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Cities serve as vital hubs of economic activity and knowledge generation and dissemination. As such, cities
bear a significant responsibility to uphold environmental protection measures while promoting the welfare and
living comfort of their residents. There are diverse views on the development of smart cities, from integrating
Information and Communication Technologies into urban environments for better operational decisions
to supporting sustainability, wealth, and comfort of people. However, for all these cases, data are the key
ingredient and enabler for the vision and realization of smart cities. This article explores the challenges
associated with smart city data. We start with gaining an understanding of the concept of a smart city, how to
measure that the city is a smart one, and what architectures and platforms exist to develop one. Afterwards, we
research the challenges associated with the data of the cities, including availability, heterogeneity, management,
analysis, privacy, and security. Finally, we discuss ethical issues. This article aims to serve as a “one-stop shop”
covering data-related issues of smart cities with references for diving deeper into particular topics of interest.
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1 Introduction
Cities play a crucial role as the engines of the economy and centers of connectivity, knowledge, and
services [338]. Based on an estimation from the United Nations, 66% of the world’s population will
live in urban areas by 2050 [247]. Being the centers of growth and innovation, cities need to address
significant challenges for the environment protection and citizens’ prosperity and living comfort.
These challenges become pronounced in large and rapidly growing cities, which concurrently
struggle to establish a robust infrastructure to ensure clean air and water, energy supply, food,
transportation, efficient waste management, and provisioning of public spaces—vital components
for human well-being [213].

Cities are becoming commonly equipped with Information and Communication Technolo-
gies (ICTs) to improve their resourcing and the quality of life of their inhabitants, ultimately
becoming smart cities. The term “smart sustainable city” is used to denote a city that is supported
by the widespread adoption and extensive use of advanced ICT, which, coupled with various urban
systems and domains and strategic coordination of their intricate interrelations, empowers the
city to manage available resources sustainably and efficiently for improved economic and societal
outcomes [82]. Cities are becoming smart and sustainable in ways that enable us to monitor, under-
stand, analyze, and plan the city to improve the efficiency, equity, and quality of life for citizens in
real time [75].

Smart cities are technologically modern urban areas leveraging networked systems to collect
data and data analytics platforms to analyze data. The development of smart cities requires the
integration of various subsystems to work together to achieve a common goal, which is a system of
systems approach. A system of systems is a collection of independent but interrelated systems that
have been developed and are operated to meet a common set of objectives. In the context of smart
cities, a system of systems integrates multiple subsystems, such as transportation, energy, water,
waste management, and public safety, into a single system. Such integration is crucial to achieve
the common goal of improving the quality of life for citizens. To integrate these subsystems, smart
cities rely on data [97].

Data are the key ingredient and enabler for the vision and realization of smart cities. A huge
volume of data represents a large amount of information generated via and about people, objects,
and interactions among them in smart cities. Such data produced in different sectors within a
city can contribute to generating useful information for various stakeholders for decision-making,
such as policy makers, citizens, domestic governance bodies, and industrial communities [47]. By
analyzing data in smart cities, we can potentially understand activities and interactions and enhance
the quality of the services offered to citizens, as well as provide benefits for city management,
like contributing to lowering operational expenses. For example, in Seoul, the government has
been collecting data related to healthcare, transportation, and residency to make it available to
citizens and scientists [222]. From this data, various smart services can be developed leverag-
ing ICT and big data solutions [55, 81, 104, 169, 239, 300]. However, there are many challenges
that need to be tackled on the way from the “raw” data to a smart service, from the data and
system perspectives.
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Fig. 1. Topics covered in the manuscript.

The smart city data integration and analytics platform is responsible for integrating data from
various sources into a single system and performing analytics. The platform uses data integration
tools and techniques to extract, transform, and load data from various sources, such as databases,
sensing systems, and other monitoring devices. Once the data are integrated, it can be analyzed to
provide insights into various aspects of city life. For example, data from traffic sensors can be used
to optimize the traffic flow, reduce congestion, and improve public transportation. Similarly, data
from energy consumption meters can be used to optimize energy usage, reduce costs, and improve
energy efficiency. To manage all of this data, smart cities rely on a variety of data management
systems, which are responsible for analyzing the integrated data to provide insights into various
aspects of city life.The systems typically use a variety of data analytics techniques, such asMachine
Learning (ML) and Artificial Intelligence (AI), to analyze the data and identify patterns and
trends. These insights can be used to optimize various aspects of city life, such as the traffic flow,
energy consumption, and waste management.

This survey provides a holistic view covering data-related challenges of smart cities, see
Figure 1. We start by defining and measuring smart cities and survey recent works of smart
city architectures and platforms. Having this understanding, we then dive into exploring challenges
and solutions for handling data in smart cities. First, we outline key issues and major research
opportunities for data availability aspects and the topics and development actions toward open
data, citizen-contributed data, as well as commercial data and private–public partnership. Given
the diversity of smart city data, we also review challenges related to data heterogeneity and inte-
gration. Then, we examine data management issues, including data acquisition, storage, processing,
and governance. After that, we explore challenges related to data analysis, ethics, data privacy,
and security.

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 5, Article 88. Publication date: November 2024.



88:4 E. Gilman et al.

This article contributes with a careful investigation of the challenges associated with the data in
smart cities. In a nutshell, our contributions are two-fold:

(1) We provide a comprehensive review of the latest development of the smart city concept. We
also review existing solutions allowing for measuring smart cities as well as architectures
and platforms for developing smart cities.

(2) We explore the challenges associated with the data of the smart cities, covering data availabil-
ity and quality, heterogeneity, management, analysis, privacy, security, and ethical aspects,
and a research agenda for addressing these challenges.

This article aims to serve as a “one-stop shop” covering data-related issues of smart cities with
references to further explore particular topics of interest. The remainder of this article is structured
as follows. Section 2 summarises the related work. We present a detailed discussion on defining
and measuring smart city, and smart city architectures and platforms in Section 3. Afterwards,
we discuss several significant research challenges, such as data availability, quality, heterogeneity,
management, analysis, ethics, privacy, and security in Section 4, and conclude the article in Section 5.

2 Related Work
The urbanization and development of cities provide vibrant opportunities for academia and industry,
which have inspired a number of significant related studies. For instance, Kitchin [200] provides a
constructive view on the overall types of big data and smart urbanism. He also stresses the very
relevant challenge of the corporatization of city governance and a technological lock-in when all
the smart city-associated methods and technologies are available to large software and hardware
companies, seeing this as a potential market for their products.

A number of research articles address the technological challenges for smart cities. Santana
et al. [299] analyze requirements and software platforms for smart cities based on 23 projects.
The authors placed these into four categories, including Cyber-Physical Systems, the Internet of
Things (IoT), Big Data, and Cloud Computing. Functional and non-functional requirements for
smart city software platforms have been carefully investigated. Habibzadeh et al. [160] explore
challenges, requirements, and solutions for sensing, communication, and security planes of smart
cities. Similarly, Chamoso et al. [101] review technologies used for smart city development, as well
as propose their own solution for global architecture for service management in smart city. Edge and
fog computing paradigms offer promising solutions for smart cities. For instance, Perera et al. [270]
explore the opportunities of fog computing for sustainable smart cities. Khan et al. [197] review
edge computing applications in smart cities. The authors propose an edge computing taxonomy for
edge computing-enabled smart cities, where the main blocks include security, edge analytics, edge
intelligence, resources, caching, resource management, characteristics, and sustainability. Perera da
Silva et al. [116] explore fog computing platforms published by the research community between
2015 and February 2021.They analyze the requirements for such systems, their architectural aspects,
and how they support services provided to the users.

Technological issues of big data in smart cities are also covered in a few related works. Al Nuaimi
et al. [56] review applications of big data in smart cities with the focus on opportunities and
challenges for utilizing big data. Hasehem et al. [169] discuss the role of big data for sustainability
and the improvement of living standards in cities with a focus on state-of-the-art technologies. Bibri
and Krogstie [82] review the core enabling technologies of big data analytics and context-aware
computing as ecosystems in relation to smart sustainable cities. Lim et al. [222] discuss diverse
aspects of smart cities, reference models, and corresponding challenges.

A number of recent surveys address different emerging aspects of the data in smart cities. For
instance, Gharaibeh et al. [150] provide an overview of data management issues, as well as discuss
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privacy and security challenges. Usman et al. [339] explore the collection and analysis of multimedia
data produced by smart cities. The authors focus on transportation, healthcare, and surveillance
use cases and discuss various ML algorithms that could be utilized for such an analysis. Similarly,
Habibzadeh et al. [159] focus on the application and data planes for smart city system design.
The authors highlight cloud- and edge-based architectures to store and process the data, as well
as describe various data analysis algorithms. Ma et al. [228] review the datasets being collected
across 14 smart cities and the state-of-the-art in decision-making methodologies. This article further
highlights both data and decision-making issues. Moustaka et al. [244] conduct a systematic review
of the way urban data are produced, collected, stored, mined, and visualized in smart cities, covering
the period 1996–2017. Based on this review, a set of taxonomies is proposed covering smart city
data entities and methods. Some works focus more on data analysis and applications in smart cities.
For instance, Chen et al. [103] explore the latest research on deep learning in smart cities. The
authors study the problem from two perspectives, i.e., a technique-oriented perspective reviews
deep learning models, while an application-oriented perspective studies representative application
domains in smart cities. Finally, Deng et al. [126] examine how urban information can be visualized.
The authors review urban visual analytics studies and specify 22 visualization types within spatial,
temporal, and other property visualization categories.

Recently, more aspects related to data privacy and security have been covered. For example,
Eckhoff and Wagner [132] provide a taxonomy of the application areas, enabling technologies,
privacy types, attackers, and data sources for attacks in smart cities. Based on that, state-of-the-art
privacy-enhancing technologies are reviewed and future research directions are discussed. Similarly,
Sookhak et al. [312] look for the taxonomy of security and privacy issues of smart cities, highlight
the security requirements, explore state-of-the-art security and privacy solutions, and present open
research issues.

Finally, emerging concepts of digital twins, metaverses, and metacities have attracted research
interests from academia. For instance, Mylonas et al. [245] explore the digital twins landscape in
the context of smart cities. In addition to studying the domains where digital twins are presented,
the authors also emphasize some challenges related to data from the digital twins perspective.
Similarly, Bibri et al. [135] explore the emerging trends enabling data-driven smart cities for a digital
and computing processes framework underlying the Metaverse as a virtual form of data-driven
smart cities.

When compared to existing surveys, this review article focuses on the data aspects of smart
cities, see Table 1. We provide an up-to-date state-of-the-art understanding of what a smart city
is, how “smartness” can be measured, and what the data challenges are. In particular, this article
focuses on data challenges related to availability and quality, data heterogeneity, data management,
data analysis, privacy and security, and ethics. Therefore, this review provides a holistic view and
aims to serve as a “one-stop shop” covering data-related issues of smart cities with references to
further explore particular topics of interest.

3 Towards Smart Cities
3.1 Defining Smart City
The smart city concept is flexible and open, which is probably a central factor behind its popularity
and global success. At the same time, it is also notoriously challenging to define [248]. The reasons
are two-fold. On the one hand, scholars have mapped and categorized smart city development in
different ways, depending on their background [200, 243]. On the other hand, different cities around
the world have applied the agenda in their own terms, due to their specific economic, political,
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Table 1. Existing Surveys About Smart City and Their Coverage of Topics Presented in This Article

Work Focus Architecture/
Platform

Data
availability

Data
heterogeneity

Data
management

Data analysis Privacy Secu-
rity

Ethics

[299] require-
ments and
software
platforms

Ø(ET,
platforms,
reference
architecture)

◦ ◦ ◦ ◦ ◦ ◦ ×

[101] technolo-
gies for SC
develop-
ment

Ø(architecture,
ET)

◦ × ◦ (storage) ◦ (big data) × ◦ ×

[270] fog
computing
solutions
for SC

Ø(device
management,
commun.
protocols)

Ø(sensor data
in fog
computing)

◦ (context,
semantic
annotation)

◦ (general) ◦ (fog
computing)

◦ Ø(fog
comput-
ing)

×

[197] edge
computing
applications

Ø(high-level
edge-enabled
SC,
requirements,
and open
challenges)

× ◦ (context-
awareness)

◦ ◦ (edge
analytics and
intelligence)

◦ (edge computing) Ø(edge
comput-
ing)

×

[56] big data × ◦ (data sources,
quality, and
sharing)

× ◦ (big data) ◦ (big data
processing
platforms,
algorithms)

◦ ◦ ◦

[82] big data,
context-
aware
computing

× Ø(sensing) × ◦ (big data) Ø(big data,
urban context)

◦ ◦ ×

[169] big data Ø(big data) × × ◦ (big data) ◦ ◦ × ×
[222] reference

models
Ø(big data) ◦ (main

sources of big
data)

◦ ◦ × ◦ × ×

[160] sensing,
communica-
tion, and
security

Ø Ø(sensing,
communica-
tion)

× ◦ ◦ × Ø(crypto-
,
system-
level)

×

[116] fog
computing
platforms

Ø(require-
ments,
architecture,
and services)

◦ ◦ ◦ (ingestion,
processing,
storage, and
query)

◦ × ◦ ×

[150] data man-
agement,
security,
and ET

× × × Ø(acquisition,
coord. and
management,
quality and
integrity, cloud
vs fog,
dissemination,
ET)

Ø(ML, DL, and
real-time
analytics)

◦ Ø ×

[339] big
multimedia
data in SC

× × × Ø(multimedia
data collection
platforms)

Ø(representa-
tion learning
algorithms, DL,
and data
analytics)

× × ×

[159] data,
applications
planes of
SC

Ø × × Ø(require-
ments,
architecture
(cloud, and
edge), storage
and
processing)

Ø(data
analytics, ML,
DL, and
visualization)

× ◦ ×

[132] privacy in
SC

× ◦ (ET) × × × Ø(types, protection,
challeng., and solut.)

◦ ×

(Continued)
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Table 1. Continued

Work Focus Architecture/
Platform

Data
availability

Data
heterogeneity

Data
management

Data analysis Privacy Secu-
rity

Ethics

[312] security and
privacy in SC

Ø × × × × Ø(issues) Ø(re-
quir.,
chal-
leng.,
and
solut.)

×

[103] DL in SC Ø × Ø(sensor,
image/video,
and text)

× Ø(DL, applcations,
and challenges)

◦ × ×

[228] datasets,
decision-
making

× Ø ◦ ◦ Ø(modeling,
decision-making)

◦ ◦ ×

[244] data analytics,
SLR

◦ (SC as a data
engine)

Ø(urban data
taxonomy)

× × × Ø(data
analytics
taxonomy)

× ×

[245] digital twins Ø(digital twin) ◦ ◦ ◦ ◦ ◦ ◦ ◦
This
work

data
challenges

Ø(architec-
tures and
platforms)

Ø(open,
citizen-
contributed,
commercial,
and
private–public
partnership )

Ø(model,
semantic,
structural, and
software-
delegating)

Ø(acquisition,
storage,
processing,
and
governance)

Ø(trustworthiness,
technological,
methodological, and
ethics)

Ø Øsecu-
rity
(in-
transit,
at-rest,
and in-
proc.)

Ø

challeng., challenges; commun. protocols, communication protocols; coord., coordination; DL, deep learning; ET, enabling
technologies; in-proc., in-processing; requir., requirements; SC, smart city; SLR, systematic literature review; solut.,
solutions.
Ø—comprehensive coverage, ◦—some discussion, ×—not discussed or very light mention.

Fig. 2. Development of the smart city concept.

legal, social, and cultural arrangements [57]. Figure 2 presents a high-level evolution of smart city
concept development.

In general, the smart city concept refers to optimizing city processes with ICT and, thus, cre-
ating better cities for all. The definitions of the early 2000s emphasized the streamlining of city
operations and optimizing infrastructure through digital services. In addition, the idea of utilizing
data in decision-making was already present in these early definitions [163]. The smart city was
at first promoted especially by the private sector which saw urban ICT systems as an economic
opportunity and as a way to work with the public sector [170, 309]. For example, IBM defined
the agenda as follows: “Smarter Cities are urban areas that exploit operational data, such as that
arising from traffic congestion, power consumption statistics, and public safety events, to optimize
the operation of city services. The foundational concepts are instrumented, interconnected, and
intelligent” [167].

As the popularity of the agenda increased, also a body of work presenting critique of the
techno-centric approach of smart cities was born. Many articles suggested that the smart city
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agenda could strengthen societal inequalities and lead to unjust cities [96, 174, 238, 292, 345].
Williamson summarized aptly [354], “urban research from geographical and sociological perspec-
tives has sought to critique it [smart city development] in terms of being market-based, technocratic,
surveillant, solutionist, militaristic, and reproductive of power asymmetries,” see also, e.g., [64, 120,
233]. In other words, the critics argued that smart city development is often realized top-down,
without paying attention to city inhabitants’ specific needs, perspectives, and local life-words;
it follows neoliberal logic; and it undermines ethical questions related to, e.g., free, open public
space and privacy. Furthermore, the lack of environmental attributes was repeatedly criticized
[243]; or, as Cugurullo puts it, the smart city “includes environmental ones as long as they can be
monetized” [114].

Due to the increasing critical perspectives, the 2010’s definition shows a shift in focus, i.e.,
policy and community aspects started to become more common in smart city development and
related discussions. According to [131], the redefining of the term was arguably conducted to
distance the concept from the technological determinism surrounding smart city. One of the central
definitions offering amulti-dimensional perspective on smart cities has been formulated by Nam and
Pardo [246]. Nam and Pardo have categorized key conceptual components of smart city into three
areas, including technology (software and hardware infrastructure), human (creativity, diversity,
and education), and institutional (governance and policy) aspects [246]. Here, the technology
component emphasizes the necessity of well-functioning infrastructure and applications. Without
this basis, and therefore, without engagement and cooperation between public institutions, private
and educational sectors, and citizens, there is no smart cities [246]. The human factors category
highlights the value of creativity, learning, and education for the city to become smart. That is,
“a smart city is a humane city that has multiple opportunities to exploit its human potential and
lead a creative life” [57]. Finally, the institutional dimension emphasizes the fundamental role of a
supportive administrative environment (initiatives, structure, and engagement) and governance
for the design and implementation of smart city [246]. Therefore, the connection of these factors
implies that “a city is smart when investments in human/social capital and Information Technology
(IT) infrastructure fuel sustainable growth and enhance a quality of life, through participatory
governance” [246]. Several researchers have utilized and applied this multi-dimensional perspective
on smart cities. For example, Yigitcanlar et al. [362, 363], have argued that by building on the
drivers described by Nam and Pardo [246], i.e., focusing on technology, policy, and community, the
limitations of earlier smart city model(s) could be tackled.

The current smart city literature has increasingly addressed the aspects relating to privacy,
security, socio-digital inequality, and digital citizenship [170, 172, 364]. Further, there exists a strand
of research that looks beyond human-centeredness and traces the possibility of a smart city model
that takes into account non-human beings, i.e., animals and nature, in profound ways [226, 333,
363]. Nevertheless, there seems to be a constant tension between techno-centric visions and more
holistic visions, and some authors fear that issues that have haunted smart city development already
for decades will just be carried over to novel data and AI-focused urban visions [114]. Thus, social
and environmental themes should always be carefully considered and plans on digitalization always
embedded within broader urban policies to avoid one-sided, solutionist and fragmented approaches
[114, 170].

Another view on smart cities is offered by standardization bodies, such as the International
Telecommunication Union (ITU) [319] and the International Organization for Standardization
(ISO) [28]. To understand the key components, the ITU conducted an analysis of smart cities and
sustainable cities definitions [315]. In this analysis, 50 key words were extracted from 116 definitions
found from various sources. Examples of the keywords which most occurred include quality of life,
technology, people, systems, governance and administration, and economy. Therefore, common
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themes and dimensions were formed from these keywords resembling the six characteristics
from Giffinger et al. [151], including Quality of life and lifestyle; Infrastructure and services; ICT,
communication, intelligence, and information; People, citizens, and society; Environment and
sustainability; Governance, management and administration; Economy and finance; and Mobility
[315]. This survey helped the ITU in identifying key essential terms for the definition of a Smart
Sustainable City, defined by the ITU as “an innovative city that uses ICTs and other means to
improve quality of life, efficiency of urban operation and services and competitiveness, while
ensuring that it meets the needs of present and future generations with respect to economic,
social, environmental, as well as cultural aspects.” [315, 319]. ISO 37122 [49] provides another
view from the perspective of standardization, underlining the role of sustainability. According
to ISO, a smart city is “a city that increases the pace at which it provides social, economic and
environmental sustainability outcomes and responds to challenges such as climate change, rapid
population growth, and political and economic instability by fundamentally improving how it
engages society, applies collaborative leadership methods, works across disciplines and city systems,
and uses data information and modern technologies to deliver better services and quality of life to
those in the city (residents, businesses, and visitors), now and for the foreseeable future, without
unfair disadvantage of others or degradation of the natural environment” [49].

In theory, these standardization efforts could help to create a universal understanding of the
smart city agenda. However, they should be used with caution because standards do not necessarily
help to properly address local conditions such as differences in population, economic structures,
city management, or social and cultural aspects that can affect smart city development drastically,
as mentioned earlier.

3.2 Measuring Smart Cities
Given the diversity of interpretations, measuring the performance of smart cities is challenging
[57]. Moreover, cities are very different in their history, culture, economy, and development goals.
Therefore, tomake the task approachable, quantifiedmeasures are suggested that can be tracked over
time to give information about stasis and change of a particular phenomenon, i.e., indicators [201].
Kitchin et al. [201] distinguishes between single (measuring a single phenomenon) and composite
(combining several measures) indicators. Also, indicators differ by their role, e.g., descriptive or
contextual indicators provide key insights into phenomenon; diagnostic, performance, and target
indicators serve as the means to diagnose a particular issue or assess performance; while predictive
and conditional indicators are used to predict and simulate future situations and performance
[201]. Here, we first briefly introduce some existing efforts toward measuring smart cities; and then
highlight some data-related challenges for such indicators and indices.

A number of standardization and research efforts exist to suggest an approach for cities to
monitor, analyze, and communicate the performance and progress toward achieving set goals [179,
216], see Table 2. For example, the International Communication Union has developed a number
of ITU-T Recommendations on assessing different aspects of U4SSC, e.g., [318, 320, 321, 323]. For
instance, ITU-T Y.4903/L.1603 [317, 323] proposes a set of key performance indicators (KPIs) for
assessing cities in achieving smart sustainable goals. This recommendation formed the basis for the
development of KPIs for smart sustainable cities by U4SSC initiative [108]. These KPIs establish cri-
teria to evaluate ICT’s contributions in making cities smart and sustainable and provide cities with
the means to assess the achievements of sustainable development goals. U4SSC indicators form part
of a holistic view of a city’s performance in economy, environment, society, and culture dimensions.
Over 100 cities worldwide already implement these KPIs, like Dubai, Valencia, and Moscow [314].
The ISO also puts effort into monitoring and developing sustainable and smart cities. For instance,
a number of indicators for sustainable cities and communities were suggested in ISO 37120 [48],
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Table 2. Some Standardization and Research Efforts Toward Measuring Smart Cities

Activity Scope

CITYkeys H2020 EU project indicators
[87]

Proposes indicators for assessing smart city projects and the corresponding
city-level indicators. The indicators are categorized as: people, planet,
prosperity, governance, and propagation themes, which are further split into
subthemes. Altogether, 99 project and 76 city indicators have been presented.

ETSI, Key Performance Indicators for
Sustainable Digital Multiservice Cities,
ETSI TS 103 463 V 1.1.1 (2017-07) [181]

Proposes indicators based on the CITYkeys project [87]. Here, topics include:
people, planet, prosperity, and governance.

ITU, Overview of key performance
indicators in U4SSC, Recommendation
ITU-T Y.4900/L.1600 [320]

Gives a general guidance to cities and suggests key performance indicators
toward U4SSC, categorized as: ICT, environmental sustainability, productivity,
quality of life, equity and social inclusion, and physical infrastructure.

ITU, Key performance indicators
related to the use of ICT in U4SSC,
Recommendation ITU-T Y.4901/L.1601
[318]

Focuses particularly on KPIs related to the use of ICT in U4SSC. Categorized
into: ICT, environmental sustainability, productivity, quality of life, equity and
social inclusion, and physical infrastructure.

ITU, Key performance indicators
related to the sustainability impacts of
ICT in U4SSC, Recommendation ITU-T
Y.4902/L.1602 [321]

Focuses particularly on KPIs related to ICT impacts for U4SSC. Categorized into
environmental sustainability, productivity, quality of life, equity and social
inclusion, and physical infrastructure.

ITU, Recommendation ITU-T
Y.4903/L.1603 [317] and its update
Recommendation ITU-T Y.4903 [323]

Proposes KPIs to allow cities to monitor and assess the efforts in achieving
sustainable development goals, becoming smarter and more sustainable cities.
Indicators are categorized into: economy, environment, society, and culture
groups.

ITU, U4SSC maturity model,
Recommendation ITU-T Y.4904 [322]

Proposes a maturity model for sustainable smart cities, as well as methods to
assess and plan future development strategies. Here, the focus is particularly on
assessing the achievement of sustainable development goals toward ICT
development of the cities. The proposed model has five layers and three
dimensions: economic, environmental, and social. The KPIs are recommended
for assessing maturity levels as well, like published in ITU-T Y.4901 [318],
ITU-T Y.4902 [321], and ITU-T Y.4903 [323].

ISO, Sustainable cities and
communities—Indicators for city
services and quality of life, ISO
37120:2018 [48]

Proposes indicators to assess the performance of city services and quality of life.
The indicators are grouped under economy, education, energy, environment and
climate change, finance, governance, health, housing, population and social
conditions, recreation, safety, solid waste, sport and culture, telecommunication,
transportation, urban/local agriculture and food security, urban planning,
wastewater, and water.

ISO, Sustainable cities and
communities—Indicators for smart
cities, ISO 37122:2019 [49]

Proposes indicators to assist cities in assessing the performance of city services
and quality of life. Indicators are grouped under the same categories as in ISO
37120:2018 [48].

ETSI, European Telecommunications Standards Institute; EU, Eurpoean Union; TS, technical specification.

which was further complemented with indicators for smart cities in ISO 37122 [49].There, indicators
are broken down into sectors, such as the economy, education, energy, the environment, and climate
change. Also, indicators are complemented with meta-information about data sources, interpreta-
tion, and calculation methodologies. The World Council on City Data are involved in ISO indicators
development and provides city certifications based on the implemented ISO 37120 indicators [44].

The CITYkeys EU Horizon 2020 project focused on the development and validation of key
performance indicators and data collection procedures for monitoring and comparison of smart
city solutions across European cities [274]. The CITYkeys indicators are based on an inventory of
43 existing indicator frameworks and categorized by people, planet, prosperity, governance, and
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Table 3. Examples of Open Data Related KPIs

Indicator name Assessment solution Measurement mechanism Description

Increase in online
government services

CITYkeys project
indicator [87]

Likert scale Indicator analyzes the
improvement in providing
online government services,
including open data platforms.

Quality of open data CITYkeys project [87] Likert scale Indicator assesses the ease of
use of datasets produced by
the project and whether they
are kept up-to-date.

Accessibility of open
datasets

CITYkeys project
[87], ETSI [181]

Average stars across all datasets
according to the 5 star deployment
scheme for Open Data defined by
Tim Berners Lee (5stardata.info).

Indicator evaluates ease of use
and the openness of city data.

Open datasets CITYkeys project [87] The number of open government
datasets per 100,000 inhabitants.

Measures the number of open
government datasets.

Open Data ETSI [181] Number of open government
datasets per 100,000 inhabitants.

Measures the number of open
government datasets.

Open data ITU-T Y.4903 [323] Total number of open datasets
published divided by total number
of datasets multiplied by 100.

Percentage and number of
published inventoried open
datasets.

Percentage of service
contracts providing city
services which contain an
open data policy

ISO 37122:2019 [49] Total number of service contracts
providing city services which
contain an open data policy
divided by the total number of
service contracts in the city,
multiplied by 100.

The percentage of service
contracts providing city
services that have an open
data policy.

Annual number of online
visits to the municipal
open data portal per
100,000 population

ISO 37122:2019 [49] Total number of municipal open
data portal visits divided by
1/100,000 of the city’s total
population.

Annual number of online visits
to the municipal open data
portal per 100,000 population.

propagation themes [87]. The themes are further broken down into sub-themes where 99 project (to
assess single projects) and 76 city (to monitor evolution of the city) indicators have been selected
and explained in detail with the mention of expected data sources [87]. What makes the CITYkeys
project indicators different is that they are impact-oriented. They were also used by the European
Telecommunications Standards Institute (ETSI) in their technical specification “Key Perfor-
mance Indicators for Sustainable Digital Multiservice Cities” [181]. Table 3 presents some examples
of indicators related to open data and their interpretation within different assessment suggestions.

Such assessment solutions also allow the creation of indices to enable the comparison and
monitoring of city development progress. Indexes can be considered as “quantitative aggregation of
many indicators and can provide a simplified, coherent, multi-dimensional view of a system” [236].
So, these are composite indicators, combining several indicators through weighting or statistics to
create a new derived measure [201]. For instance, U4SSC KPIs form the basis for the U4SSC Smart
Sustainable City Index that facilitates a comparative ranking of cities.

Although useful, the creation and usage of indicators must be done with care, since their validity
is inbuilt in the process they are created. For instance, the indicators themselves describe the
characteristics of the system state based on observed or estimated data [236]. This means that the
diversity of data sources and measured quality challenges are inbuilt by definition, often making
direct comparisons unfeasible. Moreover, Kitchin et al. [201] emphasize also that data do not exist
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independently from the ideas, interests, technologies, practices, and systems involved. Therefore,
they should be used and interpreted with caution. All these imply that assessment frameworks
should provide a clear description, rationale, interpretation, benchmarking, and methodology for
indicator calculation, as well as potential sources of possible data to use and links to other normative
documents [108]. It is thus essential that the framework user is equipped with all the information
regarding the data. Further, indicators can show that a problem exists, but they do not show its
cause or tell what to do [201]. Therefore, they could be useful if monitored continuously, to see
the progress if certain measures are taken. This also raises the question of whether a city index to
rank cities is needed [86]. Given the fact that cities are very different from each other and have
diverse histories, economics, and development goals, their ranking can be misleading and provide
weak support for cities themselves in their development. Moreover, “indicators and measurements
should not become a goal in themselves but support the fulfillment of individual cities’ needs” [179].
From this perspective, indicators supporting continuous monitoring of important phenomena in
the city could be valued more. Additionally, indicator visualization is important, since this may
affect perception and interpretation [201, 250].

Indexes should also be used with caution. For instance, indices usually have a certain focus,
that determines which indicators are included in it [86]. It is recommended to develop a solid
theoretical framework to serve as the basis for the selection and combination of indicators into
meaningful composite indicator [250]. Therefore, the developers of the index should understand
and communicate the purpose and limitations of the index, as well as how different indicators
relate, so that index interpretation is solid [236].

In addition, indexes also rely on a number of data processing techniques, such as aggregation,
normalization, and weighting [250, 308]. Proper theoretical grounds should be followed, otherwise
“‘incompatible’ or ‘naive’ choices (i.e., without knowing the actual consequences) in the steps of
weighting and aggregation may result in a ‘meaningless’ synthetic measure” [155]. Moreover, it is
recommended to test the aggregate measures for their robustness as a whole, to test how sensitive
the index is to changes in the steps followed to construct it. In this regard, traditional techniques
include uncertainty and sensitivity analysis [155, 250]. These imply that data, overall methodology,
predetermined boundaries of the system, and comparability of results across the systems should be
transparent and clearly communicated so that one is able to assess the performance and suitability
of an index for a particular task [236]. Finally, aggregate indices may hide some information, e.g., it
could be challenging to identify if few indicators have extreme values when the index aggregates
hundreds of these into one number [236]. In such situations, it could be better to provide the
indicators as frameworks and use visual tools to present these, for instance.

Indexes also require careful governance, because over time the data behind the indicators can
change, therefore direct comparisons with previous versions may become unfeasible. The ability to
compare various indicators and assessment frameworks provides means to ensure that the proper
one is selected. Huovila et al. [179] provide a comparative analysis of standardized indicators for
U4SSC, where seven sets of city indicators published by international standardization bodies are
inspected in terms of their conceptual urban focus, city sectors, and types of indicators.

Acknowledging the limitations and challenges, indicators are still useful and provide the means to
track the progress of certain phenomenon [36, 110].The key message here is to enable as transparent
and documented process as possible, ensuring that users of the indicators have a proper under-
standing and are able to make an informed judgment if the indicator is suitable for the task at hand.

3.3 Smart City Architectures and Platforms
Smart cities are very complex structures involving various stakeholders, technologies, and physical
constraints; therefore, it is difficult to provide a unified reference architecture and a platform,
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Table 4. Summary of Requirements for Smart City Architecture and Platform From Related Work

Functional requirements Non-functional requirements

Summary from [23, 81, 159, 183, 222, 231, 268 300, 316, 335]

—Handling big data characteristics, namely
volume, velocity, variety, veracity, and
value.

—Definition of a city model, data models, and
APIs

—Data management
—Data storage management
—Data processing and analysis
—External data access
—Applications runtime management
—WSN management
—Service management, SLA
—Software engineering tools, APIs
— IoT device/resource discovery and
management

— IoT data marketplace
—License management
— Incorporation of feedback and monitoring

— Interoperability
—Decoupled and distributed components
—Openness
—Legacy compatibility and heterogeneous
landscape

—Resilience to failure and robustness
—Performance
—Scalability
—Security
—Privacy
—Context awareness
—Adaptation
—Extensibility
—Configurability

SLA, service-level agreement; WSN, wireless sensor network.

since the development could be guided by local requirements [300]. In this section, we cover some
existing efforts toward smart city architectures and platforms and summarize them into general
architecture from the smart city data point of view.

The ITU defines architecture in general as “a definition of the structure, relationships, views,
assumptions, and rationale of a system” [316]. There are many smart city architectures and their
implementations presented by the research community, varying in their goals and details. Generally,
smart city reference architectures should be technology-neutral and provide a clear set of capabilities
and stages to be implemented to provide smart city services [142]. Moreover, such architectures aim
to fulfill a certain set of requirements of the domain. Table 4 summarizes requirements for smart city
architectures and platforms found in related work. As can be seen, in general, such requirements
cover data and system management functionality, as well as non-functional requirements related
to privacy, security, and system lifecycle management.

A number of architectural proposals exist with varying levels of detail. Some researchers provide
quite a general perspective. For instance, Zygiaris [381] suggests seven layers, going from the
layer covering essentials of the city (districts, inbuilt infrastructure, and so forth), to level aiming
and promoting green and sustainable actions (like green transport practices, and planning), to
technology and application covering layers (interconnection, instrumentation, open integration,
and application layers), and, finally, to the innovation layer, focusing on the innovation ecosystem,
which is vital for the prosperity of the cities and their inhabitants. Zheng et al. [371, 372] summarize
the urban computing system framework, which is comprised of four general layers: urban sensing
and data acquisition, urban data management, urban data analytics, and service provision. In
contrast to other proposals, Zheng et al. [371] are more interested in methodological aspects, like
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processing geo-spatial data at each layer (e.g., trajectory compression and map-matching in the
urban data management layer).

Others focus more on the system development angle. For instance, Habibzadeh et al. [159] abstract
smart city architecture into five generic planes: an application plane, sensing plane, communication
plane, data plane, and security plane. There, each plane comprises a number of technologies,
methods, and challenges. Santana et al. [299] provide reference architecture for the development of
software platforms for smart cities based on analysis of 23 related projects. Compared to others, their
architecture is more technology driven and is based on the cloud and networking layer, with IoT
and Service middleware, user management, and social network gateway on top of that. The Big Data
management component is responsible for all data aspects. In addition, the need for a toolkit and
security support are presented in the architecture. The authors also emphasize that all components
of the platform must support scalability, security, privacy, and interoperability. Santos et al. [301]
focus on a sensing platform for smart cities. Their approach is to follow the data flow: sensing, data
collection, data storage, processing, sharing, and hosting urban services. They integrate sensor
data from mobile crowdsensing, environmental, and public transport vehicle sensing for analysis,
data sharing, and smart city applications development. There, the importance of a unified spatio-
temporal data model and the use of standard IoT data access methods are emphasized. Villanueva
et al. [346] propose the Civitas platform to be seen as the core of a smart city IT infrastructure
able to orchestrate different entities (like citizens, public institutions) connected to it via Civitas
plugs. Middleware relies on core nodes which are servers hosting a variety of services. The authors
emphasize the integration of intelligence, like common sense reasoning. When compared to others,
this proposal is more broker-like. Bibri [81] provides an analytical framework for data-centric
IoT applications for U4SSC. Their proposal provides a pipeline focused on IoT, Big Data, Cloud,
and Fog programming paradigms. Its main components include urban systems and domains that
should function and be managed by IoT and its underlying big data analytics; the urban big data
sources, storage facilities, and data categories component is responsible for data collection, storage,
and management; Cloud computing or fog/edge computing and Hadoop MapReduce architecture
infrastructure for big data processing and management for knowledge discovery/data mining;
Big data applications covers smart applications for diverse urban domains [81]. The CUTLER EU
project proposes a data hub conceptual architecture to support data management and analysis for
decision-making in municipalities [335]. In comparison to other proposals, they provide quite a
general data-centric conceptual solution, which is then illustrated with concrete implementations
for five pilot cases. Their main blocks in the architecture are: data collection, representing data
acquisition functionality (like data sources, data crawlers, and data pre-processing); data integration
platform supporting data ingestion, data storage, and access APIs to other components that will
further manage and/or process the data; data analytics to support business logic of the smart
city services; data governance to manage the data and data lifecycle; business model DevOps to
bridge the gap between the big data technology and the business model of policy developments;
and services and visualization responsible for smart city services and data visualization [335].
Similarly, Pereira et al. [268] suggest a platform for integrating heterogeneous data and aiding the
development of smart city applications. In comparison to other proposals, their solution emphasizes
a semantic-based data model. For example, in their proposal, information is grouped into layers
that represent geographic or some particular domain information, like school or public safety.
The information from different layers could be linked together to retrieve new information, e.g.,
information about safety close to schools. Architecture-wise, it is a distributed system consisting of
SGeol middleware and middleware infrastructure, that includes components for managing users
and data access security policies; managing data, its messaging, integration, and context; discovery
of physical devices and their integration to the platform; real-time and batch analysis. The solution

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 5, Article 88. Publication date: November 2024.



Addressing Data Challenges to Drive the Transformation of Smart Cities 88:15

also provides representational state transfer (REST) APIs for external data access and SGeoL
Dashboard service offering edit, query, and visualization capabilities.

The SynchroniCity EU project (that also included partners with leading roles in standardization
bodies) aimed to establish a reference architecture for the IoT-enabled city marketplace, ensuring
interoperability and developing interfaces and data models for different verticals [231]. To achieve
this, the SynchroniCity project analyzed available models and approaches for smart cities and
summarized them with an architecture framework collecting the most common capabilities and
technologies [231]. Their reference architecture consists of different logical modules, including
Context Data Management to manage the context information coming from various data sources;
an IoT Management module responsible for interaction with the devices using different standards
or protocols to make them compatible with the framework; a Data Storage Management module
responsible for data storage and access; an IoT Data Marketplace to facilitate business interactions
between data suppliers and consumers by enabling digital data exchange; a Security, Privacy,
and Governance module to handle security aspects related to data, IoT infrastructure and the
platform services; Monitoring and Platformmanagement servicesmodule which guards the platform
configuration management and service activities monitoring; Southbound interfaces to connect the
architecture to various data sources and IoT devices; and lastly, Northbound interfaces to provide
platform functionalities to be used by the final smart city end-user applications [231].

Standardization bodies are also interested in providing architectural solutions enabling smart
cities and they have similar views to the SynchroniCity project. For instance, ITU provides dif-
ferent angles on smart sustainable city reference architecture. Their ICT architecture from the
communication view emphasizing a physical perspective relies on the top of the city physical
infrastructure. This architecture consists of sensing, network, data and support, application, and
operation, administration, maintenance and provisioning, and security layers. Architecture also
demonstrates communication and exchange of information between layers [316]. ETSI puts context
management and interoperability at the core of their platform [183]. They suggest a smart city
platform that is based on the Context Information Management API (NGSI-LD) ecosystem
[182, 184]. The main logical functions of their framework are as follows: Data ingestion and in-
tegration to collect data from different systems; an NGSI-LD Context Broker applying NGSI-LD
API [184] for data interoperability; Semantics for construction and the use of semantic data and
technologies; Analytics and AI to support analysis/prediction services for smart cities; Monitoring
and management responsible for system operation monitoring and management; and Security and
Access Control is responsible for authentication for smart city platform users and applications,
access control policy management, and access control token management functions [183]. Their
architecture also considers data spaces, through a Data space connector smart cities can connect
to other data spaces and share data across other relevant systems [183]. Similarly, with a focus on
context management, FIWARE suggests a reference architecture for smart cities. Their architecture
is technology-oriented, where an Orion Context Broker is its core component. FIWARE provides
data models, interfaces, and ready-made components for e.g., IoT, processing, analysis, and visual-
ization of data [23]. For instance, the FIWARE platform was used to provide the main components
for the underlying middleware infrastructure for SGeol middleware [268].

Figure 3 summarizes the essential functional blocks required for a smart city data platform.
Logically, we divide the architecture into data sources, platform, and applications. The data sources
represent possible data that can be used for the development of smart services. The platform
incorporates a traditional data management pipeline. The important aspect here is interoperability
and data models, as pointed out by some related work [23, 231]. Traditional blocks also include
data storage and analysis. The data governance functional block ensures the overall usability of
data assets in the platform. Data security and privacy are in the backbone of the platform. Finally,
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Fig. 3. Smart city data system architecture, a summary from related work.

management and development tools are needed to ensure that the platform is operational. On top
of that, the development of APIs would facilitate accessing data/analysis results or performing
certain actions. The services block represents numerous services that could be developed on top,
like smart transportation services.

Concrete implementations of such functional blocks could vary greatly, from more centralized
cloud-based solutions to more distributed ones, like edge-based solutions [197, 270]. Therefore,
methods and tools could be selected accordingly. For example, architectures and platforms are
proposed to support the development, deployment, andmanagement of IoT systems across a number
of devices with varying resources, e.g., Osmotic Computing Platform [347]. An in-depth review of
methods and technologies for concrete implementations of smart city data architectures, as well as
deployment and management frameworks, is out of the scope of this article. For such studies, refer
to [159, 270, 299]. Instead, we focus on data challenges from a more conceptual standpoint, leaving
their concrete implementation and selection of methods and tools to the developers.

4 Data Challenges in the Context of Smart Cities
The development of IoT and communication technologies has opened up numerous opportunities
to assess a variety of phenomena in cities, like traffic, pollution, and economic wealth. City data are
diverse in nature and has a variety of formats, availability, volume, spatio-temporal dependencies,
and sensitivity concerns, to name a few. All this data should be processed and analyzed to derive
comprehensive insights. Therefore, solutions are needed to work with such diverse data in a robust,
efficient, secure, and ethical manner. This section reviews the main issues and approaches developed
in the smart cities context in (1) data availability and quality, (2) data heterogeneity and integration,
(3) data management, (4) data analysis, (5) ethics, (6) data privacy, and (7) data security.

4.1 Data Availability andQuality
Different taxonomies have been applied to classify urban data. For instance, Zheng et al. [372]
suggest a division of urban data by the nature of the phenomena they present, like geographical,
traffic, mobile phone signals, commuting, environment monitoring, social network, economy,
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energy, and health care data. Another suggested taxonomy is based on data structures (point- and
network-based types of data) and spatio-temporal properties (spatio-temporal static, spatial static
but temporal dynamic, and spatio-temporal dynamic) [371]. Additionally, available urban data
can be divided into five pools, including firewall (within the legacy systems of public agencies),
open data, social, sensors/IoT, and commercial data [141]. Finally, urban data has also been divided
based on including personal information, like non-personal data, aggregate data, de-identified data,
and personal information [214]. In this subsection, we will highlight the urban data availability
aspect, categorizing our exploration into open data, citizen-contributed data, and commercial data
solutions. Also, we will discuss corresponding data quality considerations.
Open Data. Data are the key enabler for the vision and realization of smart cities. According

to a European strategy for data, Big Data are considered as one of the key enablers to maximize
the growth potential of the European digital economy and society [109]. Therefore, a large effort
has been made to promote data suppliers and owners, even municipalities and governments to
open their data for both research and business. To gain the benefits, an adaptation of municipal
vision and governance strategies could be required to coordinate, enable, and support various
forms of data-sharing initiatives [202]. Open data are the data that anyone can access, use, and
share; it is available in machine-readable format, as well as licensed to permit data use in any way
[35]. Governments and municipalities play a crucial role in the management of cities’ data assets
so that data-driven tools can be used to address challenges that cities face [73]. Therefore, there
is also a strong recent trend to release much of public agencies’ data as open data [141]. This is
known as Open Government Data, which is defined as information collected, produced, or paid
for by public bodies and licensed for free re-use for any purpose [35]. A number of open-source
and commercial data portal platforms exist, providing the ability to publish data, enabling data
access and visualizations like CKAN,1 DKAN,2 Socrata,3 Opendatasoft,4 PublishMyData.5 Their
availability, as well as the strong demand to share urban data, has resulted in a number of urban
data platforms, containing both open and restricted in-use data. Barns [73] classifies these into
data repositories—open data portals with the main goal to provide data sharing capabilities; data
showcases that aim to visualize data, but the data itself is not always available or machine-readable;
city scores—visualization of city performance in regard to a certain set of indicators; and data
marketplaces enabling data access and reuse with performance monitoring. Examples of data
repositories include, the New York City open data portal [119], which enables data access within a
number of categories. Among the full information about the dataset, it is also possible to see the data
snapshots and visualize the data in external services. Another example of data repositories is the
Moscow City Government open data portal,6 providing access to data classified into thematic topics,
like healthcare, education, and culture. Datasets are equipped with basic information, including,
among others, dates, formats, links to the source, and contact information of the persons responsible.
Well-known city dashboards include the Dublin Dashboard,7 which provides rich visualization
opportunities as well as possibilities to get the data available. The London Datastore [32] also
provides rich opportunities to visually explore the data, as well as gain access to it. However, when
compared to other city dashboards, the London Datastore provides data-driven analytics based on
their alignment to strategic planning and governance challenges for City Hall [73]. Table 5 provides

1https://ckan.org/
2https://getdkan.org/
3https://www.tylertech.com/products/socrata
4https://www.opendatasoft.com/
5http://www.swirrl.com/
6https://data.mos.ru/
7https://www.dublindashboard.ie/pages/index
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Table 5. Summary of Selected Datasets

Dataset Summary

City Pulse
Aarhus City
[58]

The dataset provides information related to traffic observations, weather situations,
pollution, and cultural events from the city of Aarhus, Denmark. The dataset has
been used, e.g., to forecast traffic situations, study privacy concerns, measure air
pollution, and development of transfer learning algorithms [62, 175, 303].

Amsterdam
[20]

The dataset measures traffic, accidents, crime statistics, economic activity, and
pollution. It has been used, e.g., to estimate the effect of parking prices, to forecast
traffic flows, for fast charging planning for vehicles, and for contextualization for
sustainable development [77, 171, 188, 257].

Chicago
Datasets [18]

Datasets include traffic congestion estimates, traffic counts, accident and
emergency dispatches, energy usage, air and water pollution, and data-related to
economic activity. The dataset has been used for, e.g., forecasting daily crime,
traffic prediction, studying residential energy efficiency, and crime analysis surveys
[54, 302, 373].

London [32] The Greater London Authority provides a wide range of data-related to traffic
counts, street crime, energy usage, data-related to for borough profiles, topsoil
chemical data, wealth gap, and birth trends [22, 228]. The dataset has been used,
e.g., to analyze crime patterns, forecast energy usage, and borough-level COVID-19
forecasting [128, 255, 283].

New York
[119]

The portal provides data-related to vehicle collisions, crime data, energy and water
data, air quality, water quality complaints, school districts, enrollment statistics,
and others [119]. The data has been used in different studies to assess the needs
after Hurricane Sandy, electricity estimation, crime prevention, study air pollution
trends, and predicting burglaries [137, 193, 310, 374].

AirNow [1] The AirNow platform provides air quality data about local areas in the United
States, Canada, and Mexico from more than 500 locations [1]. The data has been
used to study and forecast wildfire pollution, bias correction in air quality
forecasting models, ozone forecasting, and the effect of ozone on children’s health
[60, 164, 232, 293].

Tokyo Open
data [41]

The Tokyo Metropolitan Government has developed an open data portal to provide
insights into different city segments. The platform provides case studies,
data-related to bus stations, disaster prevention maps, and data-related to the
environment (e.g., air pollution, landfill, sewerage, and so forth). The data portal
has been used, e.g., to organize a hackathon to address administrative issues,
analyze social trends related to COVID-19, investigate the crime harm index, and
study issues related to the lack of educational data [173, 254, 332, 337].

a brief summary of selected available datasets. For deeper insights, an interested reader could refer
to Ma et al. [228], who survey available city datasets.

There are a number of initiatives in the European Union (EU) advancing data sharing. For
instance, the open data portal8 provides access to data published by EU institutions and bodies.

8https://data.europa.eu/euodp/en/home
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In addition, the portal provides opportunities for data visualizations and work with linked data.
Furthermore, the European Data Portal harvests the metadata of public sector information available
on public data portals across European countries.9 Other data sharing activities include INSPIRE
Geoportal10 that collects data provided by EU Member States and several European Free Trade
Association countries under the Infrastructure for Spatial Information in Europe (INSPIRE)
Directive that focuses on creating an infrastructure for sharing environmental spatial information.
Yet another known initiative is Copernicus, the Earth observation programme coordinated and
managed by the European Commission and is implemented with the Member States, the European
Space Agency, the European Organization for the Exploitation of Meteorological Satellites, the
European Center for Medium-Range Weather Forecasts, EU Agencies and Mercator Océan.11
Copernicus provides a number of services categorized under atmosphere, marine, land, climate
change, security, and emergency themes, as well as access to satellites and in situ sensor data.

While acknowledging the power of such dashboards and portals, it is important to note that they
require considerable effort to remain useful and provide utility for communities, municipalities/
governments, and businesses. First, their purpose and interpretation should be as clear as possible,
since the data itself, as well as data processing and analysis steps are known to be technology
and methodology dependent, limited in time and location, and could be biased in interpretation
[200, 201]. Second, such data platforms require active maintenance and support to ensure that
they contain up-to-date information of the required quality. Support is also needed for both data
providers and data consumers. For instance, proper effort is required to share the data. The data
provider must ensure the content quality (completeness, cleanness, and accuracy), timeliness and
consistency support, data representation model (use of standardized solutions, proper formats, and
linked data), supply of proper metadata, as well as, addressing the legal aspects, i.e., to provide
a license to use the data [35]. After the data are published, it should be properly maintained, i.e.,
checking data access and assessing and updating data itself and its metadata, as the data lineage
and metadata allow users to assess the trustworthiness and data quality [201].

Legal issues regarding publishing and use of the data require careful treatment. For example,
data ownership, legal grounds, and terms of use are often unclear for particular data sources within
data repositories. Many data repositories have statements and references to legal documents in
their terms and conditions on what kind of data are stored and how to use it, e.g., the Moscow
City Government open data portal. However, e.g., including licence information in the data source
description itself provides better transparency and eliminates confusion, check the LondonDatastore
for an example.

Citizen-Contributed Data. The premise of citizen-contributed data are to facilitate and collect
input for decision-making at large. Different approaches exist to harnessing citizens’ data [211],
including:

—crowd markets: to enable the aggregation of online individuals as collaborative input;
—social media mining: to retrieve publicly expressed opinions and content;
—urban and in situ sensing platforms: to unobtrusively collect data from citizens’ daily dwellings.

Crowd Markets. Amazon’s Mechanical Turk [2] and Figure-Eight [21] (previously Crowdflower)
are today’s largest platforms for aggregating online individuals’ time to complete tasks that are
computationally intensive but relatively trivial to a human.These platforms are purposefully generic,
and a variety of tasks can be created. These tasks range from answering surveys, writing reviews,

9https://www.europeandataportal.eu/
10https://inspire-geoportal.ec.europa.eu/
11https://www.copernicus.eu/en
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annotating images, transcribing audio, and others, i.e., tasks that are challenging to automate due
to a high risk of error. The main challenge of crowd markets is to sustain the crowd size and quality.
The literature shows that higher-paid tasks can attract workers at a higher rate. Emphasis on the
importance of the work has a statistically significant and consistent positive effect on the quality of
the work [290]. A practical example of leveraging crowd markets is Zensors [45], which enables
sensing from any visual observable property. Zensors streams images where the crowd processes
and labels them according to a well-defined set of instructions, enabling near-instant counting
and another high-level sensing. Once sufficient human-based input is available, ML is applied to
fully automate the process once the accuracy of the algorithms is high (>90%). This approach is
also used by the Google Crowdsource initiative [19], where gamification and recognition given as
badges are used to sustain and train ML classification algorithms.
Social Media Mining. Online social media mining on a large-scale allows us to consider users’

posting of opinions and content in online social media to gain insights into unfolding events
[290]. The widespread availability of smartphones and high-speed Internet has enabled a range of
systems that collect a variety of different types of user contributions. For example, it is now possible
to collect videos and photos in the field, e.g., YouTube, Instagram, Twitter, and Facebook. These
platforms allow user-driven tagging with relevant keywords. The primary use of this media is for
the platform, but researchers have found such user-generated content as sensor data, originating
from end-users. Providing a system that allows users to easily contextualize and tag high-level data
results in a valuable repository of knowledge. For example, Wheelmap12 allows users to tag and
search for wheelchair accessible places using a smartphone and a browser. Others share where
they are [343] or whether a place is recommended [208], or reported the destruction aftermath of
an earthquake [348]. Researchers keep exploring ways to use devices’ sensors usage, as Citizen
Science [266]. Citizen Science can be interpreted as individuals becoming active participants and
stakeholders of data. Large-scale efforts, such as Wikipedia and OpenStreet Maps, allow users to
publicly augment and annotate online information as text or geo-fenced markers. This wealth of
everyday information about and around us creates numerous possibilities for new applications and
research in general. Social media-enabled applications are primarily driven by smartphones for
in situ context and are often deployed on application stores for ease of installation and updating
the platform.
Urban and In-Situ Sensing Platforms. Urban and in situ systems pervasively collect data from

citizens without the need to set up or install an app on someone’s smartphone. These platforms
often deploy sensors throughout a city. These can be invisible to citizens, e.g., underground traffic
sensors, weather monitoring stations on top of a building, or they can be an integral part of the city,
e.g., interactive public displays. A number of studies have investigated the use of public interactive
displays for the purpose of data collection [63, 89, 176]. Opinionizer [89] is designed and placed
in social gatherings (parties) to encourage socialization and interaction. Participants would add
comments to a publicly visible and shared display. Due to the fear of “social embarrassment,” the
authors suggest public interactions to be purposeful.

The environment, both on and around the display, also affects its use and the data collected. The
environment produces strong physical and social affordances, and such devices or solutions need to
reveal their purpose regarding the social activity under study rapidly and to be able to seamlessly
and comfortably encourage citizens to switch from being onlookers to becoming participants.
TextTales [63] explored providing story authorship and civic discourse by installing a large, city-
scale, and interactive public installation that would show a grid of text. A discussion on a certain
photograph would start with text messages sent by citizens, displayed in a stream of comments.

12https://www.wheelmap.org
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Beyond public display, citizens can also be involved in larger efforts to affect society at large.
One such project is vTaiwan,13 which is an online-offline consultation process that brings together
government ministries, elected representatives, scholars, experts, business leaders, civil society
organizations, and citizens. The platform allows lawmakers to implement decisions with a greater
degree of legitimacy. It combines a website, meetings, hackathons, and consultation processes. For
example, vTaiwan was crucial in the debate on Uber operations in Taiwan.14 In a similar approach,
Decidim15 is a digital platform for citizen participation, helping citizens, organizations, and public
institutions to self-organize democratically at scale. It provides a political network, citizen-driven
initiatives and consultations and raises participatory budgets, thus allowing a democratic and
flexible system where everyone can voice their opinion.

Overall, citizen-contributed data are a valuable source of information, and in some cases, it is the
only way to understand the phenomenon of interest. However, such data collection initiatives and
subsequent data analyzes should be planned well and performed with care. For instance, if citizens
are asked to perform a measurement, they should be instructed on how to do it to get reliable value
[90]. Some measurements may also require a calibration of the device [272]. In addition, one should
have a strategy to deal with data gaps due to behavioral patterns of people taking measurements
[284]. As in each study, one should ensure that a sample of users, contributing the data to the
system, represents the population as fully as possible, and that no bias is introduced into the data
collection strategy. Finally, privacy issues from such data collection initiatives should be checked
and treated appropriately.

Commercial Data and Private–Public Partnership. A number of commercial organizations
deploy infrastructures and utilize available urban data to provide and improve their services.
Sharing these data with municipalities has been a subject of debate for a long time [46]. However,
challenges with data have enabled various forms of commercial involvement, such as data markets
and hubs. Such organizations facilitate connections between data providers and data consumers,
especially if the data cannot be openly shared. One example of such a solution is the Platform of
Trust16 in Finland, that enables data movement between systems and organizations, taking care of
trustworthiness and data harmonization issues. They also involve the community so that interested
people can participate in creating harmonization models that are then published as open-source
code.

Additionally, possibilities have been explored for data exchange between public and private
organizations, e.g., theCity Data Exchange (CDE) project created a marketplace for data exchange
between public and private organizations [251]. This project was a collaborative effort of the
Municipality of Copenhagen, the Capital Region of Denmark, and Hitachi.The CDE service provided
collaboration between different partners on supply and demand of data and a platform for selling
and purchasing the data for both public and private organizations. Based on the project, a number
of challenges were identified, e.g., immature market as even though some companies buy data
for their services, generally many are not yet ready to include data sharing in their core business
or strategy; lack of use cases could affect the reluctance to invest resources in selling/buying the
data; fragmented landscape; reluctance to share data on an open data portal, e.g., due to ethics or
competitors’ advantage reasons; lack of skills and competences to work with the data [251].

The development of such joint efforts requires trustworthy data stewardship. That is, “trustwor-
thiness is the virtue of reliably meeting one’s commitments, while trust is the belief of another
that the trustee is trustworthy” [253]. Several models have been suggested to collaborate in data
13https://info.vtaiwan.tw/
14https://vtaiwan.tw/topic/uberx
15https://www.decidim.org
16https://www.platformoftrust.net/
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use and share [185]. For example, data collaboratives17 represent a form of partnership where a
number of parties, like governments, companies, and others, collaborate to exchange and integrate
data to help to solve societal problems or create public value [204]. Therefore, through such cross-
sector and public–private collaboration initiatives it is possible to achieve much wider goals that
may be difficult to perform by the parties by themselves only. One noteworthy example of data
collaboratives in smart city context is 9,29218 which is public–private collaborative, gathering and
sharing public transportation data in the Netherlands. Obviously, data collaboratives possess all
the challenges that data integration initiatives have, since the data comes from diverse providers,
in different formats and has varying structures. However, as Klievink et al. [204] emphasize, data
collaboratives are a collaboration and innovation phenomenon rather than a data phenomenon.
Therefore, organizational, incentivization, and governance challenges should be considered as well.
From this perspective, a number of additional challenges arise regarding vulnerabilities in opening
the data, its possible misuse, and overall trust within the partnership. Coordination problems
also include matching potential data providers and data users, maintaining data control and its
unforeseen uses when shared, matching a problem with the data attributes, ensuring the shared data
are useful and usable by the user, and aligning the incentives of providers to share proprietary data
with the goals of the users [330]. Moreover, data collaboratives are not isolated constructs, therefore
partners’ incentives, goals and collaboration overall depend on the context, like institutional and
governance frameworks, government interests, transparency/inclusiveness culture, and the means
by which collaboration is legitimized [204]. Therefore, to achieve a successful collaborative, it could
be helpful to organize the overall collaboration process and context in such a way that perceived
vulnerabilities are dealt with [204].

Another initiative is data trust. The interest in data trusts started in 2017 where this model was
proposed as a “set of relationships underpinned by a repeatable framework, compliant with parties’
obligations, to share data in a fair, safe and equitable way” [162]. The Open Data Institute defines
data trust as “a legal structure that provides independent stewardship of data” [166]. There are
a number of interpretations of data trusts, e.g., it is assumed that a data trust could be simply
an arrangement of governance or a legal agreement or such practices could be aggregated into
architecture [253]. Hardinges places different interpretations and uses of data trust term into
the following categories, including repeatable framework of terms and mechanisms; a mutual
organization formed to manage data on behalf of its members; a legal structure; a store of data with
restricted access; and public oversight of data access [165]. For instance, Sidewalk Labs proposes
the establishment of an Urban Data Trust (that could evolve into a public sector agency over time)
serving as an independent digital governing entity for their Sidewalk Toronto project, ensuring
that responsible data handling is in place for digital innovation activities (Responsible Data Use)
[214]. In addition to privacy laws, Sidewalk Labs suggests that all innovations aiming to collect/use
urban data must go through Responsible Data Usage Assessment conducted by Urban Data Trust.
This way, Sidewalk Labs aims to achieve the proper privacy and security practices, provide and use
consistent and transparent guidelines for responsible use of data, and make urban data a public
asset [214]. These goals align with O’Hara’s emphasis on the purpose of a data trust, which is “to
define trustworthy and ethical data stewardship, and disseminate best practice” [253].

Generally, successful engagement in any form of data-sharing partnership could require the
adaptation of urban governance visions and strategies [202], as well as a transformation of the
parties’ institutional cultures and processes [124]. A certain level of data quality could be expected
from commercial or private–public partnership data, since such data are often an asset for the

17http://datacollaboratives.org
18https://9292.nl/en
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commercial success of the organizations. However, the technological and methodological biases
should not be excluded, since the data could be generated for a particular purpose, but shared for
potential other ones [200, 201]. Moreover, partnerships could suggest proper formalization of the
responsibilities in data sharing (e.g., data representation models and metadata availability), usage
(e.g., who, how, and for what purpose), and maintenance processes between collaborating parties,
making sharing and usage of the data smoother.

4.2 Data Heterogeneity and Integration
During the last few years, a large amount of heterogeneous data has been available from various
applications and tools. This is also true in the smart cities context, where the rapid adoption
of intelligent applications has created new, different, and numerous data collections. These new
sources have given new opportunities but also emerging challenges. An effective data analysis
in the smart cities context has to consider the increasing amount of data coming from connected
devices, multiple software solutions (developed by public and/or private institutions), and historical
archives. However, since the systems producing and collecting data are heterogeneous, they provide
data in multiple formats that must be integrated to be combined for running an effective analysis.
The siloed and often incompatible nature of these sources has also made the interpretation and
use of data more challenging [279]. We will explore the different strategies that, according to the
literature, can be applied for integration of data for smart cities, summarized in Table 6:

—Model data integration
—Semantic data integration
—Structural data integration
—Software-delegating data integration

Model Data Integration. This approach to data integration has been developed in the previous
decades starting from proposals focused on the integration of classical data models (such as
Relational, XML, and Object-Oriented) [161, 237], and continuing with suggestions more focused on
recent data formats (such as streams, NoSQL databases) [66, 217]. According to this methodology,
all data, coming from different sources is collected in a central repository where an abstract model,
grouping all the characteristics of the diverse sources, supports all the operations [78]. A major
benefit of this methodology is that data collected and integrated (in theory) contains no redundancy,
can be accessed uniformly, and can be trusted thanks to its integrity. Unfortunately, the definition
of such a model is difficult since integrating concepts coming from different data models is not
always easy. For example, it could be quite challenging to integrate two dissimilar concepts into
the same model, such as a link from a graph data model and a column from a columnar data model.
Moreover, the characteristics of Big Data make the maintenance of such a unified model tricky
since the data model must be updated each time a new data source with a different data model is
defined and needs to be integrated.

In the context of smart cities, the work by Ballari et al. [70] presents one of the first approaches
in this direction. The authors focus on integrating sensor data and highlight the difficulties in
finding a global scalable solution. Even though they introduce a global model (providing dynamic
interoperability and considering the concepts of proximity, adjacency, and containment in different
dynamic contexts), they still cannot manage to introduce a global schema that can be used to
store data in a scalable manner. The CitySDK project [269] goes in the same direction, defining a
global data model for integrating data concerning tourist information. Their global model designs
structures for points of interest, events, itineraries, and categories/tags. The approach bases the data
collection on a set of adapters that transfer the information from heterogeneous sources (mainly
CVS, JSON, and XML files) to the global data model (implemented in document format and stored
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Table 6. Data Integration Strategies in Smart Cities, with Their Benefits (+) and Challenges (−)

Model Semantic Structural Software-delegating
Data integration Data integration Data integration Data integration

All data belongs to a
unified schema in a
target meta-model

A general domain
ontology represents all
the concepts

Data integration
occurs at the physical
storage level

Off-the-shelf software
is used for integration

+ Unified vision of
data

+ Modularity and
scalability

+ Transparent to the
high-level analysis

+ Ready-made
solutions

+ Allows to identify
and possibly
eliminate data
redundancy

+ Easy and transparent
integration of new data
sources

+ Unified and efficient
data access patterns

+ Modular solutions:
new developments
easily extend models

+ Algorithms defined
in a general way on
the global schema

+ Reasoning on objects
and their relationships

+ Operations at
data-fragment level
that can scale-up easily

+ New analyzes can be
included with new
components

– Users must have a
high capacity of
abstraction

– Domain expert
knowledge is required

– Security and privacy
are fully delegated

– Data access depends
on platform and its
capabilities

– Usually, standard
query languages are
not available

– Already-available
ontologies do not
always fit the target
scenario

– Access from external
software and platforms
is not easy

– Updates from
vendors can affect the
global design

– A new data source
can impact the
general model

– Poor support for
stream analysis

– Data must have a
uniform storage format
and granularity

– Strong dependency
on platform
capabilities

Examples: Examples: Examples: Examples:

[70, 92, 207, 237] [37, 79, 84, 111, 117,
148, 156, 276]

[112, 128, 271, 279, 280,
285, 289]

[122, 278, 287, 307]

in MongoDB) using a REST API. This approach tries to solve the problem of the flexibility of the
central data model by requiring the definition of a new adapter each time a specific data source is
added to the system.

More recent approaches have managed to establish architectures based on the meta models
provided by new technologies. This is the case of the data hub-like architecture, proposed by Koh
et al. [207]. This approach integrates the technologies of stream processing, like Apache Kafka
[10] with the support of Apache Spark [14] (also used for batch processing); the knowledge graph-
structured base of Virtuoso for semantics, and the storage of Apache HBase [9] for quick real-time
retrieval. Finally, they use Vert.x [42] a Java framework to provide scalability through its natively
asynchronous task processing and abstraction of microservices. The design is still quite new and
would have to be tested to evaluate its performance.

Cacho et al. [92] proposed viewing a smart city as a System-of-Systems (SoS) to help develop
a framework upon which governments can benefit from the integration of public and private
systems for planning, administrative, and operative purposes. They also identify challenges to the
development of smart cities, namely: the escalation and complexity of the SoS to be developed, the
multitude of stakeholders, the variety of domains, and emergent behaviors of the systems within.
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In this context, they described the challenge of the unification of the information to handle the
heterogeneity and the interoperability of the system under analysis using a global meta-layer.
Semantic Data Integration. One popular strategy for data integration is to use knowledge

representation and ontologies. In computer science, an “ontology is an explicit specification of
conceptualization.The term is borrowed from philosophy, where Ontology is a systematic account of
Existence” [157]. To define an ontology on the top of a domain, in computer science, a representation
of the knowledge with a set of concepts within a domain and the relationships between those
concepts must be provided. This approach has been implemented and described in multiple cases,
like [71, 84, 275, 325]. The benefits of semantic data integration are modularity, scalability, and the
fast and easy integration of different formats of data while removing the need to have a centralized
system to store all the data together. Bansal et al. [71] define a general Extract-Transform-Load
framework, involving the creation of a semantic data model as a basis to integrate data frommultiple
sources. This is followed by the development of a distributed data collection that can be queried
using the SPARQL query language. Psyllidis et al. [276] focus on the smart cities domain and present
a similar approach. The data from multiple heterogeneous urban sources are integrated into a
global ontology. On top of that, the authors define various interactive Web components (e.g., a Web
ontology browser and interactive knowledge graph) to access the integrated ontology graph. Bianchi
et al. [79] try to combine the definition of a semantic layer with a tool that provides to domain
experts the possibility to perform in autonomy the integration of multiple and heterogeneous
smart city data sources. Gaur et al. [148] propose a multi-level smart city architecture integrating
data from wireless sensors for pressure, temperature, electricity, and others. Their architecture
is composed of four layers and each layer has one responsibility. Layer 1 receives data in many
different formats. Layer 2 is in charge of processing all the data into a single format, like Resource
Description Framework (RDF) format. Layer 3 contains the inference engine for data integration
and reasoning using semantic web technologies. Finally, Layer 4 is responsible for querying data. A
different approach based on RDF-format data integration is presented by Consoli et al. [111]. There,
the authors describe a platform implementing an ontology-integration approach that leverages the
help of domain experts. For each data source, an ontology is created. The common conceptual layer
allows to convert all the data in a target RDF data model. A similar solution to the RDF-format data
integration from sensors is presented in [326].

Bischof et al. [84] share the consensus on the effectiveness of a semantic modeling strategy for
smart cities and on the conceptual data model. The approach considers the data stream annotation
with descriptions for data privacy and security, and data contextualization using hierarchies to
categorize smart city data. In detail, the solution is based on the definition of a semantic description
for smart city data, which is heterogeneous in nature, to facilitate discovery, indexing, querying, and
so forth for future services. They consider data heterogeneity not just from the format point of view
but also explore the nature of the data considering, for example, the different units of measurement
that are provided. They propose to start collecting metadata and semantic descriptions and try to
find a compromise with respect to the volume that this metadata might represent. The approach
ends with the definition of the Semantic Sensor Network ontology developed by a World Wide
Web Consortium incubator group which focuses on organizing and describing sensor capabilities
and data processing. The HyperCat [117] project developed a standard knowledge representation
using knowledge graphs to provide a uniform and machine-readable way to discover and query
data distributed among many data hubs, where each data hub can provide inputs from different IoT
components and networks. In this approach, applications can identify and use the data they need
independently on the specific data hub they belong to. Finally, we can also cite the CityGML open
data model based on XML format that is a standard for the storage and exchange of virtual 3D city
models [156].
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A semantic data integration approach is of interest to organization bodies as well. For example,
it has been proposed by the Alliance for Internet of Things Innovation working group. Special
attention must be devoted to the SAREF extension for smart cities [37] that provides a detailed
model for some interesting use cases. The ISO [28] also works on smart city ontologies, for example,
the foundation level concepts [31], the indicators [29] (populations, and so forth), and the city-
level concepts [31]. These ontologies constitute a very interesting and rich source for developing
standardized access tools and models and have been considered in multiple approaches that follow
a semantic modeling strategy.

Structural Data Integration.Many efforts have recently considered data integration from a less
abstract point of view and explore new possibilities offered by cloud platforms or data distribution
tools. This kind of data integration looks at data as small pieces that must be integrated from the
structural point of view. No generic data model is provided and no abstraction is defined at the
application level. Structural data integration differs from model data integration because it does
not strictly need a generic and abstract schema in a target model unifying the global vision of the
data. This kind of data integration differs also from the software data integration that we will see
below because it operates at the physical layer. The integration step is done in the storage layer
of the platforms and frameworks. It is immediate to see that the data integration step is purely
handled from a technology and a structural point of view. Petrolo et al. [271] tackle the challenge
of creating a smart city from the sensor standpoint. That is, they approach the problem from the
bottom-up and focus on the layers of data generation and consolidation. The authors propose a
VITAL Platform combining the IoT and the Cloud of Things to help alleviate the heterogeneity of
data generated from different systems on a pay-as-you-go scheme. This platform combines several
protocols and communication technologies, including ontologies, semantic annotations, linked
data, and semantic web services to promote system interoperability. However, they mention that
the challenges that still remain to be tackled are big data and privacy and security issues. Both of
these challenges have been approached by Rodrigues et al. [289] with their SMAFramework. Their
framework promises to reduce the trouble of dealing with multiple heterogeneous sources (both
historical and real-time generated) while allowing for multiple layers of access and security that can
satisfy arising privacy and security norms. Furthermore, the SMAFramework can add additional
data sources in a plug-and-play fashion. Their framework is based on a Multi Aspect Graph, which
they have tested on geospatial and temporal data from New York City combining tweets with trips
carried out by yellow taxis. Puiu et al. [279] propose a distributed framework called CityPulse
to perform knowledge discovery and reasoning over real-time IoT data streams in cities. Their
architecture includes a layer called “Sensor Connection,” which is responsible for collecting the
read data from the different sensors. Later, the data gathered is passed to another layer that parses
it to extract relevant information. After the parsing, there is a module that performs semantic
annotations by using an ontology created within the CityPulse framework. After the messages
are annotated, the data are published in a message bus. Since data in the bus is already annotated
with the Uniform Resource Identifiers from the framework ontologies, an RDF Stream Processing
module is able to query the data over the streams. Moreover, the framework is able to discover
certain events based on the analysis of the incoming annotated streams. Finally, they use a Service
Oriented Architecture to allow consumers to query relevant streams of the different sources or
events that were discovered in the message bus.

ML has also become a powerful methodology nowadays. According to research [128, 297], there
is a synergy between ML and data integration and it becomes stronger over time. Modern ML
models help to solve the schema-matching phase that can be considered one of the hardest problems
in data integration [76]. For example, Deep learning allows the comparison of long text values
by their embedding representations and starts to show promising results when matching texts
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and dirty data. Recently, SLiMFast [285] has been proposed as a framework that expresses data
fusion as a statistical learning problem over discriminatory probabilistic models and that can be
adapted to explore the smart city data integration scenario. In the same context, Costa et al. [112]
define a framework having a unified data warehouse that collects and stores all the available
data in raw format. Their approach uses an internal model that exploits the characteristics of the
Hadoop framework [8]. Unfortunately, their meta-model is not accessible from the outside and
not many details about the conceptual data integration task are provided. Finally, Raghavan et al.
[280] propose a prototype application based on a cloud-based API and architecture. Their solution
defines specific layers providing (and restricting) simple but useful standard operations that hide
the heterogeneity of the components. In these approaches, the tuning and optimization phases are
critical steps that strictly depend on the characteristics of the input dataset. The challenges behind
the generalization and optimization of these methodologies are just at the first exploration phase,
and much interest has been shown by the database research community [146, 334].
Software-Delegating Data Integration. During the last few years, a new category of data

integration approaches has been developed leveraging the power and the flexibility of the data
access software layers available on cloud computing platforms and architectures. We classify these
approaches under the name of software-delegating data integration. Specifically, this kind of data
integration is performed by using the various services that are provided by the cloud platforms [129].
For example, Ribeiro et al. [287] propose an architecture based on microservices developed on the
top of the Hadoop framework. Their proposal implements and improves the approach presented in
InterSCity [122] with a more scalable objective. An approach also based on distributed architecture
is described in [307]. In the proposed approach, data are collected from heterogeneous sources,
converted internally in a target model according to a common protocol, and made available for the
target analysis. This approach can be used in any context and can be exploited also by smart city
applications. A similar scenario is also presented in [116] where a data integrator component is in
charge of dispatch requests to data sources. Software-delegating data integration is very flexible
and allows quick access and integration of data according to standard operations and patterns. On
the other hand, the integration possibilities and the global maintenance become fully dependent on
tools and operations offered by specific platforms and offered APIs. Any change and the evolution
of the APIs can change the result and impact the data access.

4.3 Data Management
In recent years, data has gained significant momentum with the evolution of smart cities; therefore,
data management at such a scale brings challenges [69, 239]. Big data tools and technologies
now support data acquisition, storage, analysis, and governance [69]. However, given the volume,
heterogeneity, and distributed environment nature of smart cities, it is still difficult to integrate and
manage smart city data [258]. This section will explore the challenges and state-of-the-art solutions
for data acquisition, integration, storage, analysis, and governance.
Data Acquisition. Data collection or acquisition means retrieval of the data from the data

sources and feeding this data into the analytics platform for storage and further processing [336].
Data in smart cities is generated by diverse sources such as IoT, economic platforms, government
offices, transportation, and social media [56, 228]. These data vary greatly in their nature (text/
images/video/numeric), velocities, and formats. Some data sources are quite static, that is, they do
not change often, like geospatial map data. Some data sources provide data at regular long-enough
intervals, such as daily or monthly. Often, such static data sources have defined APIs to get the
data, or data may be downloaded from other storage solutions. Since such data does not need to be
processed and analyzed immediately, it can be loaded onto the data analysis platform, integrated
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with other data sources, and made available for deeper offline analysis (so-called batch processing)
[203, 336].

Many data sources generate data continuously and at a high frequency, like sensor readings. Often,
such data needs to be processed as it becomes available, to react quickly or detect certain patterns
or anomalies. Such incrementally available data are referred to as a stream, the data record as an
event, and the near-real time processing of data as stream processing [203, 336]. In data stream
terminology, we have producers (who generate events) and consumers (who process events) [203].
Collecting and processing streaming data requires dealing with delayed, missing, or out-of-order
data; managing situations where producers send messages at a faster rate than consumers can
process; and ensuring fault tolerance [203, 324, 336]. This also means that streaming data requires
loosely coupled communication schemes. Common approaches here include messaging systems
[203] that implement different communication patterns. For example, in a request-reply pattern,
the client expects a reply from the server. In a publish-subscribe pattern, clients subscribe to certain
messages published by the server they are interested in. In a pipeline pattern, producers push
the results, assuming that consumers are pulling for them [336, 341]. Message-queuing systems
facilitate communication between producers and consumers by inserting and reading the messages
in the queues [336, 341]. Such an approach provides loose coupling in time, solving a number of
challenges of streaming systems, such as the lag in capabilities to process events. Another issue is
to handle the heterogeneity of producers and consumers. Message-queuing systems treat this via
message brokers, namely application-level gateways that convert incoming messages into ones
that recipients can understand [336, 341]. For example, in a publish-subscribe pattern, the brokers
match the topics subscribed by the consumers to the topics published by producers [203, 336, 367].
Examples of such systems include Apache ActiveMQ [3] and Apache Kafka [10].

The recent developments in big data and smart cities have given birth to a number of reliable,
fault tolerant and flexible data acquisition and ingestion solutions, like Apache Flume [6], Apache
Spark [14], Apache Kafka [10], Apache Flink [5], and Apache NiFi [11]. Each of these frameworks
is being widely used in academia and industry depending upon the requirements. In some cases,
only one framework can meet the requirements, whereas the combination of these frameworks has
also been observed [239, 258]. Therefore, while choosing any of such frameworks, one needs to
be heedful of the final requirements. For example, if the data are being collected at its origin, it
may require initial transformation and cleaning. In addition, as the data sources may have diverse
acquisition frequencies and may require frameworks with capabilities for handling low-latency
and batch-oriented data alongside data cleaning and data transformation functionalities.
Data Storage. The number of connected IoT devices worldwide is expected to reach 50 billion

[296]. Since data are a key ingredient for smart city services, solutions and tools for efficient data
storage and access are needed [93, 125].

Generally, smart city applications can be considered to be data-intensive. In addition to application-
specific requirements, such applications should ensure that data are stored reliably and available
for later use, search, and processing, and the results of expensive operations should be saved for
speedy retrieval [203].

In recent years, a number of advanced SQL, document, graph, NoSQL, NewSQL, and Big Data data
storage systems have been proposed and adopted by researchers and engineers. It is clear that some
of them work better for certain tasks, provide certain guarantees, and the choice is always made
based on the data model and system requirements [93, 168, 203]. Examples include MongoDB [33]
which is a widely used document database, Apache Cassandra [4] as a representative of wide-column
data storage solutions, or VoltDB [43] as a representative of NewSQL databases. Modern storage
solutions enable distributed storage and processing by utilizing replication and sharding; they
provide data querying capabilities and interfaces for most commonly used programming languages
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and third-party systems, and cluster management functionality. Distributed implementation enables
scalability, fault tolerance, and latency reduction. However, as CAP theorem says, “in a distributed
database system, you can have at most only two of Consistency, Availability, and Partition tolerance”
[168]. Here, Consistency refers to the property to deliver every user of the database an identical
data view at any given instant; Availability promises an operational state in the event of failure;
and Partition tolerance ensures the ability to maintain operations in the case of the network’s
failing between segments of the distributed system [168]. Therefore, in distributed implementations,
usually, there is a tradeoff between consistency guarantees and other features.

Off-the-shelf big data management and processing platforms are available, such as Apache
Hadoop [8] and High Performance Computing Cluster (HPCC) Systems platform [26]. Such
platforms and the software ecosystem of applications developed around them provide complete
solutions from data acquisition to data storage, analysis, and results delivery to the end user. Apache
Hadoop is an open-source Java-based framework developed for data storage and processing in
a distributed environment on commodity hardware. The main components of Apache Hadoop
are: the Hadoop Distributed File System (HDFS): a distributed file system facilitating storage
and high-throughput access to massive-scale data; Hadoop YARN: a cluster resource management
framework; Hadoop MapReduce: a system for parallel processing of data; and Hadoop Common:
common utilities supporting other modules [8]. In addition, a number of tools have been developed
for different purposes, e.g., to efficiently load the data to HDFS (like Apache Flume [6]), facilitate
data storage and access (like Apache HBase [9]), process and analyze the data (like Apache Flink
[5] and Apache Spark [14]), and to maintain configuration (Apache Zookeeper [17]).

The HPCC System platform is an open-source data lake platform supporting different data work-
flow capabilities [296]. Its main components are: Enterprise Control Language—a data-oriented
declarative programming language; Thor—a bulk data processing cluster that cleans, standard-
izes, and indexes inbound data; and Roxie—a real-time API/Query cluster for querying data after
refinement by Thor [40]. It also uses a distributed file system for storing data in the cluster fol-
lowing a record-oriented approach [241]. The indexed data available in Thor clusters can be used
for low-latency querying by copying in Roxie clusters, which has been specifically designed for
much faster results, unlike the Thor Cluster with batch orientation [241, 296]. In addition, as in
Apache Hadoop, data are collected using different data acquisition frameworks such as Apache
Flume [6], whereas in HPCC Thor, simply a web service can be used for uploading data to Thor
clusters [267].

A number of big data storage solutions have also been proposed. For instance, Apache Ozone
[12] is a scalable, robust, distributed object store for big data applications. It is designed to handle
large amounts of data consistently, providing HTTP interfaces for integration with third-party
applications. Ozone is built on top of existing Hadoop components, such as Hadoop YARN, HDFS,
and Hadoop Key Management Server, and leverages their capabilities and integrations [262]. Ozone
is also compatible with the existing Hadoop ecosystem, such as MapReduce, Spark, Hive, and
Impala, and can be deployed alongside HDFS or as a standalone storage system. Apache Ozone in
comparison with HDFS has several benefits. For example, HDFS has a single namespace which
can become a major challenge for metadata operations. It does not support object-based protocols,
such as Simple Storage Service (S3) [351], which are commonly used in cloud-native applications
these days. Moreover, the fixed block size in HDFS can lead to inefficient storage space utilization
and network overhead when it comes to small files. Apache Ozone supports S3 protocol and imple-
ments Hadoop Compatible File System to cater different application needs and preferences. Ozone
also provides a rich set of features, such as security, replication, fault tolerance, and monitoring
[351]. The fault tolerance of Ozone is ensured through its self-healing properties that allow it to
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recover from sudden node failures, making the data highly available. In addition, it is capable of
supporting a hierarchical namespace, enabling the maintenance of data in multiple buckets and
directories [12].

Smart city services often need to analyze patterns of moving entities changing their location in
time (like vehicles or mobile phone users) or extent as well (like the spread of epidemic diseases)
[158]. Such time-dependent geometries are called moving objects [158], therefore, storage solutions
should be equipped with the opportunities to represent and query the dynamics of such data. Ilarri
et al. [180] categorize state-of-the-art support for moving objects into two categories: Moving Ob-
ject Databases (MODs) and data streams. However, they do emphasize that the boundary between
these two groups is not always clear. MODs enhance database technologies with representation
and management of moving objects [158, 180]. When compared to early spatio-temporal databases,
MODs also allow for tracking continuous changes [158]. In particular, research has been conducted
into models to track moving objects and corresponding query languages, handling uncertainty,
indexing ensuring a low update overhead and efficient retrieval of the objects is conducted, please
refer to [180] for details. Prominent examples of MODs that are in active development are Mobili-
tyDB [376], extending PostgreSQL and PostGIS with the moving object support, and SECONDO
[249], an extensible database management system supporting various data models.The development
of big data technologies has facilitated the storage and processing of traces of a large number of
moving objects. A number of efforts exist nowadays to work with spatial and spatio-temporal big
data [342]. Starting from equipping Apache Hadoop with support for spatial data, like data formats,
spatial index structures, spatial operations (SpatialHadoop [38]), and spatio-temporal capabilities
(ST-Hadoop [39]). To more recent proposals enriching Apache Spark [14] and distributed storage
products with spatial or spatio-temporal capabilities. For instance, Apache Sedona [13] extends
Apache Spark [14] and Apache Flink [5] with a set of tools for working with large-scale spatial
data in cluster computing environments. Beast [134] is a Spark-based solution for exploratory data
analysis on spatio-temporal data supporting a variety of data formats. GeoMesa [24] provides a set
of tools for large geospatial data analytics. For instance, it adds spatio-temporal indexing on top of
Accumulo, HBase[9], and Cassandra[4] databases to store spatial data types like points, lines, and
polygons. Stream processing is enabled there by having spatial semantics on top of Apache Kafka
[10].

Graph databases enable efficient storage and processing of graph data models, which is often
met in the smart city domain, e.g., road network. A graph data model handles varying granularity
and hierarchical differences in data well; and enables evolvability, meaning that the graph can be
extended to reflect changes in the application domain [168]. Examples of solutions available to
help store and work with graph data models in a largely distributed environment include Neo4j
Graph Data Platform [34] and the Apache Giraph [7] processing system. Such solutions enable
deploying graph data models on large clusters, if needed, and enable distributed graph processing
by partitioning the data and processes between the nodes.

Data Processing. Most of the smart city applications rely on processing a large amount of data
[339]. Depending on the application’s requirements, this processing can be roughly divided into
two groups: batch processing and stream processing.
Batch processing, often also called offline processing, takes a large amount of input data, runs

a job to process it, and produces the output [203]. It is clear that jobs in batch processing could
take a while. Therefore, they are often scheduled to run periodically, like once a day. If we consider
the big data landscape of methods and technologies, then the MapReduce programming model
[123], allowing processing of a large amount of data in a distributed manner, was the most popular
approach, implemented also in the Apache Hadoop framework [8]. A MapReduce job consists of
Map and Reduce tasks. First, the input data are split into portions that are processed by Map tasks
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in a parallel manner. Then, the results of Map tasks are used by the Reduce tasks to compute the
final output. It is also common for MapReduce jobs to be chained together into workflows so that
the output of one job becomes the input to the next job [203]. However, the Hadoop MapReduce
framework, e.g., does not have direct support for workflows, so the chaining occurs explicitly
via storing intermediate results in the file system. This has certain downsides, such as a waste of
storage space when intermediate results get replicated, redundancy of some programming code
in map tasks, and the inability to start subsequent tasks before the previous ones are completed
[203]. Dataflow engines have been developed that aim to solve these issues. They handle an entire
workflow as one job rather than breaking it up into independent subjobs. Examples include Apache
Flink [5], Apache Spark [14], and Apache Tez [16].
Stream processing, also often called near-real-time processing, processes events shortly after

they happen. Therefore, stream processing has lower delays. There are a number of cases, when
stream processing is required, such as anomaly detection, finding patterns, or simply streaming
analytics. Basic terminology and technologies required to get stream data to processing engines
were already presented in the previous Section 4.3. Here, we cover approaches for stream processing.
Generally, there are two ways to process stream data: one-at-a-time and micro-batching [203]. For
example, Apache Spark allows the use of a micro-batching approach [14]. In this approach, the
processing engine splits the input data into small micro-batches, processes them, and produces the
micro-batches of the results. The one-at-a-time approach is implemented by Apache Storm [15], for
example.

Smart city applications are complex constructs fueled by diverse kinds of data. Therefore, hybrid
approaches, combining both batch and stream processing, are often required. A number of archi-
tectural solutions to combine batch and stream processing have been suggested [121]. For instance,
the Lambda architecture incorporates layers for batch processing, a speed layer for computation on
recent data (real-time views), a serving layer which is a specialized distributed database allowing
doing queries for batch analysis results (batch views). The query result is composed of both batch
and real-time views [235]. Another approach is the Kappa architecture [212], which simplifies the
Lambda architecture by removing the batch layer. This architecture relies on the use of a log-based
system (e.g., Apache Kafka) able to retain all the data that may be reprocessed if needed. Then, we
need to deal only with one type of system and making changes means just running a new instance
of the job on the whole data, writing the results into a new table and redirecting the application to
read the results from this new table. The old job and old results table can be stopped and removed.
Liquid architecture [138] incorporates incremental processing, therefore reducing re-computation
from scratch. Davoudian and Liu [121] discuss these and some other data system architectures
(incorporating, e.g., Semantic Web technologies).

DataGovernance.Data governance refers to the overall management of the availability, usability,
integrity, and security of a platform’s data assets. In the context of data management, governance
covers aspects related to data access control, metadata, the data lifecycle, data usage, and regulation
compliance [52]. It involves defining and implementing policies, standards, and procedures to
ensure that the data are properly managed, compliant with regulations, e.g., the General Data
Protection Regulation, and protected throughout its lifecycle. Data governance sits on top of other
aspects of data management, i.e., acquisition, storage, processing, and analysis, and addresses the
above-mentioned challenges.

A well-defined data governance framework is critical to ensuring compliance with existing
data regulations and potential updates or modifications in real time [198]. A reliable governance
framework can also enable evidence-based auditing and granular reporting to the data controllers
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and data processors, especially in situations requiring legal examination. Additionally, data lifecycle
management offers several advantages, including:

—Enhanced Agility and Efficiency: By ensuring that useful, accurate, and relevant data are
readily available to recipients, data lifecycle management increases the agility and efficiency
of data handling.

—Robust Data Protection Infrastructure: A well-implemented data lifecycle management system
guarantees a strong data protection infrastructure, contributing to overall data security.

—Automation Feasibility:There is the potential to automate data management processes, leading
to significant savings in terms of human resources and time.

Once data are created at source, it goes through various stages during its lifetime. These stages
include collection, ingestion, storage, access, alteration, archival, and destruction [133]. Various
challenges exist when handling data governance at each of this stage in a smart city environment.
For example:

—Data Ownership and Sharing: Smart city platforms involve multiple stakeholders, including
government agencies, private companies, and citizens. Clarifying ownership and sharing
policies for data are crucial to avoid conflicts and ensure that data are shared in a transparent
and fair manner [143, 187].

—Mismatch Between Organizational Structures: This may lead to data silos, duplications
or lack of control as smart city platforms often involve multiple systems and data sources that
may not be integrated [187]. To resolve such issues, organizations must have robust
and standardized governance models across the entire data lifecycle, e.g., using the 4I
framework [118].

—Interoperability and Data Quality: Smart city platforms rely on high-quality data to make
informed decisions and enable intelligent automation. However, data quality can be affected
by factors such as data entry errors, duplication, and data inconsistency. As discussed in
Section 4.2, ensuring data quality can be challenging, particularly when the data are generated
from multiple sources and is in multiple formats [72].

—Data Access Management: Ensuring that data access policies are enforced consistently and
efficiently requires a comprehensive automated access management system that includes
authentication, authorization, and audit trails. This is challenging in large-scale smart city
platforms with multiple stakeholders, and smart solutions are needed to address the challenges,
e.g., by using an automated smart-contract driven framework [366].

The dynamic and distributed nature of modern smart city platforms emphasizes the necessity
of comprehensive data governance through the identification of each stage in the data lifecycle,
and appropriate application of relevant controls, policies, and regulations. Identifying tags and
metadata linked to each stage of the data lifecycle is also an essential requisite. This meticulous
identification and tagging process from administrators of smart city platforms (see Section 3.3)
will not only contribute to effective data management but will also ensure adherence to specific
regulations governing each phase of the data’s lifecycle [196]. Tools such as Apache Atlas19 or
DataHub20 provide frameworks to manage metadata and tags and enable enterprises to effectively
and efficiently meet their compliance obligations. As an example, some of the above lifecycle stages
can consist of, but are not limited to, the following tags:

19https://atlas.apache.org/
20https://datahubproject.io/
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Fig. 4. The data analytics pipeline and some associated challenges within the smart city context.

—Data Collection: source, timestamp, collection region, owner, data format, unit of measurement,
and description.

—Data Ingestion: whether the data are encrypted, anonymized and/or transformed, encryption
algorithm, and quality status.

—Data Storage: timestamp, cloud provider, retention policies, storage format, storage locations,
access point, and checksum.

—Data Access: duration or scope, user ID, role, access type, access, timestamp, and date of
modification.

—Data Deletion: deletion method, expiry date, destruction timestamp, retention policy, confir-
mation, and reporting.

Once these stages and associated tags are identified, an efficient management mechanism can be
developed for smart city platforms [281]. Policy engines, such as Apache Ranger,21 can be employed
to implement data lifecycle policies. Such engines and solutions should comprise the following
essential components:

—Policy Manager: Maintains a comprehensive list of data regulations and policies that a smart
city provider is required to comply with, when handling the user applications and data.

—Auditor: Records events occurring during the data lifecycle and maintains a track of these
events for auditing by internal or external third-party auditors.

—Policy Enforcer: Applies the policies and regulations stored in the policy manager to user data
stored or processed in the platform. Enforcers can be configured as plugins that run on top of
data processing or storage components.

By combining these three elements, a solid foundation for trustworthy data governance can be
established for smart city platforms.

4.4 Data Analysis
Data analysis is a key enabler when it comes to finding knowledge about how citizens and smart
city operations function and interact, and for discovering unknown patterns and potential for
optimization. Often, data, enabling the analysis, comes from the ICT infrastructure of the cities.
Larger cities, as well as wealthier communities, are teeming with ICT technologies. However,
diversity and inequality in sensing and communication infrastructures exist within and between
21https://ranger.apache.org/
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cities. These issues further complicate ordinary data analytics pipelines in the smart city context, see
Figure 4. For discussion purposes, we have organized the data analysis challenges in the context of
smart cities into four categories: Trustworthiness challenges bring issues of reliability, confidence,
and the truth of data analytics results; Technological challenges include tools and platforms enabling
the analysis of smart city big data streams. Methodological challenges include the development
of methods and algorithms to treat particular aspects of urban data, such as how heterogeneous
data can be fused for analysis. Finally, Ethical challenges explore issues coming from the rapid
equipment of the cities with the ICTs, like data privacy. However, we believe that this categorization
of challenges is also relevant to other application domains.

Trustworthiness Challenges. Data analysis requires research to satisfy certain validity criteria,
which, in turn, can be compromised by biases and challenges coming either from decisions/choices
made over the data processing pipeline or some circumstances over which the researcher does not
have control [256]. Table 7 provides comments for addressing trustworthiness challenges.

As it was discussed already in Section 4.1, data are not neutral and contains bias since there
are decisions involved on what, how, when, by whom, and for what purpose the data has been
measured/retrieved [200, 201]. When, e.g., social data are used for analysis, data platforms may
even have embedded functional and normative biases coming from the possibilities to interact
with the system and expectations of acceptable behavioural patterns, and so forth. [256]. Moreover,
some data collection methods may favor certain kinds of communities over others, e.g., the use
of mobile applications for reporting certain city issues, resulting in digital divide issues where
not all the communities are equally presented [252]. Therefore, the data itself becomes biased, i.e.,
contains “systematic distortion in the sampled data that compromises its representativeness” [256].
In addition, often, in smart cities, data used for analysis was originally generated for some other
purposes, like, e.g., usage of mobile phone data for identifying mobility patterns [350]. Therefore, a
clear understanding is needed of the problem at hand and the data to be selected for analysis, as
well as possible bias risks. One way to help in this direction is to support proper documentation of
the data source and dataset itself, clearly stating the purpose, phenomena, means, and limitations
of the data collection and subsequent use in the analysis. One example are datasheets, proposed by
Gebru et al. [149], accompanying each dataset and documenting its motivation, creation, intended
uses, and other relevant information.

Challenges also arise when moving the data through the data processing pipeline. For instance,
data cleaning, enrichment, and aggregation procedures may significantly affect the dataset content,
structure, or representation [256]. For example, decisions should be made on what to consider
as an outlier and how to treat missing data. Manual data annotation is also prone to errors and
subjectivity. Therefore, the quality of data should be assessed at each step [74].

The data analysis methodology should be adequate for the goals of the research. Moreover,
expertise and thoroughness are required in both method selection and results evaluation and
interpretation [256]. Algorithms, similarly to data, can be biased. For example, this may be due
to the fact that biased data or too little good quality data are used for their construction, or due
to design choices selected based on current or limited understanding of phenomena. Koene et al.
[205] highlight four potential sources of unfairness in algorithmic systems: biased values in design
(e.g., favoring one feature over another), biased training data, biased data (if the made algorithm
works with problematic data), and inappropriate implementation of an algorithmic system. Since
algorithms are becoming more and more integrated into human lives, appropriate measures must
be in place to ensure their fairness, trustworthiness, and impartiality. However, how to assess the
fairness of the algorithm is still an open research question [291, 378]. Research into discrimination-
aware ML and data mining has emerged to discover and prevent possible discrimination (“adversary
treatment of people based on belonging to some group rather than individual merits” [378]). For
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Table 7. Notes on Trustworthiness Challenges

Problem Comment

Data collection/selection — A clear understanding of the problem at hand and the data to be
selected for analysis, as well as possible bias risks, is needed.
— Understanding and minimizing the possible effects of the data
collection procedures (e.g., by whom and how the data were
collected, whether the data collection was available for users of
certain devices only, whether the data were collected during unusual
circumstances (e.g., large festival), or whether the way the data
collection procedure is organized affects the results (e.g., collecting
opinions on public devices)). Refer to Olteanu et al. [256] for a
deeper discussion of such issues for social data.
— Ensure that the sample is as representative as possible [147].
— Proper documentation of the data source and dataset is needed,
stating all the details, purpose, phenomena, means, and limitations
of data collection and subsequent use in the analysis. An example
instrument is datasheets [149].

Data pre-processing — Understanding of the techniques to be used, their goals, and
results.
— Documenting the procedures and decisions made at each step (so,
it is possible to trace back and forward and assess the made choices).
— Data quality assessment at each step [74].

Data analysis — Methodology should be adequate for the goals of the research;
expertise and thoroughness are required in method selection, its
proper implementation, results evaluation and interpretation [206,
256].
— Thorough documentation of the steps involved and decisions
made.
— Discrimination-aware ML [378].
— Algorithm fairness, transparency and accountability [205, 206].
— Explainable AI [224].

Evaluation, interpretation,
and results delivery

— Proper selection of metrics and their interpretation, critical
assessment [147, 201, 256].
— Proper visualization, interpretation, and explanation [99, 100, 201].

example, solutions have been proposed to prevent discrimination by either pre-processing the
training data, model post-processing, or model regularization [378]. Furthermore, transparency
and accountability are considered to be promising tools to achieve algorithmic fairness [205].

Efforts exist on different levels addressing particular algorithmic practices in legislation [205]. For
example, the Automated Decision Systems Task Force was established in New York City to develop
recommendations for the use and policy regarding automated decision systems helping agencies
and offices in urban decision-making [50]. Additionally, expert groups and initiatives have been
established to acknowledge the importance of dealing with ethical concerns of algorithmic systems.
For instance, the Ethics Guidelines for Trustworthy AI have been published by the High-Level
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Expert Group on AI, a panel established by the EU [25]. These guidelines present a comprehensive
framework with an emphasis on ethics and robustness, aiming to attain reliable and trustworthy AI
[25]. The Institute of Electrical and Electronics Engineers (IEEE) Global Initiative on Ethics of
Autonomous and Intelligent Systems [27] aims to support stakeholders involved in the development
of autonomous systems in the ethical implementation of intelligent technologies. This initiative
also works on the IEEE P70XX series of standards to put the ethical principles discussed by the
initiative into practical guidelines. For example, IEEE P7003 “Algorithmic Bias Considerations” aims
to provide a framework that helps developers to identify and mitigate biases in the outcomes of the
algorithmic system [206]. Working groups of the AI Subcommittee within ISO and International
Electrotechnical Commission Joint Technical Committee (ISO/IEC JTC 1/SC 42) are examining the
entire AI ecosystem, involving also aspects of AI trustworthiness [30].
Technological Challenges. A number of technological challenges and solutions to support

both batch and stream data analysis were already discussed in Section 4.3. Therefore, we refer the
reader to the Data Processing paragraphs of this section for details.
Methodological Challenges. A number of great surveys exist on the methods for urban data

analysis, like heterogeneous data source fusion, methods to treat data sparsity issues, data analysis,
and data visualization approaches [103, 244, 339, 369, 371, 372]. Therefore, we do not repeating such
works here and provide a brief summary in Table 8 with selected methods. However, obviously, the
actual landscape of methods used for the urban data analytics pipeline is much larger and readers
are advised to go to the original publications for details.

Instead, here we would like to discuss a few important aspects that are usually less discussed
in data surveys in the context of smart cities: knowledge transfer and adaptation to real-world
changes.

As we have discussed at the beginning of this section, cities (and even regions of cities) vary
in the data available. Therefore, due to unique data characteristics, scarcity or data insufficiency
issues, the knowledge gained from one urban place cannot be directly applied to another one.

Humans can recognize and apply relevant knowledge and skills from experience to learn new
tasks in new situations. For example, a person who can already play one musical instrument can
learn to play another one much faster than a person who has never played any instrument before
[353]. However, it is challenging to design a computer system able to apply the acquired knowledge
and skills to a new, not seen before, task. Moreover, traditional ML and data mining technologies
have the assumption that both training and future data come from the same input feature space and
have the same distributions [353]. However, this is often not the case in the real-world, as it might
be expensive, time-consuming, or difficult to obtain training data that matches the feature space
and distribution of the test data. For instance, an activity recognition system may be developed for
one person but used by another one with different sensors [353], or some sensing capabilities may
simply be unavailable in an urban space [369, 371]. For such real-world examples, it is essential to
utilize the already existing knowledge in new situations.

In urban computing, for instance, some knowledge could be received from one city and partially
used in a city that does not possess that much data. It is clear that we cannot directly transfer the
inference model learned based on the source city data, as the variables of interest in the target
city could differ in their availability and characteristics. However, the relations discovered in one
city could hold for the city of interest, and this information could be useful for the problem at
hand [371].

To achieve knowledge sharing between urban spaces, transfer learning methods can be utilized.
Transfer learning methodology transfers knowledge between domains [352, 353, 361, 372, 375].
Examples of implementing transfer learning in urban computing can be found for traffic and
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Table 8. Selected Approaches for Smart City Data Analytics Pipelines, Often Encountered in Related Work

Problem Examples of approaches Comment

Data cleaning
(missing data)

— Elimination
— Imputation (e.g., by utilizing historical data (time series
models, like ARMA, SARIMA), neighbors (e.g., inverse
distance weighting, kriging for spatial data), for spatio-
temporal models—collaborative filtering, and multi-view-
based learning) [371]

Missing data can be kept as well if the
method to be used can handle them.

Data cleaning
(noisy values)

Domain knowledge boundaries, outlier detection, smooth-
ing (Kalman filter, particle filter, and discrete wavelet trans-
formation) [371]

Sometimes can be treated as missing data
or with winsorizing. It could happen that
an “invalid” observation indicates anomaly
[102] or drift [88, 145].

Data
normalization

Min-max, Z-score, and decimal scaling [147]

Data
transformation

Linear, quadratic, and Box-Cox [147]

Data integration — Stage-based methods (different datasets at different
stages of data-mining task)
— Feature level-based methods (direct concatenation to be
used with regularization; feature learning with deep neur.
netw.)
— Semantic meaning-based methods (multi-view, similar-
ity, probabilistic dependency, and transfer learning-based)
[369, 371]

Zheng [369, 371] challenges the conventional
data fusion in urban computing big data do-
main and categorizes promising methods for
cross-domain data fusion.

Data sparsity Collaborative filtering, matrix factorization, tensor decom-
position, semisupervised learning, and transfer learning
[369, 371]

Data reduction — Data reduction (feature selection (filter, wrapper and
embedded), feature extraction/construction, PCA),
— Sample numerosity reduction
— Cardinality reduction (discretization) [147]

The idea is to get a reduced representation
of the original dataset.

Spatial
trajectories

— Trajectory pre-processing (noise filtering, segmentation,
compression, map-matching, stay point detection, trans-
formation if desired (e.g., to graph, matrix, and tensor))
[370, 371],
— Indexing/retrieval [370, 371],
— Analysis (pattern mining, classification, anomaly detec-
tion, uncertainty reduction, and privacy) [107, 190, 259,
370, 371]

Spatial trajectories data are often fused with
other kinds of data [152, 153, 259, 370]. Appli-
cation examples include transportation and
mobility patterns, public safety, and health
[259, 370, 371].

Data analytics
(supervised
learning)

Support vector machines (Class, Regr)
K-nearest neighbor (Class, Regr)
Random forests (Class, Regr)
Decision trees (Class, Regr)
Linear regression (Regr)
Bayesian classifier (Class)
Linear discriminant analysis (Class)
Learning vector quantization (Class) [159, 339]

Application cases include blackout predic-
tion for smart grid applications (SVM), hu-
man motion classification (Multi-class SVM),
power management system (K-nearest neigh-
bor), street lighting (SVM and Random
Forests), air quality (Random Forests—linear
regression), and smart grid system (Decision
Trees) [159].

Data analytics
(unsupervised
learning)

k-means (Clust)
DBSCAN (Clust)
OPTICS (Clust) [159, 339]

Application cases include load profiles of
smart meters (k-means), household power
consumption from smart meters (DBSCAN)
[159].

Continued

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 5, Article 88. Publication date: November 2024.



88:38 E. Gilman et al.

Table 8. Continued

Problem Examples of approaches Comment

Data analytics
(reinforcement
learning)

Q-Learning [159] Application example is an adaptive traffic
signal control (Q-Learning) [159].

Deep learning Recurrent Neural Networks (strong temporal dependen-
cies, NLP, and speech recognition)
Convolutional Neural Networks (strong spatial dependen-
cies, image, video, speech recognition, and NLP)
Deep Belief Network (unsupervised feature learning)
Stacked Autoencoder Network (unsupervised feature
learning)
Restricted Boltzmann Machine (feature learning, collabo-
rative filtering, and dimensionality reduction) [103, 159,
339]

Application cases include traffic prediction,
healthcare analysis, and air quality pre-
diction (RNN) [103], public safety, trans-
portation (CNN) [103, 159], transportation,
healthcare (DBN) [103], traffic predic-
tion (SAE) [103], transportation, healthcare
(RBM) [159]. Hybrid approaches are used as
well [103].

Visualization Some examples from [99, 100, 126, 159]:
— spatial analysis (heatmap, dot map, and flow map)
— temporal analysis (timeline, streamgraph)
— relationships exploration (parallel coordinate plot)
— hierarchical analysis (tree diagram, sunburst chart)
— indicators monitoring (icon, gauge chart)
— distribution analysis (box plot, density plot, and his-
togram)

Selection of the technique depends on the ob-
jective of visualization and the phenomenon
to be visualized and should be done thought-
fully [201].

Production model
monitoring

— Data drift (various data validation techniques, starting
from schema definitions/validations to continuous moni-
toring and logging of statistical properties [88])
— Concept drift (active/passive methods) [145, 240]

Monitoring model performance helps to ad-
dress challenges of the real-world and re-
spond accordingly by initiating retraining or
full update of the model.

Based on related work review [88, 99, 100, 103, 107, 126, 145, 147, 159, 190, 244, 259, 339, 369–372]. CNN, convolutional
neural networks; DBN, deep belief network; NLP, natural language processing. PCA, principal component analysis; RBM,
restricted Boltzmann machine; RNN, recurrent neural network; SAE, stacked autoencoder; SVM, support vector machine.

human mobility prediction [189, 191], points of interest recommendation [127], and for optimizing
locations [177, 223].

Pan and Yang [260] and Zheng et al. [372] provide a great introduction to the topic and taxonomy
of transfer learning methods in general. When discussing what could be transferred in urban
computing scenarios, Yang et al. [361] suggest three general categories: cross-modality transfer,
cross-region/cross-city transfer, and cross-application transfer. Cross-modality transfer here refers
to the situation when some data modality is missing from the region of interest, however, it is
present in another one. Therefore, it would be useful if the information about the modality of
interest could be inferred and used to improve the performance of the target application. Cross-
region/cross-city transfer refers to the cases when the knowledge from data-rich cities is applied
for the same or similar application in another city. Cross-application transfer refers to the cases
when the knowledge is retrieved from some existing related application for which the data are
available [361].

The research community suggests different methods to facilitate knowledge transfer in urban
computing [361, 371, 372]. However, there are also certain challenges. First, urban computing has
some unique characteristics, such as heterogeneous data modalities and spatio-temporal patterns
and relationships [352]. Also, Yang et al. [361] emphasize the challenges of finding the appropriate
source domain, application-specific linking of the source and target domains requiring expertise
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with different methods, data privacy-preserving issues becomingmore common in urban computing,
and assessing transferability—that is quantitatively measuring the possible gain from applying
transfer learning methods for particular resource and target domains.

Cities are also living constructs that constantly change, making previously gained knowledge
obsolete. For example, developed MLmodels can decrease their performance due to evolved changes
in data that occur for different reasons, e.g., because of changes in the physical environment where
the sensor was deployed. This implies that systems developed for smart cities should be able to
detect the changes and adapt themselves to provide adequate performance. Such issues are related
to adaptive learning and concept drift adaptation [145, 225, 240]. Here, the concept drift refers
to a phenomenon when the data distribution changes over time in a dynamically changing and
non-stationary environment; and adaptive learning means updating the ML models on the fly in
response to concept drift [145]. A large number of approaches have been suggested to deal with
concept drift [225, 240]. However, there are still a number of challenges. For instance, when we
deal with large data systems relying on a number of data streams, it could be a case that a drift
could occur across multiple data streams [365]. One more challenge is to deal with multiple types
of concept drift that can occur in the real-world [105]. Distributed ML, like federated learning,
poses certain challenges for handling concept drift [95]. Concept drift detection research is not well
presented for non-traditional data streams, such as when the data are represented as a graph [265].
Finally, there is still not much research on concept drift within unsupervised or semi-supervised
settings [145, 225].

Ethical Challenges. It is clear that privacy is one of the major concerns in the smart city context
[96, 200]. When we talk about data processing, one approach to preserve privacy is to reduce the
amount of data to be transmitted and be able to carry out data analyzes on the nodes with the data
themselves. For example, edge computing suggests the analysis of the data in proximity to where
the data are collected, therefore supporting privacy [197, 270]. There are also ML approaches that
allow learning the model in a privacy-preserving way, for example, federated ML [360]. However,
there are certain challenges as well when we deal with distributed ML and edge intelligence, like
data scarcity and consistency on edge devices and slow performance of collaborative learning tasks
[357]. Here we would like to discuss ethical challenges beyond surveying methods and technologies
for distributed data analysis; for such information, an interested reader could refer to, e.g., [344, 357,
360]. Therefore, we explore data-related ethical concerns in Section 4.5, data privacy in particular
in Section 4.6, and measures to secure data in Section 4.7.

4.5 Ethics
At face value, the stated goals of smart cities—improved quality of life, ecological sustainability,
and so forth—are highly ethical ones. However, concerns have been raised that these goals may be
pursued at the cost of harmful side effects, and/or in such a way that some groups are excluded
from enjoying the benefits. As noted above, there is no clear consensus on what exactly constitutes
a smart city, and as a result of this, compiling a comprehensive and systematic presentation
of the ethics of smart cities is a considerable challenge. However, in recent years there have
been several attempts to conceptualize and categorize the various ethical concerns relevant to
smart cities.

Calvo [94] identifies hyperconnectivity, algorithmization and datafication as key aspects of urban
digital society, along with eight major ethical implications of these aspects: intrusion of privacy,
social and economic exclusion, misuse of data, bias in decision-making algorithms, obsolescence
of human skills and labor, dissolution of responsibility for decisions, objectification of human
beings, and the imposition of technology on people. Goodman [154] names three challenges to
the democratic governance of smart cities: privatization of functions (e.g., planning) and assets
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(e.g., data) traditionally held to belong to the public sector, the conception of cities as platforms
offering service providers access to public data, and a loss of autonomy through e.g., technology
failure or vendor lock-in. Based on a review of the literature on smart city ethics, Ziosi et al. [377]
establish four dimensions that are invariant across multiple smart city definitions and give rise to
ethical concerns; these are the network infrastructure, post-political governance, social inclusion,
and sustainability.

In a synthesis of the above three articles, focusing specifically on ethical concerns related to the
collection and use of data in smart cities, two major themes emerge:

—Techno-Centric vs Human-Centric Smart Cities: adopting a techno-centric and techno-optimistic
approach to smart city building can lead to emphasizing technological capabilities over human
needs and optimizing relatively easy-to-quantify metrics such as economic efficiency over
more elusive ones such as livability.

—Public vs Private Control of Resources and Processes: as decisions related to city planning and
governance are increasingly determined by data and algorithms, power over these decisions
is increasingly being transferred from elected representatives and public authorities to private
businesses that control the data and provide the algorithms.

From the perspective of data, perhaps the most obvious ethical issue involving smart cities is
privacy. Regardless of the definition, the collection and processing of digital data in large quantities
is one of the characteristic features of a smart city, and a significant portion of this will be the
personal data of the citizens. As pointed out by König [209], collecting ever more data are in
contradiction with the principle of data minimization, and even if the data are rendered impersonal
through anonymization, it may still become a threat to individuals’ informational autonomy through
re-identification or re-purposing. A smart city is thus effectively a vast surveillance system with
no feasible informed consent or opt-out mechanism available, and while the intention of the
surveillance may be benign, the data flows involved may be so complex that the technical and legal
safeguards in place are not enough to guarantee the security and privacy of the data. If some of
the data are controlled by companies, these may have an interest in exploiting it commercially,
exacerbating the risk to privacy; by partnering with such companies, the city is effectively acting
as an enabler for what Zuboff [380] has termed surveillance capitalism.

An archetypal example of surveillance technology is the surveillance camera. Combined with
modern AI techniques, the footage captured by such a camera is no longer merely something to be
viewed by a human authority after some kind of incident has occurred, but acts as input data to
ML algorithms for purposes such as facial recognition. Facial Recognition Technology (FRT)
has a variety of security-related applications that can be argued to enhance safety in the city, but
their civil rights implications cannot be ignored; in addition to the privacy issues, facial recognition
systems have been observed to be prone to racial bias where people belonging to certain groups
are more likely to be misidentified than others [98], leading to concerns about the social justice
impact of using biased algorithms for policing. Similar concerns have been raised about predictive
policing systems, although there have been few independent empirical evaluations of the fairness of
such systems and these have not produced clear evidence linking them to increased discrimination
[59]. In contrast, the use of FRT in policing has been found to contribute to greater racial disparity
in arrests, although this cannot be simply attributed to algorithmic bias as the sole explanatory
factor [192].

Altogether, seven different types of harmful bias (or “sources of downstream harm”) in ML are
identified in [328]: historical, representation, measurement, aggregation, learning, evaluation and
deployment bias. If these are not identified and eliminated, increased reliance on data and algorithms
in smart city decision-making will result in decisions whose fairness is questionable. There is an
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issue with the transparency of the decisions as well, since the explainability of some popular ML
techniques is poor [80, 91] and the implementationsmay be guarded as trade secrets by their vendors,
making it difficult, if not impossible, to subject them to thorough external auditing. Furthermore,
there are accountability implications if the transition from traditional to smart city means that
governance decisions are increasingly determined by data through opaque computational processes,
since there is then a risk that responsibility for the decisions will become detached from traditional
democratic processes.

Ziosi et al. [377] use the term “post-political” to describe the increasing role of private organiza-
tions and automated decision-making in smart city governance. Besides the issues identified above,
another problematic aspect of this is that underneath the ostensible objectivity and rationality of
post-political governance through data and algorithms, the selection and prioritization of optimiza-
tion targets is inherently political, since these reflect the values of the smart city. Goodman [154]
captures this by conceptualizing smart cities as digital platforms where the pursuit of efficiency may
sideline other important values. Furthermore, they point out that decisions regarding what data to
collect and how are also political, and if some groups of citizens are not adequately represented by
the data, the members of such groups are at risk of being excluded from the benefits of the smart
city. The people most likely to be excluded are those who are affected by existing digital divides
and, therefore, are already at a disadvantage [94, 154, 377].

Various authors have criticized the focus on technology and efficiency in smart cities and have
advocated a more human-centric approach. Biloria [83] puts this idea succinctly by introduc-
ing the concept of an empathic city. Human-centric models for smart city data governance are
discussed in [209] and [264]. The MyData Global Network is advocating more human-centric
governance of personal data in general; its guiding principles are codified in the MyData Dec-
laration [273], which calls for a transition from formal rights to actionable ones, from data pro-
tection to data empowerment, and from closed ecosystems to open ones. Several examples of
cities pioneering initiatives aligned with the MyData principles are given by Lähteenoja and
Sepp [215].

In the literature, the concept of a smart city is frequently paired with that of a smart citizen. In
terms of having an established definition, the latter is even more elusive than the former, but insofar
as a smart city is one that emphasizes human values and needs over technological capabilities, a key
aspect of smart citizenship is empowerment. From a data perspective, a human-centric smart city is
thus one that not merely protects the data of its citizens but empowers them to use data to advance
their personal values and goals and to participate in the definition of new data-based services.
Technological innovation is a necessary enabler for this, but it is also necessary to ensure that the
citizens have a sufficient level of data literacy to take advantage of the opportunities presented
by smart city technology, lest this become another divide where some people are excluded from
enjoying the benefits of the smart city. Proposed solutions are scarce in the literature, but the Urban
Data School initiative described in [355] is aimed at this exact purpose in the context of the Milton
Keynes smart city project in the UK.

Table 9 presents a summary of the ethical considerations involved in addressing the data chal-
lenges of smart cities. Three relevant smart city aspects are identified here: smart city goals, referring
to the determination of the objectives and underlying values of the smart city; smart city governance,
referring to how decisions are made in the planning and operation of the smart city; and smart
city life, referring to how the everyday life of the individual citizen is transformed in the smart
city. Associated with each of these aspects is an opportunity for betterment, and associated with
each opportunity are risks arising from the central dichotomies identified above, techno-centric vs
human-centric and public vs private.
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Table 9. Ethical Opportunities and Risks Related to Three Smart City Aspects

Aspect Opportunity Techno-centric risk Privatization risk

Smart city
goals

Sustainability goals and
human values as
principal drivers

Emphasizing “rational”
values, overlooking less
readily quantifiable ones

Emphasizing business
prospects of private actors,
overlooking public good

Smart city
gover-
nance

Better-informed
decisions through
judicious use of data and
software systems

Fairness/transparency/
accountability issues in
algorithmic
decision-making

Transfer of political power
to entities not subject to
democratic control

Smart city
life

Empowerment of
citizens to co-create and
enjoy quality-of-life
enhancements

Exclusion of subsets of
the population through
digital divides

Deterioration of privacy
through commercial
exploitation of personal
data

4.6 Data Privacy
New and emerging technologies are promoting the development of an ecosystem for connected
places within smart cities, but at the expense of a rapidly widening threat landscape. Attacks against
smart infrastructure and privacy have made it clear in recent years that the demands of the smart
city transformation, including data collection and processing needs, face significant multi-level
governance requirements, such as the need for more transparency, accountability, and security and
privacy [171, 349]. Prior work has focused on establishing comprehensive threat modeling tools
and conceptual frameworks to better protect smart cities, as well as describing threat actors, their
tactics, techniques, and procedures (TTPs), and how to mitigate attacks against connected
things and places [227].
Smart City Threat Modeling. Threat modeling is a method for systematically identifying

various types of threat actors, attack vectors, and mitigation actions against malicious activities that
may harm applications, networks, or other computer systems [305]. Smart cities have unique cyber
risks that span many vertical sectors and industries such as energy, transportation, healthcare,
education, and public services. Particularly, the increased interconnection of devices and systems
generates new challenges for city security management that go beyond conventional security
issues. The four innovations listed below are expected to have, or already have, a significant impact
on cyber risks in connected cities [261]: (1) convergence of IT and Operational Technology, (2)
the interoperability of new and old systems, (3) the integration and fusion of services, and (4) the
proliferation of AI and automation [195].

Against this backdrop, more research on smart city threat modeling is now available, with the
goal of developing approaches and tools for better assessing system vulnerability and adopting
cyber-security analytics [106, 115, 144, 194, 356, 379]. Similarly, municipal, regional, and national
governments are becoming more proactive in their legislative approaches to smart city threat
modeling, allowing for a more focused and concentrated approach to smart and connected city
cyber security [171, 227]. An indicative example of this trend is the threat model for future smart
cities developed by the European Union Agency for Network and Information Security
(ENISA) covering the healthcare and public transport sectors [136, 220]. Similar efforts have been
noticed in the respective national cyber-defense authorities across the globe [113, 171, 288]. The
subsections below introduce the high-level components of the threat modeling approaches for
smart cities.
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Threat Actors. Cyber Threat Actors (CTA) are responsible for a considerable number of
threats to smart cities [219]. These are groups or individuals who engage in malicious activities that
intentionally aim to harm infrastructure for monetary of other gains. CTA groups are frequently
divided into the following categories according to their underlying motives, goals, and known
affiliations: (1) cybercriminals, (2) insiders, (3) nation-states, (4) hacktivists, (5) terrorist organiza-
tions, and (6) script kiddies [298]. Among these threat actors, nation-state actors, also known as
Advanced Persistent Threats (APTs), are regarded as the most dangerous and stealthy operators
[219]. The MITRE corporation, which curates one of the most widely accessible knowledge bases
of adversary tactics and techniques, currently lists about 135 APT groups and associates (i.e., threat
groups, activity groups, and threat actors) that share similar methodologies (i.e., TTPs) and operate
in different geographical regions [242].
Attack Vectors. While the classification of threat actors can help analysts determine the mag-

nitude of a threat, smart city threat modeling also requires prior knowledge vis a vis the initial
origin (i.e., tail) of the attack vectors. Namely, the approach developed by ENISA considers two
broad conditions that pivot around the perceived intentionality of a threat [220]. These are distin-
guished between threats from intentional attacks and threats from accidents. In the context of public
transport systems, intentional attacks can include the following: (1) eavesdropping and sniffing,
(2) theft, (3) tampering and alteration, (4) unauthorized use and access, (5) distributed denial of
service, (6) loss of reputation, and (7) ransomware. In addition to the threats that might be caused
by certain individuals or groups, there is also the possibility of threats being caused by accidents,
including: (1) hardware failure and/or malfunctioning, (2) operator or user error, (3) end of support
or obsolescence, (4) electrical and frequency disturbance or interruption, (5) acts of nature, and
(6) environmental incidents. Evidently, in the context of smart and connected people, places, and
things, attacks against data (intentional or accidental) are the most common security threat that
can inevitably erode privacy.

Data Privacy Models. Data privacy and confidentiality in the smart city are a diverse problem
due to the usage of data aggregation to form links, which makes anonymity difficult to accomplish
[349]. In addition to the attack vectors outlined above, research in recent years has concentrated on
numerous risks against data privacy. Cyber threats against privacy often take aim at: (1) personally
identifiable information comprised of personal attributes such as Social Security Numbers that
uniquely identify a person; and (2) quasi-identifying attributes comprised of a combination of
attributes, such as name, age, and address that, when combined with external information, may be
used to re-identify all or part of the respondents to whom the information pertains. In particular,
prior works have looked at various types of information disclosure that can lead to a privacy breach
(i.e., to reidentification) [368].

— Identity disclosure happens when an adversary achieves the correct mapping of microdata (i.e.,
individual population unit records files) from a database to an existing real-life entity [229].

—Attribute disclosure occurs when the adversary is able to deduce more accurately any additional
features of a person from the information accessible in the disclosed data [331].

— Inferential disclosure occurs when the attacker can infer or more accurately determine the
confidential value of a variable in a dataset by comparing the statistical properties of the
released data to the information available [304].

—Social link disclosure occurs when an attacker can re-identify a hidden relationship between
two users that may lead to identity, attribute or inferential disclosure [368].

—Affiliation link disclosure happens when the adversary can determine that a person is affiliated
to a specific group, resulting in a higher risk that may lead to identity, attribute or social link
disclosure [368].
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Fig. 5. Comprehensive overview of smart city cybersecurity challenges and threat landscape. DDOS,
distributed denial of service; LLM, large language model.

With the advent of data-driven sectors in smart cities (e.g., healthcare, transport, and gover-
nance), protecting data privacy without compromising the utility of the collected data has become
a conundrum. A number of privacy-preserving algorithms and models have been proposed to
address the various information disclosure risks, including k-anonymity [331], l-diversity [229], t-
closeness [221], and differential privacy [130]. Similarly, solutions exist toward achieving trajectory
privacy [107, 190]. These algorithms leverage anonymization methods including generalization,
suppression, anatomization, bucketization, permutation, and perturbation [329]. Figure 5 presents
an overview of the cybersecurity challenges, threat landscape, and privacy issues encountered by
smart cities.

4.7 Data Security
Data security measures include protecting and securing data from unauthorized access or usage
at various stages. Generally, the data in a smart city platform may go through three stages. The
data can be at rest i.e., stored in the storage medium. The data can also be in the state of transit
or motion during internal or external communication. Finally, the data may be in the state of
processing, which is when the data are in CPUs, GPUs, or other processing units. Data security
implies protecting the data in each of these states [196].

A smart city infrastructure must aim to protect the data stored or processed in the platform
through appropriate procedures and encryption methodologies. Similarly, to ensure privacy and
protection for data-in-motion, the communications between users and services must also be
encrypted. Existing security standards are generally strong and resistant to most attacks, and
a significant portion of vulnerabilities in platforms arise from misconfigured devices or lack of
implementation of the correct security protocols [313].

Another challenge is the decentralized nature of some smart city ecosystems where numerous
devices and applications owned by multiple entities or stakeholders are onboarded to the ecosystem.
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The decentralization can create vulnerabilities, as each entity may have different security protocols
and risk profiles, potentially leading to weak links in the overall security chain [67]. Blockchains
have been used to develop security frameworks to enable secure data communication in smart cities
[85]. This is due to various key characteristics of blockchain, or Distributed Ledger Technologies in
general, such as immutability, audit trails, resilient consensus mechanisms, and cryptography.

Projects such as Alvarium [61] go beyond by building Data Confidence Fabrics (DCFs) that
provide measurable confidence scores for data moving from applications and devices. A DCF
collects various trust insertion technologies into a single platform and binds them together through
standardized APIs and an open framework. Example technologies and tools include the silicon-based
Root of Trust [282], open authentication and data ingestion APIs, metadata handling, immutable
storage and DLTs [85].

Authentication Authorization and Accounting frameworks are also used to control and track
access to resources within a network. For example, SAML [178] or OAuth [218] standards can be
used to enable single sign on for smart city networks or user interfaces. However, these solutions
face several limitations, especially if applied in isolation. For example:

—Complex implementations that may not be feasible or scalable in distributed smart city
environments [311].

—Limited access control features once the users are authorized [327].
—Limited scope with a focus on APIs and lack of support for other security aspects, e.g., data
protection [139].

Therefore, to ensure data protection in smart city platforms, it is essential to consider and apply
appropriate and comprehensive security measures at each data stage, as discussed below.

4.7.1 Securing Data-in-Transit. Applications running in a smart city platform may interact with
other internal system components or user applications running inside the platform, as well as other
applications external to the platform. While both these communication types may have varying
security requirements, it is essential to implement robust security measures for both. To secure data
in transit, it is recommended to use strong and stable cryptographic protocols such as Transport
Layer Security (TLS). TLS allows various cipher suites for combining a set of different encryption
schemes, key exchange mechanisms, and authentication choices. TLS can also encrypt the data
independent of the application-layer protocol being used, making it flexible, reliable, and widely
popular [286].
Encryption. Encryption schemes are generally divided into symmetric and asymmetric cryp-

tography. In a symmetric key algorithm, the same key is used for the encryption and decryption of
data. Algorithms for symmetric encryption are generally lightweight and fast, but they require pre-
sharing the key with all parties involved in the transaction. A prominent example of a symmetric
key algorithm is the Advanced Encryption Standard (AES) [277]. An asymmetric encryption
scheme uses a pair of public–private keys to protect messages between two parties, where the
keys are shared using a secure key exchange protocol. Asymmetric algorithms are slower with
equivalent security levels and require larger keys. Examples of asymmetric key algorithms include
RSA and ECC [68].

In both categories of encryption schemes, the fundamental strength of secure, key-based en-
cryption algorithms is the computational difficulty involved in recovering a plaintext from the
ciphertext without the key. A stronger encryption is more difficult to attack but may also be more
compute intensive. A smart city platform can select a scheme based on the resource availabil-
ity and the sensitivity of the data in transit. While selecting a lightweight algorithm, a smart
city platform can rely on the lightweight cryptography project by the National Institute of
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Standards and Technology that standardizes cryptography algorithms for resource-constrained
devices [230].

While encryption algorithms are generally secure, their implementations can be vulnerable
to side-channel attacks, deliberate or accidental backdoors, and key exchange in asymmetric
cryptography. Homomorphic encryption is an emerging field, which allows computations on
encrypted data without decryption. However, efficiency and practicality remain a challenge in this
field [234]. Legal and regulatory compliance also require further research to design algorithms that
can balance privacy and security [295].

Certificate Authorities (CAs). An alternative to individually sharing key pairs between entities
for above-mentioned encryption mechanisms is the use of Public Key Infrastructures (PKIs)
and CAs. A CA is a trusted third-party organization that issues and manages digital certificates
required for secure communication and authentication. The digital certificates contain public keys
and other information about the identity of the entity that holds the corresponding private key.

This centralized management of key pairs improves security, scalability and simplifies the
management process, e.g., the revocation of all user certificates can be accomplished by modifying
the CA. Drawbacks of using certificates may include the initial deployment cost of the PKI and
complex configurations. However, given the potential benefits to the higher level of security, a PKI
is recommended for smart city platforms for identity verification and encrypted communication.
A single point of failure is another drawback due to the centralized nature of the PKIs. Highly
available [51] or decentralized [359] CAs can be implemented that achieve the above-mentioned
benefits while removing the single point of failure.
Keystores. A keystore is a local storage location in a device for cryptographic keys, digital

certificates, and other sensitive information used for encryption and authentication. A software-
based keystore is generally a central repository on a device, that securely stores keys and sensitive
information of various applications running on the device. Hardware rooted keystores are a special
type of stores that are implemented in hardware, such as a smartcard or a trusted platform module,
instead of software. This provides a higher level of security, as the cryptographic keys are stored
in a tamper-resistant hardware device [199]. Furthermore, the keys are isolated from the main
operating system and other software, reducing the attack surface, and making it more difficult for
attackers to access the keys. Both software and hardware based keystores offer a secure way to
manage and store private keys that are used by different communication channels.

It is important to note that some keystore implementations or libraries may have vulnerabilities
or weak security measures, prone to brute force attacks [140]. Therefore, when choosing a software-
based keystore, compliant keystores must be selected from reputable and trustworthy organizations.
Another open challenge is the scalability of keystores in smart cities with large numbers of devices
and entities, especially where computing resources are limited, e.g., at the Edge. As the number of
keys and the volume of data increases, managing keys in a keystore can become more complex
and may require advanced infrastructure. Hardware keystores, while safer than software, can still
be vulnerable to supply chain attacks, where malicious actors compromise the hardware during
manufacturing or distribution. Secure onboarding using the DCFs mentioned above [61] can be
investigated to address such vulnerabilities.

Virtual Private Networks (VPNs). VPNs provide an additional layer of security to communi-
cation by encrypting the data in transit and using secure tunnels to connect devices and entities.
A VPN establishes a secure private network connection, often referred to as a tunnel, over an
unsecured channel like the Internet. This allows endpoints to communicate securely where the
encrypted data are unintelligible to malicious entities or eavesdroppers. From the perspective
of the end user, this encryption process is seamless, enabling them to carry out tasks as though
they were operating on a local network. Two common tunneling protocols used for VPNs are the
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Point-to-Point Tunneling Protocol (PPTP) and the Layer 2 Tunneling Protocol (L2TP). PPTP
is simple and fast, but it may not be as secure as other protocols. L2TP provides stronger security
than PPTP, but it is also slower and requires more processing power. Smart city platforms can
employ different VPN tunneling protocols based on the infrastructure capabilities and application
requirements [186]. Managing the overhead caused by L2TP and VPNs, in general, is another open
challenge [65], especially in resource-constrained smart city environments.

4.7.2 Securing Data-at-Rest. Encrypting communications through TLS protects the data-in-
motion. However, the data stored and resting in storage devices remains susceptible to security
breaches or attacks. Firewalls and port blockers provide some protection to the stored data against
attacks by restricting access. However, completely securing the data-at-rest can be achieved by
encrypting the data-at-rest, which provides an additional layer of defense.
Transparent Encryption Zones. Transparent Encryption Zones in storage systems, such as

HDFS [306], are a feature that automatically encrypts and decrypts data as it is written to and
read from storage disks in a device. When set up, special directories are created by the system,
called encryption zones. Write operations to these zones are encrypted and read operations from
the zones are decrypted. Encryption and decryption occur transparently for end-users and do not
require modifications to their applications [263]. Moreover, due to the end-to-end encryption, only
the client possesses the capability to encrypt and decrypt the data. The storage system or any
external application never gets access to decrypted data. Hence, data stored in encryption zones is
secure against insider attacks as well.

For encrypting data-at-rest, the commonly used mechanism is AES [277]. However, other mech-
anisms, such as homomorphic encryption, can be used to achieve more advanced functionality and
further improve security and privacy [53]. As storing data in encryption zones requires more com-
putational cost, data owners may consider the sensitivity of information when deciding between
plain text storage or encryption zones [210]. Meeting regulatory and compliance requirements can
be challenging with transparent encryption, as auditors may require more fine-grained control and
visibility into data access and usage, prompting research into novel encryption mechanisms.

Centralized Encryption Service. To enable a system-wide security feature for all applications
running in the platform, an encryption service can be deployed that operates in the same way as
the encryption zones in the storage system [358]. This centralized encryption service is required to
provide fundamental security features such as key generation and management, data signing and
verification, and various symmetric or asymmetric encryption algorithms. HTTP or REST APIs
may be developed and provided to clients for accessing various security functions as a service and
interacting with encrypted data. [196].

An example usage of such a service will include an application initiating a request to the
encryption service, asking it to encrypt the data before storing it. To decrypt the data later, the
application will send another request to the service, seeking the decryption of the previously
encrypted data. The key management component of the encryption service, built with tools like
HashiCorp Vault,22 will be responsible for storing and handling all the keys involved in these
encryption and decryption processes. While such a centralized encryption service has the potential
to provide data-at-rest encryption for all services on the platform, it is essential to consider and
analyze the associated overhead costs and time required for encrypting and decrypting data in
comparison to other performance indicators. For example, a real-time application where latency is
of critical importance may suffer from system-wide data-at-rest encryption, and the constraints
may need to be relaxed for such an application.

22https://www.vaultproject.io/
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4.7.3 Securing Data-in-Processing. Encrypted data-at-rest needs to be decrypted before a pro-
cessor can successfully and meaningfully process it. This creates a potential attack opportunity
for a malicious entity that may have gained access to the processor, memory, or kernel. Trusted
Execution Environments (TEEs) can be used to protect the data in such scenarios. A TEE is
a tamper-resistant processing environment that runs on a separation kernel. It guarantees the
authenticity of the executed code, the integrity of the runtime states (e.g., CPU registers, memory,
and sensitive I/O), and the confidentiality of its code, data, and runtime states stored in a persistent
memory [294].

The TEE creates an isolated environment that resists against all software attacks as well as the
physical attacks performed on the main memory of the system. Attacks performed by exploiting
backdoor security flaws are not possible. Because TEE is a relatively new technology, it is expensive
and limited in availability [340]. TEEs also require further research into the performance overhead,
especially in terms of context switching between secure and non-secure environments. The TEE
landscape also lacks uniform standards, as different hardware vendors implement TEEs with varying
features and interfaces, raising challenges for software developers. As such, TEEs may only be
used for extremely confidential or sensitive data and in environments with very low or zero trust.
The security methods and solutions presented in previous sections will suffice for most smart city
platforms and use cases.

5 Conclusions
This review article has covered multiple and sometimes overlapping aspects related to smart cities,
starting from the understanding of what a smart city is, how it can be measured, and what kind of
architectures and platforms could technically facilitate it. It is clear that the concept of smart cities
continues to evolve, changing from a very technology-oriented one to a more solid and united
concept, entailing societal needs and human potential. It is also interesting to see how the concept
gradually combines the views from different research disciplines. Further research is needed to
understand how to measure the smartness of a city since it is not so simple. Indicators, if any, should
be considered carefully, namely what kind, how to measure and assess the quality of measurements,
and how to interpret them. Moreover, cities should be evaluated individually, considering their
own cultural and historical circumstances, development goals, and progress.

A number of architectures have been proposed to equip cities with smart services. Obviously,
every such solution should rely on the city’s own facilities, requirements, and goals. It is clear that
there is a strong need for standardized reference architectures that could guide the development of
smart city solutions. Standardization bodies have worked on such proposals, and they consider
many pitfalls, like suggesting loosely coupled architectures, multi-tenancy, and security. Such
reference architectures are highly abstract, and that makes them technology-neutral. In addition,
current progress in software development has provided a great number of tools and instruments
for the implementation of basic communication pipelines. However, the key challenge is still in
data. How the data can be used securely, how the data can be shared, how it can be ensured that
the data are used according to the claimed specifications, how to ensure the data quality, how to
ensure proper data representations, and there are many more questions. These issues are easy to
address when dealing with an individual single system. However, it is challenging to achieve this
kind of proper data pipeline in a large-scale ecosystem comprising of a number of data providers,
data processors, and services.

This survey delved deeply into the data issues associatedwith smart cities.We started by exploring
the data availability aspects. Here, the topics and development actions toward Open data, citizen-
contributed data, as well as commercial data and private–public partnership were studied. Each
category has certain challenges. For example, ensuring privacy, guaranteeing quality and usability,
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and data lifecycle management are some general open questions. In addition, understanding that
data could have a bias is a must, e.g., if citizen-contributed data are collected from some restricted
area or from owners of a particular device then it is clear that such data does not present the situation
of the whole city. When considering private–public partnerships, trustworthy data stewardship is
required.

The smart city domain is quite unique in the variety of data used for the services provided.
Therefore, addressing data heterogeneity issues is of utmost importance. We have examined related
research, which we have categorized into model, semantic, structural, and software-delegating data
integration. Each approach has its own advantages and drawbacks, discussed in the corresponding
Section 4.2.

Moreover, data sources in smart cities could generate lots of data and be highly distributed
geographically. Smart city services may have different requirements for data processing delays.
Therefore, proper data management must be accomplished. In this review, we have explored data
acquisition, data storage, data processing, and data governance management issues. For instance,
in a smart city, we need various approaches for acquiring the information from the data sources,
storing it reliably, searching and accessing it quickly, and both batch and stream processing. Finally,
data lifecycle management is very important in the context of a smart city. Therefore, we reviewed
the state of the art in data governance, as well as challenges, and possible solutions.

Data analysis is a key enabler for smart city services. Here, we do not review data analysis
methods, this can be found in textbooks in general and other related work [159, 339]. Instead,
we look more generally at the challenges that the smart city domain brings into the traditional
data processing pipeline [372]. Here, we shaped our analysis into: trustworthiness, technological,
methodological, and ethical challenges. In addition, we explore in more detail Ethics (Section 4.5),
Data Privacy (Section 4.6), and Data Security (Section 4.7) aspects since these are fundamental
stones to achieving trust in smart city services.

This article aims to serve as a “one-stop shop” comprehensively reviewing data-related issues of
smart cities with references for diving deeper into particular topics of interest. We hope that this
work will inspire future research and development on urban computing and related fields.
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