset j. On the other hand, dataset indexes are instead kept in SimpleDB. In

this way, we allow for fast retrieval of the URIs of the RDF datasets.

An overview of our system architecture is depicted in Figure 6.3. A user interac-

tion with our system can be described as follows.
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Figure 6.3: Proposed architecture.

The user submits to the front-end component RDF datasets (1) and the front-end

module stores the file in S3 (2). Then, it creates a message containing the reference to

the dataset and inserts it to the loader request queue (3). Any EC2 instance running

our indexing module receives such a message (4) and retrieves the dataset from S3 (5).
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The indexing module after transforming the dataset into a set of RDF triples, it creates

the index data and inserts it in SimpleDB (6).

When a user submits a SPARQL query to the front-end (7), the front-end inserts

the corresponding message into the query request queue (8). Any EC2 instance run-

ning our query processor receives such a message and parses the query (9). The query

processor performs a lookup to the indexes kept within SimpleDB to find out the

datasets that contain information to answer the query (10). Any processing required

for merging or unioning the RDF datasets retrieved from SimpleDB is performed in

the execution module (11). Then, the local query evaluator receives the final list

of URIs pointing to the RDF datasets in S3 (12), retrieves them and evaluates the

SPARQL query against these datasets (13). Then, it writes the results to S3 (14) and

creates a message which is inserted into the query response queue (15). The front-end

receives this message (16) and retrieves the results from S3 (17). Finally, the results

are returned to the user (18).

6.4 Indexing strategies in SimpleDB

In this section we describe the RDF indexing strategies we have developed in Sim-

pleDB that allow us to find out in a light way the RDF datasets that should be retrieved

from S3 and then, queried to form the answer to the query. Since we use SimpleDB

to store the indexes they should conform with data model of SimpleDB described in

Section 6.2.

Notation. To simplify presentation, we will describe each indexing strategy in terms

of the four levels of information that SimpleDB allows us to use, namely (D|I|A|V )

(see Section 6.2). To index RDF, we may use the values of subjects (S), properties

(P ) and objects (O) occurring in RDF triples, as well as the URIs (U ) of the RDF

datasets. Moreover, we will also use a set of three token strings, which we denote by

S, P and O, and which we may insert in the index to specify whether some piece of

data is to be treated as a subject, property, or object, respectively. In addition, we will
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use the symbol ‖ to denote string concatenation. In cases where there is no confusion

we may omit it (e.g., SP denotes the concatenation of the string values “subject”

and “property”). Similarly, we will use a token string denoted by D to represent a

constant domain name. As we will show, each indexing strategy can be represented

by a concatenation of four |-separated symbols, specifying which information item is

used in the domain name, item name, attribute name and attribute value, respectively.

Attribute-based strategy

In the following we describe our first indexing strategy of RDF datasets in SimpleDB

and the query processing algorithm which utilizes the indices in order to retrieve

datasets that are relevant to the SPARQL query. These datasets can be used then

to form the answer to the query.

Indexing. According to this strategy, for each dataset three indexes are created: one

for the subjects, one for the properties and one for the objects. Each index resides in a

different SimpleDB domain. Then, for each dataset, an item named after the dataset is

inserted in the respective domain. The name of the dataset is also the URI that allows

us to access the RDF graph stored in S3. Using our notation we therefore have the

following indexes:

1. (S|U |S|S), which enumerates subjects using attribute-value pairs where the

attribute name is the word “subject” and the value is the subject itself.

2. (P |U |P |P ), which enumerates properties using attribute-value pairs where the

attribute name is the word “property” and the value is the property itself.

3. (O|U |O|O), which enumerates objects using attribute-value pairs where the

attribute name is the word “object” and the value is the object itself.

Handling SimpleDB limitations. As already discussed, SimpleDB can manage up to

256 attribute-value elements for each item. This means that a given dataset, confined
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in a single item by this strategy, can have up to 256 distinct subjects, 256 distinct

properties and 256 distinct objects. While for properties this might not be a problem

in many cases, for subjects and objects the limit is quickly reached. We have two

dimensions of growth at our disposal to cope with this:

1. We may assign “partition” URIs URI|1, URI|2, . . . , URI|k for a given real

dataset URI URI . When e.g., the S domain overflows for the first time and a

given dataset URI , we create the artifficial URI|1 and register the subsequent

items as belonging to the (fictitious) dataset URI|1. (This also amounts to a vir-

tual partitioning of the input dataset in several slices.) When URI|1 overflows,

say, in the S or O index, we move to URI|2 and so on. To ensure complete

index look-ups, a secondary index tracks all the partition URIs associated to a

given URI .

2. We may use more domains. Let B denote the maximum number of SimpleDB

domains available to us (B = 250 for a regular AWS account). We partition

these domains according to their usage: some domains, denoted S1, S2, . . ., Si

will be used for the subjects, and similarly properties P 1, P 2, . . ., P j , respec-

tively, O1, O2, . . ., Ol for the objects, with i, j, l ≥ 1 and 3 ≤ i + j + l ≤ B.

For a given dataset, whenever we reach the 256 attribute-value limitation in an

item in a domain Si (or P j , or Ol), we create a new item for this dataset in

the “next” domain Si+1 (respectively, P j+1, or Ol+1). The domain Si+1 is

created the first time that the limits of the domain Si are reached (and similarly

for O and P ). Increasing the number of domains favors parallelism, since in-

dex entries for a given dataset, that are partitioned over several domains, can be

simultaneously filled in, and consulted.

Our current implementation first, expands to several domains in order to maxi-

mize parallelism, and then, once the maximum number of domains has been taken,

introduces partition URIs. We plan to further the analysis of the trade-offs between

the two techniques in our future work.

137



6. BENCHMARKING OF INDEXING STRATEGIES IN SIMPLEDB

subject domain i
item key (attr. name, attr. value)
URIk(ds1) (S, s′ds1 ), (S, s′′ds1 ), ...
URIk(ds2) (S, s′ds2 ), ...

property domain j
item key (attr. name, attr. value)
URIk(ds1) (P, p′ds1 ), (P, p′′ds1 ), ...
URIk(ds2) (P, p′ds2 ), (P, p′′ds2 ), ...

object domain l
item key (attr. name, attr. value)
URIk(ds1) (O, o′ds1 ), (O, o′′ds1 ), ...
URIk(ds2) (O, o′′ds2 ), ...

Table 6.1: Outline of the attribute-based strategy

Table 6.1 outlines data organization in SimpleDB using this strategy. The data

shown in Figure 6.1 leads to the index shown in Table 6.2. For this small example, we

use only three domains and one item per dataset in each domain.

Querying. For each constant (URI or literal) of a SPARQL query a SimpleDB

select query is submitted to the S (or P , or O) domain(s), depending on the po-

sition of the constant in the query. Each such look-up retrieves the URIs of the dataset

containing the respective subject (or object, or property) value. For each triple pattern,

the results of all the select queries based on constants of that triple need to be inter-

sected. The intersection leads to a set of URIs obtained out of a given triple pattern.

The union of all URI sets thus obtained from the triples in a SPARQL query is the set

of datasets on which the query must be evaluated.Using our running example assume

that we want to evaluate the following SPARQL query:

Listing 6.1: Example SPARQL query

PREFIX inria: <http://inria.fr/>
SELECT ?s
WHERE {

?s inria:hasAuthor "Foo" .
?s inria:hasContactInfo ?o .

}
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subject domain
item key (attr. name, attr. value)
articles (S, inria:article1), (S, inria:bar)
books (S, inria:book1), (S, inria:Foo),

(S, _:uid1), (S, inria:book1)
labs (S, labInria:lab1), (S, labInria:location)

property domain
item key (attr. name, attr. value)
articles (P, inria:hasAuthor), (P, inria:hasName), (P, in-

ria:hasNationality)
books (P, inria:hasAuthor), (P, inria:hasContactInfo),

(P, inria:hasRole)(P, inria:hasTel), (P, in-
ria:hasNationality), (P, inria:hasRole)

labs (P, labInria:hasLocation), (P, labInria:hasName),
(P, labInria:hasGPS)

object domain
item key (attr. name, attr. value)
articles (O, inria:bar), (O, “Bar”), (O, “American”)
books (O, inria:Foo), (O, “Foo”), (O, “+33 12345678”),

(O, “France”), (O, “+33 1234879”), (O, “Profes-
sor”)

labs (O, labInria:location), (O, “ResearchLabs”),
(O, “48.710715,2.17545”)

Table 6.2: Attribute-based strategy applied to the running example

The corresponding SimpleDB queries that are required in order to retrieve the

corresponding datasets is the following:

q1: select itemName()
from property_domain
where property = inria:hasAuthor;

q2: select itemName()
from object_domain
where object = "Foo";

q3: select itemName()
from property_domain
where property = inria:hasContactInfo;
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The datasets retrieved from SimpleDB queries q1 and q2 will be intersected and

the resulted datasets will be merged with the datasets retrieved from query q3. The

query will be then evaluated on final set of the merged datasets.

Analytical cost model. In this section, we analyze the cost of the index strategy

with respect to the size of the index as well as the number of required lookups while

processing a SPARQL query. In both cases we present analytical costs for the worst

case scenario.

Let n be the number of datasets stored in S3 and T the maximum size of a dataset

in terms of the number of triples it consists. Hence, if Tdsi is the size of dataset dsi
then T = max(Tds1 , Tds2 , ..., Tdsn). We assume that the number of distinct subjects,

properties and objects values appearing in a dataset is equal to the size of the dataset

itself, and thus equals to the number of triples (worst case scenario). For each triple in

a dataset we create three entries in SimpleDB. The size of the index for this strategy

will be 3× n× T .

For the query processing, let q be the number of triple patterns of a BGP SPARQL

query, then in the worst case scenario, the number of constants a query can have is

at most 3 × q (i.e., in case of a boolean query). Using this strategy, one lookup per

constant in a query is performed to the appropriate domain type. For the case where

the SimpleDB limit has not been reached and we thus have only one domain for the

subjects, properties and objects, the number of lookups to SimpleDB is 3× q.

In the case where we have reached the SimpleDB limitation and more than one

domain for either of the subject, property, object domains are created, we need to

perform one lookup to each domain separately. If d is the total number of allocated

domains, the number of lookups to SimpleDB in the worst case scenario equals to

3× q × d.
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Attribute-pair strategy

Indexing. This strategy uses three indexes, one for each pair of attributes in an RDF

triple:

1. The first index is (SP |U |S|P ), which enumerates the relation (s, p), assert-

ing whenever a subject has a property.

2. The second index is (PO|U |P |O), which enumerates the relation (p, o),

asserting whenever a property refers to an object.

3. Similarly, the third index is (OS|U |O|S), which enumerates the relation (o,

s) asserting whenever an object is connected to a subject.

Handling SimpleDB limitations. SimpleDB attribute-value limitation leads to con-

straining a single dataset to 256 distinct subject-property pairs, 256 distinct property-

object pairs and 256 distinct object-subject pairs. To overcome this limitation, we use

the same technique as we described in the previous indexing strategy. We increase

the number of each type of domain up to the number we have available. At the point

where this number is reached we start filling the already existing domains by adding

new items for the same datasets. The general organization of this indexing strategy in

SimpleDB is depicted in Table 6.3. Using our running example of Figure 6.1, we have

the index organization as shown in Table 6.4.

Querying. For each SPARQL triple pattern having at least one constant, we evalu-

ate one SimpleDB select query on the corresponding domain(s) depending on the

position of the constants in the triple. In case a triple pattern has one bound value we

define a query where the corresponding attribute of the domain should not be null.

In case a triple pattern has two bound values c1 and c2 we define a SimpleDB query

whose where clause asks that c1 equals to c2. The query will be evaluated against

the union of the datasets returned by the SimpleDB select queries corresponding to

each triple.
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subject-property domain i
item key (attr. name, attr. value)
URIk(ds1) (s′ds1 , p

′
ds1

), (s′ds1 , p
′′
ds1

), (s′′ds1 , p
′
ds1

) ...
URIk(ds2) (s′ds2 , p

′
ds2

), (s′ds2 , p
′′
ds2

), (s′′ds2 , p
′
ds2

) ...
property-object domain j

item key (attr. name, attr. value)
URIk(ds1) (p′ds1 , o

′
ds1

), (p′′ds1 , o
′′
ds1

) , ...
URIk(ds2) (p′ds2 , o

′
ds2

), ...
object-subject domain l

item key (attr. name, attr. value)
URIk(ds1) (o′ds1 , s

′
ds1

), (o′′ds1 , s
′
ds1

), ...
URIk(ds2) (o′ds2 , s

′
ds2

), ...

Table 6.3: Outline of the attribute-pair strategy

Using our running example and the example SPARQL query of Listing 6.1 we

show the corresponding SimpleDB queries that are required in order to retrieve the

corresponding datasets:

q1: select itemName()
from property_object_domain
where inria:hasAuthor = "Foo";

q2: select itemName()
from property_object_domain
where inria:hasContactInfo is not null;

The datasets retrieved from queries q1 and q2 will be merged and the query will

be then evaluated against the merged datasets.

Analytical cost model. Similarly with the attribute-based index, for each triple of a

certain dataset three entries are created in SimpleDB. In order to compute the size of

this index, we assume that the number of distinct values of the subject-property pairs,

property-object pairs and object-subject pairs appearing in a dataset equal to the the

number of triples of the dataset (worst case scenario). Then, the size of the index for

the attribute-pair strategy equals to 3× n× T , where n is the number of datasets and

T the maximum number of triples of a dataset as introduced previously.
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subject-property domain
item key (attr. name, attr. value)
articles (inria:article1, inria:hasAuthor), (inria:bar, in-

ria:hasName), (inria:bar, inria:hasNationality)
books (inria:book1, inria:hasAuthor), (inria:book, in-

ria:hasContactInfo), (inria:Foo, inria:hasName),
(inria:Foo, inria:hasNationality), (inria:Foo, in-
ria:hasTel), (_:uid1, inria:hasRole), (_:uid1, in-
ria:hasTel) (inria:book2, inria:hasAuthor)

labs (labInria:lab1, labInria:hasLocation), (labIn-
ria:lab1, labInria:hasName), (labInria:location,
labInria:hasGPS)

property-object domain
item key (attr. name, attr. value)
articles (inria:hasAuthor, inria:bar), (inria:hasName,

“Bar”), (inria:hasNationality, “American”)
books (inria:hasAuthor, inria:Foo), (in-

ria:hasContactInfo, _:uid1), (inria:hasTel, “+33
12345678”), (inria:hasNationality, “France”),
(inria:hasRole, “Professor”), (inria:hasAuthor,
_:uid1)

labs (labInria:hasLocation, labInria:location),
(labInria:hasName, “ResearchLabs”), (labIn-
ria:hasGPS, “48.710715,2.17545”)

object-subject domain
item key (attr. name, attr. value)
articles (inria:bar, inria:article), (“Bar”, inria:bar),

(“American”, inria:bar)
books (inria:Foo, inria:book), (_:uid1, inria:book),

(“Foo”, inria:Foo), (“France”, inria:Foo), (“+33
12345678”, inria:Foo), (“Professor”, _:uid1),
(“+33 1234879”, _:uid1), (_:uid1, inriafr:Foo )

labs (labInria:location, labInria:lab1), (“Research-
Labs”, labInria:lab1), (“48.710715,2.17545”,
labInria:location)

Table 6.4: Attribute-pair strategy applied to the running example

In the query processing procedure of this indexing strategy, at least one lookup is

performed for each triple pattern of a SPARQL query. Certainly, this holds only in the
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case where the SimpleDB limit has not been reached. Then, the number of lookups to

SimpleDB when using the attribute-pair strategy is equal to q, where q is the number

of triple patterns of the SPARQL query.

In the case where we have reached the SimpleDB limitation and created more than

one domain for either type of domain, we need to perform one lookup for each such

domain. Then, the number of lookups to SimpleDB for the worst case scenario is

q× d, where q is the number of triple patterns of the SPARQL query and d is the total

number of created domains in SimpleDB.

Attribute-subset strategy

Indexing. This strategy encodes each triple (s, p, o) by a set of seven patterns

(s), (p), (o), (s, p), (s, p, o), (p, o) and (s, o) corresponding to all

non-empty attribute subsets. For each triple and each of these seven patterns, a new

SimpleDB item is created and named after the pattern. As attribute name, we use the

URI of the dataset containing this pattern; as attribute value, we use ε.

Using our notation, the indexes we create can be described as: (D|SS|U |ε),
(D|PP |U |ε), (D|OO|U |ε), (D|SPSP |U |ε), (D|POPO|U |ε), (D|SOSO|U |ε) and

(D|SPOSPO|U |ε).
The general organization of this index is illustrated in Table 6.5. The data from

our running example leads to the index configuration outlined in Table 6.6.

attribute-subset domain
item key (attr. name, attr. value)
S‖subject (URIds1 , ε), (URIds2 , ε), ...
P‖property (URIds1 , ε), (URIds2 , ε),...
O‖object (URIds1 , ε), (URIds2 , ε),...

SP‖subject‖property (URIds1 , ε), (URIds2 , ε),....
PO‖property‖object (URIds1 , ε), (URIds2 , ε),...
SO‖subject‖object (URIds1 , ε), (URIds2 , ε),...

SPO‖subject‖property‖object (URIds1 , ε), (URIds2 , ε),...

Table 6.5: Attribute-subset indexing strategy
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attribute-subset domain
item key (attr. name, attr. value)
S‖inria:article1 (articles, ε)
S‖inria:bar (articles, ε)
S‖inria:book1 (books, ε)
S‖inria:book2 (books, ε)
S‖inria:Foo (books, ε)
S‖inria:_:uid1 (books, ε)
S‖labinria:lab1 (labs, ε)
S‖labInria:location (labs, ε)
P‖inria:hasAuthor (articles, ε), (books, ε)
P‖inria:hasName (articles, ε), (books, ε)
P‖inria:hasNationality (articles, ε), (books, ε)
P‖inria:hasTel (books, ε)
P‖inria:hasRole (books, ε)
P‖inria:hasContactInfo (books, ε)
P‖labInria:hasName (labs, ε)
P‖labinria:hasLocation (labs, ε)
P‖inria:hasLocation (labs, ε)
P‖labInria:hasGPS (labs, ε)
O‖inria:bar (articles, ε)
O‖“Bar” (articles, ε)
O‖“American” (articles, ε)
... ...
O‖“48.710715,2.17545” (labs, ε)
SP‖inria:article1‖inria:hasAuthor (articles, ε)
SP‖inria:bar‖inria:hasName (articles, ε)
SP‖inria:bar‖inria:hasNationality (articles, ε)
... ...
SP‖labInria:lab1‖labInria:hasName (labs, ε)
PO‖inria:hasName‖“Bar" (articles, ε)
PO‖inria:hasNationality‖“American” (articles, ε)
PO‖inria:hasAuthor‖inria:Bar (articles,ε)
... ...
PO‖labInria:hasGPS‖“48.710715,2.17545” (labs, ε)
SO‖inria:article1‖inria:Bar (articles, ε)
SO‖inria:bar‖“Bar” (articles, ε)
SO‖inria:bar‖“American” (articles, ε)
... ...
SO‖labInria:location‖“48.710715,2.17545” (labs, ε)
SPO‖inria:bar‖inria:hasName‖“Bar” (articles, ε)
... ...

Table 6.6: Attribute-subset indexing strategy in our example
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Handling SimpleDB limitations. In this indexing strategy the limits of SimpleDB

are exceeded when we have more than 256 datasets stored in S3 and all these datasets

have one triple element value or a combination of them in common. Although this

situation is not so often in various application scenarios, we cope with this by creating

an extra domain each time the limitation is reached. In addition, when more than 109

distinct values of all triple elements combinations appear in the datasets stored in S3,

the limit of the number of items allowed in a domain is surpassed. In this case we

follow the same technique of adding a new domain.

Querying. This index cannot be queried directly using SimpleDB select state-

ments, since one cannot use them to search and retrieve data according to an item key.

For this reason, we exploit this index through the GetAttributes(D, k) SimpleDB

API call, where D is the domain name and k is the item name. This call returns the

set of attributes associated with that item.

For each triple pattern of a SPARQL query the corresponding GetAttributes

call is generated, giving as item name a concatenation of the bound values of the triple

pattern. The URIs obtained through all the GetAttributes calls resulting from each

triple pattern are those of the datasets on which the query must be evaluated.

For example, for the SPARQL query of Listing 6.1 we need to perform the follow-

ing SimpleDB API calls:

GetAttributes(attribute-subset, PO‖inria:hasAuthor‖"Foo")

GetAttributes(attribute-subset, P‖inria:hasContactInfo)

If more than one domains have been created due to the limitation of SimpleDB,

then we execute the GetAttributes to every domain. As in the previous cases, we

then evaluate the SPARQL query to the the merge of the retrieved datasets.

Analytical cost model. Since for each triple of a dataset we create seven entries in

SimpleDB, the size of the index of this strategy, let it be I3, is 7× n× T , where n is

the number of datasets and T is the maximum number of triples in a dataset.

For the query processing, we perform one lookup for each triple pattern appearing
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in the SPARQL query in the case where the SimpleDB limit has not been reached. In

this case the number of lookups to SimpleDB when using the attribute-subset strategy

is equal to q.

In the case where we have reached the SimpleDB limitation, we create more than

one domain. Let d be the total number of domains in SimpleDB. Then, the number of

lookups to SimpleDB equals to q × d.

Domain-per-dataset strategy

Indexing. According to this strategy, a SimpleDB domain is allocated for and named

after each dataset with URI URIdsi . We use the subject, property, object values of

each triple in the dataset as the item names. Within our notations, for each dataset U

we create the following indexes:

1. (U |S|PP |O)

2. (U |P |OO|S)

3. (U |O|SS|P )

The organization of this index is illustrated in Table 6.7 while Table 6.8 shows a

the organization of the index for a specific dataset of our example.

URIdsi
item key (attr. name, attr. value)
subject (P‖property, object)

property (O‖object, subject)
object (S‖subject, property)

Table 6.7: Domain-per-dataset indexing strategy

Handling SimpleDB limitations. SimpleDB limitations leads to constraining a sin-

gle dataset to 256 property-object value pairs for each distinct subject value, 256

object-subject value pairs for each property value and 256 subject-property value pairs
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articles
item key (attr. name, attr. value)
inria:article1 (P‖inria:hasAuthor, inria:bar)
inria:hasAuthor, (O‖inria:bar, inria:article1)
inria:bar (S‖inria:article1, inria:hasAuthor)
inria:bar (P‖inria:hasName, “Bar”),

(P‖inria:hasNationality, “American”)
inria:hasName (O‖“Bar”, inria:bar)
inria:hasNationality (O‖“American”, inria:bar)
“American” (S‖inria:bar, inria:hasNationality)
“Bar” (S‖inria:bar, inria:hasName)

Table 6.8: Domain-per-dataset index example

for each distinct object value. This means that each subject, property, object value can

appear 256 times inside a dataset. In addition, each dataset is constrained to having

109 distinct triple element values. In case any of the above situations occur for a

dataset we add a new domain for this dataset.

Querying. For each triple pattern appearing in a given SPARQL query, a select

SimpleDB query is defined and submitted to each existing domain. The resulting URI

sets (one URI set for each triple pattern) are unioned and the query will be evaluated

on the union of all such sets.

For instance, for the SPARQL query of Listing 6.1, we define the following Sim-

pleDB queries for each domain i:

q1: select *
from domain_i
where property||inria:hasAuthor = "Foo";

q2: select *
from domain_i
where property||inria:hasContactInfo is not null;

The datasets retrieved from queries q1 and q2 then merged and the SPARQL query

is evaluated against the merged result.
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Analytical cost model. In this indexing strategy we create three entries to SimpleDB

for each triple of a dataset. Therefore, the size of the index of this strategy is 3×n×T ,

where n is the total number of datasets stored in S3 and T is the maximum size of a

dataset.

For the query processing part of this strategy, we perform one lookup to each

domain for each triple pattern appearing in the SPARQL query (if the SimpleDB limit

has not been reached). If q is the number of triple patterns of a SPARQL query, the

number of lookups to SimpleDB when using the domain-per-dataset strategy is q×n.

In the case where we have reached the SimpleDB limitation, we create more do-

mains per dataset. If d is the total number of domains in SimpleDB, then the number

of lookups to SimpleDB is q × d.

6.5 Experiments

We have fully implemented our RDF data management architecture using all index-

ing strategies previously described. In this section, we describe a preliminary set of

experiments conducted by deploying our system in the Amazon Web Services (AWS)

environment.

Implementation and set up

We have used Java 1.6 to implement all the modules described in Section 6.3. The

EC2 instance where we run our indexing module and query processor was part of

the Ireland AWS facility and consisted of a 64-bit machine with 7.5 GB of memory,

2 virtual core with 4 EC2 Compute Units. An EC2 Compute Unit is equivalent to

the CPU capacity of a 1.0-1.2 GHz 2007 Xeon processor. For the local RDF query

evaluation we used the query processor ARQ 2.8.8 with Jena 2.6.4.

We used synthetic RDF data generated by the SP2Bench generator [SHLP09]

which produces data based on the DBLP bibliography schema. We created datasets

from 10.000 to 100.000 triples and used a set of queries which are SPARQL BGP
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Figure 6.4: Indexing time for our four strategies.

queries obtained by some simplification of the SP2Bench queries. For instance, we

limited the queries to their BGP part, or modified them so that they would all have

non-empty results when evaluated directly on the data1. The queries we used had

from 1 to 8 triple patterns.

Indexing

In this section we study the performance of our four RDF indexing strategies, by

measuring the performance of inserting index entries into SimpleDB. In this set of

1The full semantics of a SPARQL query on an RDF database should contain answers both from the
explicit triples, and the implicit ones which are derived from the explicit triples using various RDF inference
rules [PS08]. In the work described here, we have not yet considered cloud-based reasoning; this is part of
our future work.
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experiments we used 10 datasets of 10.000 triples each (i.e., 100.000 triples in total).

We had 120 SimpleDB domains available to us for the experiments described here.

Therefore, for the attribute-based and attribute-pair indexes the maximum number of

domains that can be allocated for each domain type (i.e., S/P/O for attribute-based or

SP/PO/OS for attribute-pair) was set to 30. After indexing all 10 datasets, the numbers

of domains allocated were as follows:

• For the attribute-based strategy: 9 S domains, 1 P domain and 22 O domains

• For the attribute-pair strategy: 30 SP domains, 22 PO domains and 30 OS do-

mains

• For the attribute-subset index: 1 domain;

• For the domain-per-dataset index: 10 domains, one for each dataset.

Because the SimpleDB limitations for the first two strategies are very restrictive

even for small datasets, the domains were partitioned throughout our indexing exper-

iments (starting from the smallest dataset of 10.000 triples).

For each indexing strategy we measure the time from the moment we start in-

dexing the data, until the moment the index has been completely built in SimpleDB.

Figure 6.4 shows the time required to build each index as the number of stored RDF

triples increases. Note that we have used the BatchPutAttributes operation pro-

vided by SimpleDB which inserts to a single domain 25 items at a time, in a transac-

tional fashion. We observe from the graph that the time required for the index con-

struction grows linearly with the number of triples stored. As already shown by the

analytical cost model of our indexing strategies, the attribute-subset index is the most

time-consuming one since for each triple it inserts seven items into SimpleDB. On the

other hand, the attribute-based index which defines only one attribute name for each

item is more efficient. The attribute-pair strategy uses more domains and creates more

unique attribute-value pairs that should be inserted in SimpleDB, and thus, is more

expensive than the simple attribute-based approach. Finally, the domain-per-dataset
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Figure 6.5: SimpleDB utilization and cost.

index inserts each time data to a specific domain and does not scale well as the number

of datasets stored in S3 increases. While it performs similar to the attribute-pair index

up to 3 datasets, the time then increases rapidly for more datasets.

Figure 6.5 shows the total machine utilization of SimpleDB together with the cost

for indexing all 10 datasets. Amazon charges 0.154 dollars per hour of utilization of

a SimpleDB machine located in their Ireland facility. The attribute-based indexing

strategy requires less machine utilization time and is thus more cost-efficient as well.

On the other hand, the attribute-subset index is more expensive since it creates many

more entries in SimpleDB than the rest of the indexes. Finally, while the attribute-pair

and domain-per-dataset indexes create about the same attribute-value pairs to insert in

SimpleDB, in the attribute-pair index we create many more domains and thus consume
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more of SimpleDB resources.

Querying

Query #q #c Attrib. Attrib. Attrib. Domain
based pair subset per dataset

Q1 1 1 1 22 1 10
Q2 2 3 2 44 2 20
Q3 2 2 2 44 2 20
Q4 2 3 24 44 2 20
Q5 3 4 25 66 3 30
Q6 4 5 26 88 4 40
Q7 8 9 30 176 8 80

Table 6.9: Number of index look-up calls to SimpleDB, for each query and indexing
strategy.

In this section, we present our preliminary results when evaluating various

SPARQL BGP queries. The characteristics of the queries we used are shown in Ta-

ble 6.9, where #q is the number of triple patterns and #c is the number of constant

values each query contains. For this set of experiments, we have stored 10 RDF

datasets in S3, each one consisting of 10.000 triples, and built the four indexes for this

data. The number of domains created for each index is as described in Section 6.5.

In Table 6.9 we also depict the number of SimpleDB calls that were made for

retrieving the appropriate URIs in each indexing strategy, i.e., select queries for

the attribute-based, attribute-pair and domain-per-dataset index, and GetAttribu-

tes calls for the attribute-subset index. This table verifies our analytical cost model

which shows that the number of lookups depends on the number of triple patterns in

each query, as well as on the number of created domains. For example, query Q7

which consists of 8 triple patterns requires the largest number of lookups compared

to the rest of the queries in all indexing strategies. Moreover, since the attribute-

subset index consists of only one domain, the number of calls performed to SimpleDB

for any SPARQL query is smaller than the calls performed by the other indexing
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Figure 6.6: Index exploitation time for different queries.

strategies. The attribute-pair index, which allocates the largest number of SimpleDB

domains, sustains a great amount of SimpleDB calls for any kind of queries. Observe

that within AWS, calls to different SimpleDB domains are evaluated in parallel, and

this parallelization also benefit our work, however, we did not attempt to split and

parallelize computations beyond that; we are interested to do so as part of our future

work.

In this experiment, we have also measured the time required for retrieving the final

set of URIs required to evaluate a SPARQL query (index exploitation time). We show

the index exploitation time in Figure 6.6 for each indexing strategy and for various

SPARQL queries. This time includes the time to build the appropriate select queries

or GetAttributes calls, the time required by SimpleDB to provide the results of
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these queries/calls, and the time for intersecting the URI sets thus obtained, whenever

the look-up strategy requires such post-processing.

All measurements are averaged over 10 runs. Since previous studies established

that the performance of Amazon EC2 performance may vary significantly over

time [SDQR10, IYE11], we also depict the 95% confidence intervals. The attribute-

subset indexing strategy outperforms the other strategies for all queries because it

imposes the least amount of calls to SimpleDB. The attribute-based and attribute-

pair indexes exhibit a similar performance with the former to perform slightly better

because of the smaller amount of SimpleDB lookups. However for some queries

(e.g., Q5 and Q6) the confidence intervals have a large overlap meaning that a sorting

between the two strategies for such queries is not possible. Finally, although the

domain-per-dataset indexing strategy gives better results than the aforementioned two

indexes for most of the queries, it exhibits a very poor performance for queries which

contain more than 5 triple patterns. This results from the large number of select

queries posed to the same domains, which after a certain number of requests become

a bottleneck.

Experiments conclusion

Our preliminary results show the feasibility and efficiency of our architecture as well

as the performance of our proposed indexing strategies. Comparing the indexing

strategies highlights a trade-off between the cost of the creation of an index (both mon-

etary and time cost) and the efficiency on the lookup process. A prominent example

of this trade-off is the attribute-subset indexing strategy which is the most expensive

index to build but gives the best performance while querying. Using bigger datasets

and more heterogeneous data is our next step of experimentation.
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6.6 Discussion

The contribution of this work is the presentation of a novel architecture for the dis-

tributed management of RDF data stored in cloud infrastructures. We designed index-

ing techniques for retrieving the appropriate RDF files related to a specific query. We

chose Amazon Web Services as a platform and implemented all our indexing strate-

gies and in particular SimpleDB as No-SQL storage system for storing index data.

We presented an analytical cost model and an experimental evaluation of both the

indexing and the querying process our strategies are based on.
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CHAPTER 7

Related Work

In this last section we introduce a general comparison between MIDST and other

works in the literature. In the second section we compare MIDST approach with

model driven architecture in particular considering GER (Generic Entity/object Rela-

tionship [lH89]). In the third section we describe NoSQL systems and finally in the

fourth section we analyze NoSQL stores offered by Amazon Web Services and RDF

indexing methodologies.

7.1 Model Management

The described approach illustrates a general approach to model management and re-

lies on our previous work on model-generic schema and data translation [ACB05a,

ACB06, ACG07, ACT+08] describing our conception and implementation of the

Modelgen operator. There are many proposals addressing model management prob-

lems which have been put forward since the original formulation of the problem.

In [BHJ+00] Bernstein et al. recognize the possibility of a generic metadata ap-

proach to model management: their theoretical formalizations [Ber03] and later stud-

ies converged into Rondo, a programming platform for model management [Mel04].

However their approach is not supported by a description of models and so they pur-

sue model independence without a concrete characterization of models and they can-

157



7. RELATED WORK

not associate schemas with models. Conversely, MIDST (and now MISM) uses a

dictionary of models and schemas to actually represent models and allows transparent

transformations on them.

Our approach shares some analogies with Clio [FKMP03, FKP05, HHH+05,

MHH00, VMP03] too. Clio is aimed at building a completely defined mapping be-

tween two schemas, given a set of user-defined correspondences. As for our trans-

lations, these mappings could be translated into directly executable SQL, XQuery or

XSLT transformations. However, in the perspective of adopting Clio in order to ex-

change data between two heterogeneous schemas, the needed mappings should be

defined manually; moreover, there is no kind of model-awareness in Clio, which op-

erates on a generalized nested relational model. Although this model can be shown to

subsume a considerable amount of models, in a real application scenario a preliminary

translation and adaptation of the operational system should be performed, leading to

the problems of the initial MIDST approach.

A recent approach to schema evolution is PRISM [CMZ08]. Citing the authors,

PRISM provides an intuitive, operational interface, used by the database adminis-

trator to evaluate the effect of possible evolution steps with respect to redundancy,

information preservation, and impact on queries. In detail, the administrator can use

a Schema Modification Operators (SMO) [BGMN08] language in order to specify

schema changes and check whether such a modification could cause information loss,

introduce redundancy, or grant invertibility. Moreover, the system allows for an auto-

matic migration of the data, grants compatibility with old queries (i.e. against an old

schema), and maintains the schema history. We propose something wider in which

this approach can fit well: with reference to our running example, for instance, we

could use similar techniques in order to constrain the evolutionary step between im-

plementation schemas, thus granting the aforementioned desirable properties.

Our approach, together with Bernstein’s, is more general and proposes a global

platform for model management where the generation of executable mappings, like

Clio’s or PRISM’s, is a complementary feature.
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7.2 Model Driven Architectures

Hainaut’s [Hai06] approach to translations does not initially face the theoretical issue

of formulating a schema translation problem, instead moves from the practical engi-

neering problem of modeling by successive abstractions.

This practice is indeed common in database engineering as well as in many other soft-

ware design fields such as Model Driven Architectures. As a clear evidence, most

databases rely on a layered architecture with an increasing level of abstraction: physi-

cal layer, logical layer and conceptual layer. In each layer a different model is adopted,

in the sense that elementary constructs that are used to model the structures are dif-

ferent (entities and attributes, tables and columns, records and fields). In this context

there is an engineering process that allows a schema of one model to be translated into

a schema of another model. For example an ER schema used to conceptually model

the database can be translated into the logical specification by means of a series of

well known and consolidated rules. Of course, these translations preserve the infor-

mation: indeed the semantics intended in the conceptual definition is preserved in the

logical layer.

A similar process is followed in MDA’s, where the designer draws technical UML and

classes and code are directly derived from it without loss of semantics. Hainaut indi-

viduates the engineering context for translations and formerly deals with the practical

aspects of translations. In this perspective, the need for a generic model acting as a

pivot comes out. GER is indicated as a possible choice for this generic model. Indeed,

Hainaut shows how any complex transformation can be defined in terms of GER con-

structs. Hainaut approach, indeed practical and concrete is theoretically formalized

with the ERM (extended relational model). GER is an extended entity-relationship

model, including entity types, domain, attributes, keys, relationships and constraints.

The level is layered, in the sense that it is hierarchically defined in three levels of

abstraction: conceptual model, logical model and physical model. The common en-

terprise data processing experience suggests the existence of hundreds of operators.
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In GER, the key for expressing them lies in ERM formalism, while in GER they are

expressed in a conceptual fashion. In this way we can classify: mutation transforma-

tions, other elementary transformations, compound transformations, predicate-driven

transformations and model-driven transformations.

Mutation transformations change the nature of a model object: for example a rela-

tionship becomes a table (in relational language) or an attribute turns into a table; a

table being split into two tables can be also classified as a mutation transformation.

Hainaut points out the fact that mutations can solve the most of database engineering

problems, since these kind of transformations summarize what is commonly known

as translation. Other elementary transformations can directly involve data types, for

example arrays and data sets. Compound transformations refer to the fact that elemen-

tary ones can be combined in a chain to build an aggregate and semantically complex

transformation. This is similar to the definition of a composition operator, as it hap-

pens in schema mappings context. In that scenario, transformations are defined by

mappings and compositions of mappings are mappings themselves.

Remaining in the data exchange parallel, predicate-driven transformations are a good

paraphrases for the conjunction of atoms in the left part of a TGD. Indeed, given

a more general representation for a set of data models (like the one GER is), it is

possible to drive transformations with respect of the structural role played by source

constructs (being the source and the target the operands and the output of a transla-

tion). GER allows to define predicates on the constructs in such a way that they can

be involved in a transformation only if they meet certain requirements: for example

being of a specific type, being connected to other constructs in a particular fashion and

so on. A trivial example is: convert only N-ary relationships into entities. It is partic-

ularly interesting the fact that the inverse translation is not easily meaningful in this

perspective. Model-driven transformations are an evolution of predicate-driven ones.

In fact, they are the adoption of predicates to build a path of translations translating

a source model into a target one. The key is the definition of a structural predicate

asserting the set of constructs that can belong to a model. By difference, this defines
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a set of constructs that are not allowable in a model. Therefore, given a source and

a target model, all the constructs in the source that are not allowed in the target must

be removed by a model-driven translation. This removal is called transformation plan

that is the practical form, the algorithm defining the core of the translation.

The role of ERM can be finally clarified. It is a theory defining instances of GER

in terms of logical propositions. Therefore we find the concept of axioms, theorems,

interpretations and so on, as for the classical relational model. Moreover, common re-

lational constraints such as functional dependencies and multi-value dependencies are

supported. Models are represented in GER as propositions in ERM. Hainaut build a

system of signatures that are logical statements allowing to infer if a schema belongs

to a model and build an inference engine for transformations. In particular, model-

driven transformations can be guided by a logical inference process leading from the

axioms of one model to the ones of another.

7.3 NoSQL Systems

In this work we describe SOS, a uniform programming interface for NoSQL databases.

To the best of our knowledge SOS is the first proposal that aims to provide a

solution to handle the heterogeneity of NoSQL databases.

The approach for SOS we present here uses the meta-layer as the principal means

to support the heterogeneity of different data models. The idea of a pivot model finds

its basis in the MIDST and MIDST-RT tools [ACT+08, ABBG09a]. In MIDST, the

core model (named “supermodel”), is the one to which every other model converges.

Whereas MIDST faces heterogeneity through explicit translations of schemas, in SOS

schemas are implied and translations are not needed. The pivot model, the meta-

layer, is used as a common interface. Several other differences exist between the two

approaches, as we already remarked in the introduction.

MIDST suffers from being a completely off line approach to schema and data

translation and, indeed, MIDST-RT overcomes this problem. On the other hand,

the need for a runtime support to interoperability of heterogeneous systems based on
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model and schema translation was pointed out by Bernstein and Melnik [BM07] and

proposals in this direction, again for traditional (relational and object-oriented) mod-

els were formulated by Terwilliger et al. [TMB08] and by Mork et al. [MBM07a].

With reference to NoSQL models, SOS is the first proposal in the runtime direction:

in fact, the whole algorithm takes place at runtime and direct access to the system is

granted.

From a theoretical point of view, the need for a uniform classification and principle

generalization for NoSQL databases is getting widely recognized; it was described by

by Cattell [Cat10], reporting a detailed characterization of non-relational systems.

Stonebraker [Sto11b] presents a radical approach tending to diminish the impor-

tance of NoSQL systems in the scientific contest. Actually, Stonebraker denounces

the absence of a consolidated standard for NoSQL models. Also, he uses the absence

of a formal query language as a supplementary argument for his thesis. Here we move

from the assumption that non-relational systems have a less strict data model which

cannot be subsumed under a fixed set of rules as easily as for the relational system.

However, we notice that commonalities and structural concepts among the various

systems can be individuated and leverage this to build a common meta-layer.

Actually the meta-layer is used here as an aid for translation; in the future, it could

be the basis to define a NoSQL standard query language.

7.4 RDF Stores and Amazon Web Services

Significant attention has been paid recently to RDF stores using cloud-based services.

One system closely related to our work is Stratustore [SZ10], an RDF store that uses

Amazon’s SimpleDB as an RDF store back-end in combination with Jena’s API. Stra-

tustore indexes all triples in SimpleDB using the subjects of the triples as items, the

properties as attribute names and the objects as the values of the attributes. A draw-

back of this approach is that SPARQL queries having a variable in the property po-

sition cannot be answered. The authors propose to insert one more entry per triple

having as attribute names the objects with values the properties but this leads to a
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great increase in storage. The evaluation of Stratustore is performed using the Berlin

SPARQL Benchmark [BS09]. Queries were executed with up to 20 simultaneously

instances of Stratustore. Results show that performance is not competitive with other

RDF stores such as Virtuoso. This is caused by the joins required for complex queries

which have to be performed at the client side. However, as the number of Stratustore

instances grows, the throughput of the system also increases.

The CumulusRDF [LH11] system uses Apache Cassandra, a nested key-value

store, as a triple store back-end and proposes two different indexing strategies for

storing RDF triples in Cassandra. The authors of [LH11] propose a hierarchical in-

dexing scheme using supercolumns where all six combinations of subject, property,

object are built-in indexes. In the second indexing scheme, called flat layout, simple

columns are used where three main indexes are required together with a secondary

index for several cases. CumulusRDF is evaluated in 8 machines using an instance

of the DBPedia dataset and the queries used were only single triple pattern lookups.

The authors conclude that their flat layout approach outperforms the hierarchical one.

However, both Stratustore and CumulusRDF focus on providing full indexing capabil-

ities in order to be able to answer SPARQL queries from indexes. Different from this

approach, our main concern is to use the indexes for efficiently retrieving a smaller

subset of datasets from which we are able to extract the answer to SPARQL queries

using any in-memory RDF store.

Dydra [Dyd] is an RDF store relying on the Amazon EC2 infrastructure which

provides a SPARQL endpoint to query the data stored. Although Dydra addresses an

RDF data management problem similar to our, there is not much information available

revealing the details of their approach.

Various works using MapReduce and related technologies have appeared in the

literature as well. These works focus on developing large-scale RDF stores using the

MapReduce paradigm. [MT08] is one of the first works to introduce cloud computing

in the area of Semantic Web. It gives some preliminary experimental results using

Apache Hadoop, a very popular implementation of MapReduce and Pig, a tool that
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translates queries expressed in Pig Latin to MapReduce jobs. In [HKKT10] the au-

thors use Hadoop and propose a specific storage scheme that partitions RDF files into

smaller ones to be stored in HDFS, the file system of Hadoop. They also use sum-

mary statistics to determine the best plan to evaluate a SPARQL query. [MYL10]

considers the evaluation of SPARQL basic graph pattern queries in a MapReduce

framework. Specifically, the authors propose a multi-way join algorithm to process

SPARQL queries efficiently, as well as two methods to select the best query plan for

executing the joins. Experiments were conducted with Cloudera’s Hadoop distribution

on the Amazon EC2. Finally, [SPZL11] presents a method to map SPARQL queries

to Pig Latin queries.
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Conclusions

In this work, we covered the problem of heterogeneity under a number of perspective,

presenting the novel results in terms of achieved homogeneity and model-

independence.

With regard to Model Management, as an original result, in this work we discussed

a paradigm and an application platform, allowing for model-independent solution to

a wide range of problems. This system has been defined as a Model Management

System and, as a major contribution, MISM has been proven to be an effective foun-

dation to assemble definitions and implementations of model management operators.

The research presented in this work showed how a correct orchestration of these oper-

ators can effectively lead to a model-independent solution to a wide variety of model

management problems.

Important problems in model management were discussed in this work. Round-

trip engineering was considered as the representative of a whole class of issues. A

major target of the model management research is the development of an advanced

software system managing all the involved problems (model management system).

Such a system aims at providing applications with an abstraction layer towards data

programmability issues, that is, the whole spectrum of application problems concern-

ing data manipulation. The approach presented in this work lies in this direction.
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MIDST represents a framework for model management problems; MISM is an en-

hanced version, where operators and solving procedures are specifically designed to

maximize the abstraction level together with an effective and sound representation

of schemas and models. In parallel, we are working on the development of runtime

strategies and algorithms in order to make our solutions in step with large operational

databases as well as compliant with the most expressive data models.

The presented algorithms are designed in an off line fashion, meaning that they

need transformation steps in the supermodel where data and metadata have to be pre-

liminary imported. Once the transformation is finished, they are exported back into

the target system.

This is a point of attention affecting all MIDST architecture and our original met-

alevel methodology. Then in this work we introduced the runtime enhancement. It

was presented with explicit reference to ModelGen operator; clearly a point of fu-

ture investigation will pursue the extension of the runtime approach to every model

management operator.

As far as MIDST-RT is concerned, an important result that is presented here is

the generation of executable statements out of translation rules. The approach aims at

being general, in the sense that the final objective is to derive an executable statement

for any possible translation. Then, we have also shown some scenarios which may

benefit from the usage of MIDST-RT, in order to allow flexibility and customization.

A major issue is the query language. It is necessary to specify a language capa-

ble of interacting with all the involved models homogeneously. Although, in some

cases, such a single language would be available, other situations are more complex

and need further investigation. Examples are the ones involving translations from

object-relational to XML and vice versa. We have used here combinations of lan-

guages including SQL/XML and XQuery/SQL, over one single platform. In fact, the

described solution actually refers to transformations taking place in a single system,

offering the logical support to both models. Indeed, it may be the case that more

systems are involved; however the adoption of the appropriate middleware solutions
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might offer working solutions based, for example, on a common exchange format.

Moreover, we have shown examples of relational views. These views have an

intrinsic problem: in fact, when we define a relational view, it is quite probable that it

will not be updatable. A possible solution to this problem (and possible future work)

is the introduction of the concept of “reverse mapping” [MBM07b], a mapping that

keeps trace of the origin of data shown by views in order to modify the source database

when the user tries to modify a view.

Let us conclude by discussing a few issues where our approach shows some lim-

itations that we are working to overcome. From the implementation point of view, it

is clear that the target system will have some restrictions on how it deals with views

(including materialization, persistence, update propagation). However this limitation

is related to the specific target system and it comes as a direct consequence of the

runtime perspective where no third-party actors interfere. From a theoretical point of

view, open issues are related with the generality and correctness of the approach. As

for generality of modeling, MIDST metamodel collects all the constructs most com-

monly used in models and can be extended whenever necessary. Extensions could

also go towards a richer representation of semantics, where integrity constraints are

described and supported, in the sense that their satisfaction is verified and reasoning

on them can be performed. Clearly, this would require a different approach on the

management of the supermodel, which would require additional features beside and

beyond the relational implementation. In this respect, we are considering approaches

based on description logics [BCM+07].

The general solution archived in the research presented in this work allows for a

more efficient treatment of translation and, theoretically, could be also thought of as a

means of speeding up the algorithms we have proposed for Model Management.

For example, round-trip engineering, that we presented as a series of transforma-

tions within the supermodel, could be performed directly in the target system. How-

ever, the proposed algorithms are based on model management operators applied to

materialized intermediate results for the sake of simplicity. A formulation of the pro-
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cedures in a runtime fashion, will require additional reasonings about view update.

Finally, in the last part of this work, we put aside the traditional perspective of

model management, to face heterogeneity in the emerging NoSQL systems. The adop-

tion of a metalevel approach also in this case is a core result and acts as the foundation

to build a uniform programming interface enabling a homogeneous treatment of non

relational schemas. We provided a meta-layer that allows the creation and querying of

NoSQL databases defined in MongoDB, HBase and Redis, representative examples

of the main classes of specialized systems. A simple interface comprising a set of

simple atomic operation was prepared. Finally we described an example where, the

designed interface enables the contemporary use of NoSQL database transparently for

the application and for the programmers.

An example of use of NoSQL system is given with the indexing strategies on

SimpleDB that represents a valuable application within a cloud context.

In conclusion, our work aims at being a theoretical attempt to address data hetero-

geneity in all its modeling aspects, while adopting metalevel-based platforms to build

applications on. Much future effort will be devoted to expanding our metalevel to not

covered models and paradigms.

Indeed now, with increased awareness, we can firmly agree with David Wheeler:

“All problems in computer science can be solved by another level of indirection”.
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