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Non-relational databases (often termed as NoSQL) have recently emerged and have
generated both interest and criticism. Interest because they address requirements that
are very important in large-scale applications, criticism because of the comparison with
well known relational achievements. One of the major problems often mentioned is the
heterogeneity of the languages and of the interfaces they offer to developers and users.
Different platforms and languages have been proposed, and applications developed for
one system require significant effort to be migrated to another one. Here we propose a
common programming interface to NoSQL systems called SOS (Save Our Systems). Its goal
is to support application development by hiding the specific details of the various systems.
It is based on a metamodelling approach, in the sense that the specific interfaces of the
individual systems are mapped to a common one. The tool provides interoperability as
well, since a single application can interact with several systems at the same time.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Relational database systems (RDBMSs) dominate the
market by providing an integrated set of services that refer
to a variety of requirements, which mainly include support
to transaction processing but also refer to analytical
processing and decision support. From a technical per-
spective, all the major RDBMSs on the market show a
similar architecture (based on the evolutions of the build-
ing blocks of the first systems developed in the Seventies)
and do support SQL as a standard language (even though
with dialects that differ somehow). They do provide
reasonably general-purpose solutions that balance the
various requirements in an often satisfactory way.

However, some concerns have recently emerged
towards RDBMSs. First, it has been argued that there are
cases where their performances are not adequate, while
dedicated engines, tailored for specific requirements (for
example decision support or stream processing) behave
All rights reserved.
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much better [20] and provide scalability [19]. Second, the
structure of the relational model, while being effective for
many traditional applications, is considered to be too rigid
or not useful in other cases, with arguments that call for
semistructured data (in the same way as it was discussed
since the first Web applications and the development of
XML [1]). At the same time, the full power of relational
databases, with complex transactions and complex queries,
is not needed in some contexts, where “simple operations”
(reads and writes that involve small amount of data) are
enough [19]. Also, in some cases, ACID consistency, the
complete form of consistency guaranteed by RDBMSs, is
not essential, and can be sacrificed for the sake of efficiency.
It is worth observing that many Internet application areas,
for example, the social networking domain, require both
scalability (indeed, Web-size scalability) and flexibility in
structure, while being satisfied with simple operations and
weak forms of consistency.

With these motivations, a number of new systems, not
following the RDBMS paradigm (neither in the interface
nor in the implementation), have recently been developed.
Their common features are scalability and support to simple
operations only (and so, limited support to complex ones),
with some flexibility in the structure of data. Most of them
oSQL systems, Information Systems (2013), http://dx.doi.
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also relax consistency requirements. Some of them can be
deployed and managed on local servers, while others offer
their services on the cloud as data services [9]. They are
often indicated as NoSQL systems, because they can be
accessed by APIs that offer much simpler operations than
those that can be expressed in SQL. Probably, it would be
more appropriate to call them non-relational, but we will
stick to common usage and adopt the term NoSQL.

There is a variety of systems in the NoSQL arena [10,19],
more than fifty, and each of them exposes a different native
interface (different data model and different API). Indeed, as
it has been recently pointed out, the lack of standard is a
great concern for organizations interested in adopting any
of these systems [18]: applications and data are not
portable and skills and expertise acquired on a specific
system are not reusable with another one. Also, each of
these systems has specific goals, and so it is tailored on one
or few specific usage patterns. As a consequence, it might
be possible that complex applications could benefit from
the use of several NoSQL systems at the same time, and in
this case the heterogeneity causes even bigger difficulties.

The observations above have motivated us to look for
methods and tools that can alleviate the consequences of
the heterogeneity of the interfaces offered by the various
NoSQL systems and can also enable interoperability
between them, together with ease of development (by
improving programmers' productivity, pursuing one of the
original goals of relational databases [14]).

As a first step in this direction, we present here SOS
(Save Our Systems), a programming environment where
different non-relational databases can be uniformly
defined, queried and accessed by an application program.

The programming model is based on a high-level
common interface, which is inspired by those of non-
relational systems, but remains general with respect to
their specific features, being adaptable to a large number
of systems and models.

The common interface allows us to pursue a two-fold
objective:
�

P
o

Developing applications that are generic with respect
to the underlying NoSQL system, thus obtaining a form
of “physical independence,” that resembles the well
known one for relational databases [13]: code would
refer to a “logical” level (our interface) and our tool
would handle the interaction with the actual “physical”
data store. As a consequence, applications would be
portable and reusable, as the same high level code
works for different systems.
�
 Enabling uniform access to diverse data stores. This
would apply also to data previously managed by
applications using native interfaces.
1 http://redis.io
2 http://www.mongodb.org
3 http://hbase.apache.org
In some sense, we can say that the first objective is
“top-down” as it starts from applications and generates
the implementation of the data in the specific systems,
whereas the second is “bottom-up” as it allows to access
data already managed by the specific systems.

Following the common features of NoSQL systems, our
interface supports operations (insertion, update, retrieval)
lease cite this article as: P. Atzeni, et al., Uniform access to N
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on individual objects and, in some cases, sets thereof.
Objects are allowed to have a hierarchical nested structure,
again motivated by the features of the systems, and their
retrieval is based on a path language, which exploits the
hierarchical structure. We have developed techniques to
handle the differences between the various systems, with
instantiation (indeed, implementation) in each of them.

We have experimented with various systems and, in
this work, we will discuss implementations for three of
them with rather different features within the NoSQL
family: namely, Redis,1 MongoDB,2 and HBase.3 Indeed,
the implementations are transparent to the application, so
that they can be replaced at any point in time (and so one
NoSQL system can be replaced with another one). Also, our
platform allows for a single application to partition the
data of interest over multiple NoSQL systems, and this can
be important if the application has contrasting require-
ments, satisfied in different ways by different systems.

To the best of our knowledge, the programming model
we present in this paper is original, as there is no other
system that provides a uniform interface to NoSQL sys-
tems. It is also a first step towards a seamless interoper-
ability between systems in the family, where code written
for a given system would be enabled to access other
systems.

The rest of this paper is organized as follows. In Section
2 we briefly present the major families of NoSQL systems
and comment on the three specific ones we discuss in the
implementation. In Section 3 we introduce a running
example that will be used throughout the paper. In
Section 4 we illustrate the common interface we propose.
In Section 5 we discuss how the data model in the
common interface can be implemented in the various
underlying systems. In Section 6 we show how the opera-
tions and the path language in the common interface can
be mapped to those of the specific systems. In Section 7 we
present the implementation of our tool. In Section 8 we
illustrate the development of the running example in our
platform. In Section 9 we report on some experiments we
conducted on the tool. Finally, we briefly discuss related
work (Section 10) and draw our conclusions (Section 11).
2. NoSQL systems and their data models

Most NoSQL systems (also called NoSQL data stores, to
avoid confusion with the term database system, which often
indicates traditional database systems [10]) have been
developed independently from one another, each with
specific application objectives, but with the general goal
of offering rather simple operations on flexible data struc-
tures. Indeed, they usually leverage on this simplicity to
provide high scalability and massive throughput. A feature
that is common to almost all systems (and coherent with
the principle of simple operations) is that they handle
individual items, identified by unique keys. Systems differ
on the structure that is supported for these individual
oSQL systems, Information Systems (2013), http://dx.doi.
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items, on the type constructors (map, set, list) that can be
used, and on the possibility of nesting. Also, structures are
flexible, in the sense that “schemas” are often relaxed or
completely absent.

Being this a relatively young space, consolidated stan-
dards are yet to be found, and, given both the number of
NoSQL data stores and the differences between them, it is
useful to group them in categories, according to some
criterion. An interesting classification on data modelling
features has been recently proposed [10]; it groups sys-
tems into three major families: extensible record stores,
document stores and key-value stores. Systems belonging
to the same family largely agree on main data structures
and access patterns, whereas they may differ in specific
operations support, structure details and in architectural
aspects like consistency models, partitioning, and so forth.

In the rest of this section we will describe in detail
these three major NoSQL families by means of their main
features and referring to a representative system for each
of them. Also, being the focus of our work on data
modelling themes, we will concentrate on aspects like
data structures, schema features and access patterns.

2.1. Extensible record stores

Let us start with extensible record stores, whose data
model shows some apparent similarity with the relational
one, and so it can be described in terms of differences with
respect to it. In an extensible record store, a database is
composed of a set of collections, which are called tables, as
in the relational model, but have indeed a much more
flexible structure, with columns that are not predefined,
and so rows are often “sparse.” At the same time, columns
are grouped into families, for vertical partitioning and so as
a basis for physical optimization.

The data stores in this family all originate from BigTable
[11], a system developed by Google for internal use and
not made available outside the company. Here we refer to
HBase, which is modelled after BigTable, but openly
available.

In the same way as BigTable, HBase has tables, whose
names are unique within a given database instance, and
columns, grouped into families.

Columns are not predefined, and so can be defined
dynamically, at insertion or modification time. Indeed, the
creation of new tables and new column families is not
possible during “normal operations” and has to be done
only at “schema design time,” while the data cannot be
accessed. Therefore, we can say that, while these systems
do not require a fixed, predefined schema, they are not
User
Account Personal

1001 username = “bob1987” firstName =
password = “thisisapassword” lastName =
... ssn = “4hfe
... ...
... ...

2004 username = “alice” ...
1714 ... ...

Fig. 1. An HBa
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really “schemaless,” as some schema elements have to be
defined in advance. Column families are used as the basis
for physical partitioning, and the documentation specifies
that it is better to keep the number of families rather low.

Columns are denoted by the name of the family
together with the name of the column in the family, often
called qualifier (this is often denoted in the form “family:
qualifier,” however methods have separate arguments for
them). This means that column qualifiers need to be
unique within each family, but can be reused in different
families (thus denoting different columns). In other words,
the column family is a namespace for column qualifiers.

Tables contain rows, each of which has a key that
uniquely identifies it (within the table) and one or more
columns with values (each within a column family). The
structure offered by HBase is often referred to as a multi-
dimensional, sparse map. It is multidimensional because
each value is identified by a composed key: the row key,
the column family, the column, and also a timestamp, used
for versioning purposes. The map is also sparse, because
each row has usually values only for some of the columns,
often very few with respect to all those defined for the
various rows in a table.

The value of a row for a certain column is an unin-
terpreted byte array, so it has no additional structure, but,
obviously, it could be used to store a serialized value for a
complex object.

Rows are added to tables by specifying a value for the
key and for at least one of the columns. A single operation
may insert one row or (for performance reasons) a set
(indeed, a list) of them.

In terms of retrieval operations, HBase supports table
scanning (on the basis of the row key order, as the physical
arrangement of rows is sorted on keys) as well as direct
access (get operation) on the basis of the key. Moreover, it
provides filters, which allow for the specification of con-
ditions for the rows and values to be retrieved (by a scan
or get). Filters are executed on the server, so they really
perform selections on the data store.

In Fig. 1 we show an HBase table, USER, with the typical
conventions for the systems in this family. Column families
are emphasized in the layout: we have Account, Personal
and Friends. The Account column family stores information
about the user account with columns like username and
password. The Personal column family stores personal
details, while Friends stores friendships data. Each friend
is associated with a number of columns, which all have the
user identifier as a prefix, and store contact information
such as name and email. The column names (with the
identifier as prefix) in the Friends column family show a
Friends
“Bob” 2004:firstName = “Alice”
“Smith” 2004:lastName = “Smith”

94” 2004:email = “alice@gmail.com”
1714:firstName = “Charlie”
...
...
...

se table.

oSQL systems, Information Systems (2013), http://dx.doi.
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common practice to handle sets of values and references to
other rows. However, the practice should be enforced by
the applications that store data and it is not supported by
the system.
users: [
{

_id: "1001",
username: "bob1987",
password: "thisisapassword"
personal: {

firstName: "Bob",
lastName: "Smith",
ssn: "4hfe94"

},
friends: [

{
id: "2004",
firstName: "Alice",
lastName: "Smith",
email: "alice@gmail.com"

},
{

id: "1714",
firstName: "Charlie",

...
},
...

]
},
{

_id: "2004",
username: "alice",
...

}
{

_id: "1714",
...

}
...

]

Fig. 2. A MongoDB collection.
2.2. Document stores

Document stores handle collections of objects (called
documents) represented in hierarchical formats such as
XML or JSON. Each document is composed of a (nested) set
of fields and is associated with a unique identifier, for
indexing and retrieving purposes. Generally, these systems
offer a richer query language than those in other NoSQL
categories, being able to exploit the structuredness of the
objects they store. Among document stores we refer to
MongoDB, one of the most adopted.

In MongoDB a database instance contains a set of
collections, each identified by a name (so, we could say
that a database instance is a map of name-collection pairs).
Collections are not predefined, in the sense that a collec-
tion with a given name is created when a document is first
inserted into the collection with that name. Collections
have no limit in cardinality, nor any constraint on the
structure (fields and nesting) of the documents they
contain. The only regularity is in the fact that each
document has a key (_id) which is unique within the
collection it belongs to. Therefore, documents are identi-
fied by means of the name of the collection together with
the _id value. Given the flexibility in the existence of
collections and on the structure of the documents in them,
we can definitely claim that MongoDB follows a schema-
less approach. In practice, it is common to use a collection
to store objects that have the same semantics and similar
structure, but this is not a constraint and the flexibility
turns out to be very important in many applications,
especially with respect to the evolution of requirements.

Specifically, MongoDB documents are represented in
BSON (Binary Serialized dOcument Notation), a binary
serialization of JSON, with which it shares the schemaless,
arbitrarily nested structure. BSON (just in the same way as
JSON) defines three major element types for document
fields: object, array, and value. An object is a map made of
key-value pairs, where values can belong to any element
type. Arrays are ordered collections of elements (with no
constraint on structure), while values are simple data
types such as strings or integers.

Documents within a collection can be sequentially
scanned, individually retrieved using the identifier or
queried according to a pattern that matches the structure
of the fields. It is also possible to add new documents into
a collection at any time.

As an example, let us consider in Fig. 2 the same
scenario as we used for HBase: a collection of users having
some account data, a set of friends, and a structured set of
personal info. According to the modelling structure, data
would be organized in separate documents (one for each
different person) identified by a key, within a same
collection (named, for instance, users) The personal data
can be represented as an object while friends are collected
into an array structure (denoted by square brackets).
Please cite this article as: P. Atzeni, et al., Uniform access to N
org/10.1016/j.is.2013.05.002i
2.3. Key-value stores

Key-value systems are somehow the most distant from
relational databases, because they do not have any notion
of schema, not even collections. In the systems of this
category, the whole database is essentially a map: it
contains objects (called values) each identified by a unique
key. The various systems differ in the form that keys might
have and in the types of the values, and so they can be
more or less sophisticated. At the same time they share the
idea that insertion, retrieval, and removal refer to single
objects and are specified by indicating the key. Operations
spanning multiple objects are often not trivial or not
supported at all. Values can be simple elements such as
strings and integers, or structured objects, depending on
the expressive power of the specific system. In the systems
that handle only simple types, serialization of complex
objects in values is in general possible, but operations
cannot take advantage of the structure. With respect to
keys, some systems consider them just as strings, while
others allow for a hierarchical structure, composed of
various portions. However, even when keys are just
strings, it is common (as we will see shortly) to use
conventions that mimic hierarchical structures.
oSQL systems, Information Systems (2013), http://dx.doi.
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We chose Redis as a representative of key-value data
stores. It is rich in terms of data structures and operations
(and so allows for the demonstration of various features)
and at the same time simple in the structure of keys (and
so it requires the adoption of interesting techniques).

A Redis database is indeed a single key-value map,
where keys are strings and values may belong to different
data types: string, list, set, sorted set, and hash. Lists
represent ordered collections of strings. Sets are unordered
collections of strings, not allowing duplicate elements.
Hashes are maps (in other words, records), that is, values
identified by keys, where both keys and values are strings.
Finally, sorted sets are ordered collections of strings, with-
out duplicates, where each element is also given an
explicit, numeric value, which is used to keep the structure
sorted. It is important to observe that the types cannot be
composed (the components are always strings) so nested
values are not managed (at least not directly, as we will see
shortly that indirect ways do exist).

As in programming languages, each of these data types
has in Redis a number of native operations that can be
used to access, insert and retrieve data. For instance, lists
can be accessed by conventional methods like insert,
remove and length, but also by methods like push and
pop for simulating specific structures like stacks or
queues.

In terms of schema support, Redis is completely
unstructured: there is no notion of predefined collections,
nor any other logical or physical feature visible to the user.
All the operations (including those of configuration and
maintenance) are meant to be executed at any time, with
no performance penalty.

As it turns out, the diversity of structures and opera-
tions makes Redis a highly flexible data store, where each
modelling scenario can be accomplished in many alter-
native ways. Indeed, a number of conventions and best
practices have been adopted in order to simplify the
development of common use cases. Among these, one of
the most common is the use of descriptive4 keys, that is to
say, keys composed of a number of elements, with con-
ventional separators, which describe the complex struc-
ture. The goal is to create hierarchies and different key
spaces, which are not supported natively in Redis. Let us
consider an example:

users:1001:firstName¼"Bob"

users:1001:lastName¼"Smith"
The code shows two descriptive keys, with the pattern
(which is indeed common) collection:id:field. Here, collec-
tion denotes a group of homogeneous objects, id is the
unique identifier of the object within the collection, while
what follows is the actual name of the field we are
representing. Possibly, fields following the id can be
arbitrarily nested (and so concatenated to form a complex
4 These are sometimes called “intelligent” keys, but we prefer to
avoid such a term, as in databases it is used to refer to key values that
encode content (and so they are criticized), while here they describe the
structure where the content appears.

Please cite this article as: P. Atzeni, et al., Uniform access to N
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key), allowing suitable representations for potentially
complex structures, as follows:

users:1001:friends:2004:email¼"alice@gmail.com"
However, if not used wisely, these practices can lead to
overly complicated key structures which tend to be rigid,
redundant, and hard to maintain. For this reason, simple
fields are usually grouped into hashes, which provide an
effective way to model objects, while keeping the struc-
ture dry, as in the next example.

users:1001¼{

username¼"bob1987"

password¼"thisisapassword"

}

Since in Redis hashes cannot be nested (their values
must be strings), descriptive keys have still an edge at
providing, when needed, artificial hierarchies, as follows:

users:1001¼{

username¼"bob1987"

password¼"password"

friends:2004.email¼"alice@gmail.com"

friends:2004.firstName¼"Alice"

…
}

3. Running example

In order to show how our proposed system can support
application development, in this paper we refer to an
example regarding the definition of a simplified version of
Twitter,5 the popular social network application. Transac-
tions are short-lived and involve little amount of data, so
the adoption of NoSQL systems is meaningful.

The data of interest for the example have a rather
simple structure, sketched in Fig. 3: we have users, who
write posts; every user “follows” the posts of a set of users
and can, in turn, “be followed” by another set of users. As it
is common in many applications, the main objects are
somehow predefined, and so we can even say that there is
a “schema” for them, as shown in the figure. However, the
objects themselves do not have a rigid structure: this is
indeed the case in many applications in the Web arena,
which have to satisfy evolving requirements. We assume
that users have structured addresses, but the specific
structure of each address is not predefined; for example,
there can be simple predefined fields (such as street,
number, and post-code) or some personalized labelled
fields. Similarly, we assume that the user has some login
and personal information (such as name, surname, title),
again with no specific, predefined structure.

In the rest of the paper the specific characteristics of
our model and query procedure will be illustrated with
reference to the example, and then, in Section 8, we will
show how SOS can support an implementation of the
application using three different NoSQL data stores, saving
in each one different subset of the data of the example.
5 http://twitter.com/
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This is because we assume that quantitative application
needs have led the software architect to drive the decision
towards the use of several NoSQL DBMSs, because the
various components of the application can benefit each
from a different system.6

4. The common interface

As we said in the Introduction, the goal of our approach
is to offer a uniform interface that would allow access to
data stored in different NoSQL systems, without knowing
in advance the specific one, and possibly using different
systems within a single application. In this section we
discuss the desirable features of such an interface and then
present our proposal for it. In the next sections we will
then describe how this interface can be implemented in
various systems and the underlying architecture that
allows for accessing data stored in NoSQL systems.

As we saw in Section 2, NoSQL systems are based on
simple operations for inserting and deleting individual
items (objects in an application), mainly one at the time,
and retrieving them, one at the time or a set at the time.
The individual items do have some structure, which is
however not fixed in advance, apart from some limited
features (names of collections, the first level of structure).
Therefore, a first significant common feature of the various
systems is that they mainly manipulate one object at the
time. More precisely, this is almost uniformly the case for
update (insertion, deletion, modification) operations,
while for retrieval operations there are some differences,
as we saw in Section 2.

As a consequence, it is pretty natural to define an
interface that would be meaningful for the various systems
of interest by means of a set of very basic and general
operations on objects, PUT, GET and DELETE.

Now, the real goal of the interface is to be common to
the various systems but at the same time to be able to
exploit the major specific features of each of them.
6 For the sake of space here the example has to be simple, and so the
choice of multiple systems is probably not justified. However, as the
various systems have different performances and different behaviour in
terms of consistency, it is meaningful to have applications that are not
satisfied with just one of them.

Please cite this article as: P. Atzeni, et al., Uniform access to N
org/10.1016/j.is.2013.05.002i
Therefore, there is a need to better specify the various
operations, with respect to (i) the nature and structure of
the objects and their organization in collections, and (ii)
howmany objects are involved and how they are specified.

In the next two subsections we consider these two
issues in turn.

4.1. Collections, objects, and their structure

Let us first concentrate on the nature of objects. Indeed,
a simple way to proceed here would be to find the
“greatest lower bound” of the structuring features of the
various systems: this would mean to ignore the structure
of objects, as there are systems that just handle key-value
pairs, without any interest in the structure of the value,
and also to neglect collections, as some systems do have
them and others do not. It is clear that this “minimalistic”
approach would not be much effective, as it would ignore
all the specificity of the various systems, reducing the
interface to a bare intersection of features, very poor
indeed.

Instead, by observing the systems, it turns out that it
could be meaningful to expose both collections and objects
with structure. In fact, if a system does not handle
collections, then all objects could be held together (possi-
bly with some use of descriptive keys to keep track of
collections, when specified). Similarly, if structure is not
handled in full, then the non-manageable part can be
serialized.

Specifically, our interface allows to operate (put, get,
etc.) on objects that have a hierarchical structure and
belong to collections (in the sense that the interface allows
to refer to named collections). In other words, we have a
“data model” for our interface (referred to in the following
as the common data model), which exposes collections of
nested objects following the same approach of some
document store systems. Let us comment on the various
aspects in turn.

Each collection has a name, and individual operations
refer to collections by using such a name: so, they insert
objects into a specific collection, and so on. In a sense,
collections correspond to a light form of schema, as
collections are visible, in the same way as tables are
defined and visible in relational databases. There is a
number of reasons for which we say that this is a light-
weight approach to schemas. First of all, collections need
not be defined explicitly, as opposed to what happens in
relational systems, where a CREATE TABLE statement is needed
before a SELECT on the same table is issued: here, in line
with what happens with many NoSQL systems, a com-
mand that refers to a non-existing collection would
initialize it. Second, the internal structure of collections
(and of objects in them) is not predefined. Third, collec-
tions are optional (in which case we assume operations
refer to a “default” collection).

Let us now illustrate objects. Each object has a key,
which is unique (and so allows for identification) within
the collection of interest. The notion of key is common to
all NoSQL systems and so this is a pretty natural feature.
Objects have a nested structure, based on three main
constructs: struct (also referred to as record or map), set
oSQL systems, Information Systems (2013), http://dx.doi.
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and attribute, which are well known for being at the basis
of complex-object models or nested relational ones with
arbitrary nesting (as discussed in textbooks [3,7] and also
used in pieces of work that need a general structure for
semistructured data [2,12,17]).

As usual in these settings, attributes are the basic ele-
ments of the model, corresponding to simple values such as
strings or integers. Structs and sets, instead, are complex
elements whose values may be both attributes and sets
or structs as well. As usual, a struct corresponds to a map
(a record, in more traditional terminology) whose elements,
identified by a name (called key in maps and field name or
attribute for records), can be simple or be structured or sets
in turn. Finally, sets are used to handle groups of elements,
mainly records, but also attributes or further sets, or even
heterogeneous elements. In practice, we would expect sets to
be rather homogeneous, but this is not a constraint.

Incidentally, it can be observed that even collections
could be handled within the nested structure of objects,
because, when there are collections, we could see the
whole database as a struct, with a field for each collection,
and then each collection would be a set, and its elements
would be usually structs. However, we decided to make
collections explicit, as in this way they can be directly
referenced in the calls to the SOS interface.

With respect to objects, our common model is assumed
to be schemaless: objects in collections have an arbitrary
hierarchical structure made of sets, structs, or attributes as
well, in no predefined way. However, as we already argued
in Section 2, it is very common that objects are structs,
with some regularity in the structure, especially in terms
of first level attributes.

4.2. The SOS interface

Now that we have described the structure used for
representing objects into the various data stores, we can
go back to the definition of the interface illustrating the
operations that can be handled. SOS provides operations
that follow a general signature based on a hierarchical
path:
�

P
o

get(Path) which returns a set of objects;

�
 put(Path,Object) which inserts or updates objects;

�
 delete(Path) which deletes object or object fields.

The SOS interface currently exposes only one operation,
PUT, to be used both for the creation and the update of
objects. This is indeed the approach followed by most
NoSQL systems.

The platform interprets the path and accesses objects
saved either according to our common data model or using
native interfaces. In detail, the query path supported by
SOS in the current implementation allows the navigation
of data according to the tree structure characterizing
application objects. The path has the form

step1=step2=…=stepn

where each step represents a level in the tree structure of
an object (possibly indicating the collection it belongs to).
Specifically, every step represents a collection, or an object
lease cite this article as: P. Atzeni, et al., Uniform access to N
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identifier, or a field name. According to the most common
storage practices, the first step in the path is the name of
the collection where it is expected that the object is saved
in. The collection name can be omitted and in such case
the platform evaluates the query pattern on the whole
database. Moreover the path can be used for selecting
objects on the basis of the existence of some attributes. In
a schemaless scenario where objects can have arbitrarily
defined structures such a selection can often be enough
expressive in practice. It is worth observing that the
selection of objects belonging to a tree pattern is fully
supported by all the storage systems handled by SOS and
can be easily mapped into their structures. Let us see a few
examples of paths within GET operations. The first one
retrieves all the objects from the collection users:

get("users")
Another common case is to select a field (name) from
an object (with identifier 281283) in a collection (users):

get("users/281283/name")
The specification of a set of subobjects (a subtree in the
hierarchical structure) is similar. So, the following selects
all the tweets associated with the user identified by
281283:

get("users/281283/tweets")
For storing and deleting objects, SOS provides PUT and
DELETE operations, which also make use of paths, with the
same logic as in the GET: every step represents a different
level into the object structure where to perform the
requested operation.

Let us illustrate again the major cases by means of some
examples. The first one inserts (or updates, if it already
exists) a field (username) for an object (the one with
identifier 281283 in the users collection):

put("users/281283/username","mike23")
The second is slightly more complex, as it updates an
object (with identifier 2183) within a set (tweets) which
is in turn a field of another object (the element of the
users collection with identifier 281283):

put("users/281283/tweets/2183", tweet)
Let us observe that tweet, the second argument of the
call, is an object, whose structure is transparent.

In the DELETE operation, things are similar, so the next
two operations delete the username field of the user
whose identifier is 281283 and the tweet identified by
3463 in the collection tweets of user 281283, respectively:

delete("users/281283/username")

delete("users/281283/tweets/3463")
Given the fact that the SOS common data model makes
explicit reference to collections and that we assume that
they have a major role in applications, we have in the
oSQL systems, Information Systems (2013), http://dx.doi.
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interface simplified versions of the operations, which
require two simple parameters for specifying the compo-
nents of interest: the name of a collection and an object
identifier. Given a collection coll and an identifier id, this
allows to write them as arguments, instead of using the
path coll/id. Similarly, as objects very often have a struct as
the first level, we have versions with three parameters,
collection, identifier, and field. So, the interface exposes
the following methods, together with those listed at the
beginning of this section:
�

P
o

get(Collection, ObjectID) to retrieve objects;

�
 get(Collection, ObjectID, FieldName) to retrieve object

fields;

�
 put(Collection, ObjectID, Object) to insert or update

objects;

�
 put(Collection, ObjectID, FieldName, ObjectField) to add

or update objects fields;

�
 delete(Collection, ObjectID) to remove objects;

�
 delete(Collection, ObjectID, FieldName) to remove object

fields.

5. Translations

In this section we illustrate how our common data
model is translated into the specific structures of the
various data stores and how the methods exposed by our
interface can be mapped accordingly. It is worth noting
that model translations and operations are two indepen-
dent but related features. It is often the case that mappings
between constructs cannot be designed without taking
into account (or at least foreseeing) the native access
patterns of the (model-specific) destination constructs.

Specifically, we describe dedicated translations for each
system we provide support for. Translations are designed
to be evaluated against a number of indicators such as
semantic integrity, performances in query evaluation,
partition friendliness. In this sense, the ultimate goal of
each translation is to store data in a way that conforms to
the modelling best practices of the actual data store. This
way, users are not locked into accessing data from our tool,
but can also effectively exploit the native interfaces of the
actual systems for those specific features that are outside
of the scope of SOS.

Moreover, we define alternative translations for each
system. Different translations may be driven by different
ways of managing semi-structured data, different access
patterns, or simply by the fact that the flexibility offered by
most NoSQL systems allows for many ways of exploiting
the same data structures.

In the remainder of this section we show how these
translations work, moving from the model generic repre-
sentations to the system-specific ones. Also, translation
examples will refer to the use case shown in Section 3 (a
collection of Twitter users, each with personal information
and a collection of tweets), a possible instance of which is
the following:

users: [

1001: {
username: "bob1987",
password: "thisisapassword",
lease cite this article as: P. Atzeni, et al., Uniform access to NoS
rg/10.1016/j.is.2013.05.002i
personal: {
firstName: "Bob",
lastName: "Smith",
country: "Italy",
city: "Rome"

},
tweets: [

{
id: "2039485563",
text: "Hello World",
geo: {

longitude: "12.44751",
latitude: "41.83764"

}
}
{

id: "4059382747",
…

}
…

]
},
2004 {

username: "alice",
…

}
]

For each of the systems, we first discuss in general
terms the correspondence between the common data
model and the modelling features that are specific to such
a system, and then illustrate how we actually implement
translations with reference to the common data model in
our current prototype.

5.1. HBase

Let us see how the constructs belonging to our com-
mon data model can be mapped into HBase data model.
First of all, it is pretty natural to model collections as
tables, as they are used to handle sets of objects. Similarly,
the elements of these collections are represented by rows
in the respective tables. Then, some care is needed to deal
with the actual structure objects have, since our common
data model allows for nesting, whereas HBase tables do
not handle it directly. However, there are common prac-
tices in HBase for handling nested objects, and we will
show some specific techniques based on them for repre-
senting the inner levels in nested objects.

We briefly describe the main techniques and then
illustrate them by means of a couple of examples. The
top level object can be a struct or a set or a simple
attribute. Indeed the first case (struct) is the most common
case in applications, and the other two can be dealt
with by using variations of the techniques used for the
first. So, let us consider the top level of an object to be a
struct: clearly, its components (whichever be their type)
can be stored in columns. Here we have two issues: first,
how to arrange columns into families, and second, how to
handle the lower levels. With respect to the first issue,
there are indeed two alternatives, depending on whether
objects can be assumed to have a rather regular structure
(with few top level components, common to all objects,
also accessed in a partitioned way) or a highly unpredict-
able one, with many different (potential) components or
QL systems, Information Systems (2013), http://dx.doi.
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Users
top Personal Tweets[]

1001 username = “bob1987” firstName = “Bob” [0]:id = “2039485563”
password = “thisisapassword” lastName = “Smith” [0]:text = “Hello World!”

country = “Italy” [0]:geo:longitude = “12.44751”
city = “Rome” [0]:geo:latitude = “41.83764”

[1]:id = “4059382747”
...

1002 ... ... ...

Usernames
top

bob1987 value = “1001”
alice value = “2004”

... ...

Log
array[]

c1 [0] = “new user created”
[1] = “query Q1 successfully applied”
...

c2 ...

Fig. 4. HBase: the translation strategy with several column families.

Users
uniqueFamily

1001 username = ”bob1987”
password = ”thisisapassword”
personal:firstName = ”Bob”
personal:lastName = ”Smith”
personal:country = ”Italy”
personal:city = ”Rome”
tweets[]:[0]:id = “2039485563”
tweets[]:[0]:text = “Hello World!”
tweets[]:[0]:geo.longitude = “12.44751”
tweets[]:[0]:geo.latitude = “41.83764”
tweets[]:[1]:id = “4059382747”
...

1002 ...

Fig. 5. HBase: the translation strategy with a single column family.
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frequent new ones for new objects. In the former case, it
makes sense to use various (but few) column families,
because HBase would store them separately, thus favour-
ing accesses that involve only one or few families at the
time. In the latter case the use of various column families
would not help and so we use just one of them for all
columns.

For what concerns the lower levels in nested objects
(in both alternatives), the technique we use is based on
the technique of descriptive keys we saw for Redis in
Section 2: the idea is to encode a description of the
structure in a column name. We demonstrate it below in
the examples.

Finally, if the top level is a set or a simple attribute, then
we also use a column to store it, possibly within a special
(reserved) column family: in the case of the simple
attribute, there would be a single value, in the case of a
set there would be several.

Let us now illustrate these techniques by means of our
example. Fig. 4 shows the first alternative. Table Users has
three column families: _top, which is the reserved family
used for simple fields, Personal, for storing personal
data, and Tweets[], for the set of tweets. Both tweets
and personal information appear in most objects, so it is
reasonable to dedicate separate column families for them.
Let us observe that column families that model sets
(Tweets[] in the example) are given the [] suffix.

These conventions are seamlessly managed by SOS, and
they follow well-known modelling practices used by HBase
developers. The example also shows that, if there are
deeper levels in the object tree, data from each field are
kept within the column family corresponding to its top
level parent. For example, the geo:latitude and geo:

longitude fields appear as single columns within the
Tweets[] family, instead of generating, for instance, a
dedicated geo family. In summary, each atomic element is
stored separately, and its column contains the whole path
in the tree from the family to the field itself. This strategy is
effective from many points of view: it allows us to limit the
number of column families to be defined in each table
(which would otherwise grow, indefinitely, also at run
time), and keeps (under the hypotheses for this alternative)
the number of accesses needed for retrieving an object low
(both for the whole object and for single parts of it).
Please cite this article as: P. Atzeni, et al., Uniform access to N
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The example also shows cases where the top level is
not a struct. In table Usernames, where usernames are
mapped to the correspondent ids, we have objects that are
all composed of a simple value (the id itself), for which we
use the _top column family and the _value qualifier. In
table Log we store a set (indeed, a list) of log entries for
each connection. These are objects composed of sets of
simple objects: we use a column family named array[]

Fig. 5 shows the Users table according to the second
translation strategy. Here we have just one column family:
_uniqueFamily. The elements belonging to the set
Tweets[] are stored with a prefix that includes the set
name, thus generating qualifier names such as tweets[]:
[0]:id.

5.2. MongoDB

As shown in Section 2, a MongoDB instance is com-
posed of a set of named collections of BSON documents,
nested up to an unbounded depth.

Therefore, there is a close correspondence with our
common data model, which assumes that a database
instance contains collections of hierarchical objects. Mon-
goDB collections correspond to those of our common data
model, and then the internal structure of MongoDB docu-
ments is indeed the same as that of our objects, where our
struct, set, and attribute correspond to BSON object, array,
and value, respectively.
oSQL systems, Information Systems (2013), http://dx.doi.
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object key: users
type: set
values: [1001, 1002, ...]

object key: user:1001
type: hash
values:
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As a consequence, a database instance in the common
data model can be straightforwardly represented by
means of a set of MongoDB collections, with a direct
representation for each of them. Clearly, in this case it
would not be much meaningful to look for alternate
representations.
username = "bob1987",
password = "thisisapassword",
personal:firstName = "Bob",
personal:lastName = "Smith",
personal:country = "Italy",
personal:city = "Rome",
tweets[]:[0]:id = "2039485563"
tweets[]:[0]:text = "Hello World!"
tweets[]:[0]:geo.longitude = "12.44751"
tweets[]:[0]:geo.latitude = "41.83764"
tweets[]:[1]:id = "4059382747"
...

Fig. 6. Redis: the translation strategy with one hash for every object.
5.3. Redis

As we saw in Section 2, Redis model is quite unique
within the NoSQL space, with many first level structures
but no nesting. This means that we have various alter-
natives at the first level, but we need to resort to suitable
techniques as we go deeper.

Also, our common data model has collections, whereas
Redis has just one space for all its objects, identified by
keys. This latter limitation can be easily overcome, by
encoding in the object key also the name of the collection,
following the common practice in Redis we already men-
tioned in Section 2. Indeed, in the same way as we saw for
HBase, Redis developers follow conventions for key names
that give some structure to an otherwise flat key space.
Then, in the same way as we used rows for HBase, we can
use hashes here for Redis, again encoding deep structures
in hash fields. Given the nature of our common data
model, its implementation needs only hashes and sets,
the latter as support structures, as we see shortly.

The current implementation of SOS provides two dif-
ferent translation from the SOS common data model to the
Redis data model.

The first translation (see an example in Fig. 6) adopts a
simple data organization. For each object belonging to
each collection one hash is created storing all the data.
This is essentially the same we had in HBase, where there
is a row for each object. The hash object has a key that is
composed of the name of the collection and of the key of
the object in the common data model (in the example, the
key is user:1001, referring to the user collection and to
the object with key 1001). For each simple value, we have
a field-value7 pair, with the field name composed of a
sequence that includes all the names in the path from the
root to the field name, adding the suffix [] to the names
that correspond to sets. In the same way as we did for
HBase, we use again numbers in square brackets to
distinguish the various elements in a set. In order to
represent collections, and to be able, for example, to access
all their elements, we also define one set for each collec-
tion containing all the keys of the objects of the collection.
In the figure, we have the object with key users, which is
indeed a set.

The second translation we implemented for Redis (see
Fig. 7) follows a “vertical partitioning” strategy (similar to
the first alternative used for HBase). This structure sepa-
rates data belonging to different complex fields, following
database modelling guidelines that suggest to separate
objects representing different concepts. Indeed, nested
7 In hash terminology, we should say key-value, but we prefer to
avoid this term to avoid confusion between this key and the key of the
object.

Please cite this article as: P. Atzeni, et al., Uniform access to N
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data stored according to this structure can be accessed
by intuitive query patterns.

We have again a set for each collection, each containing
all the keys of the objects belonging to the collection itself.
Then, individual objects are split into several hashes: for
each complex field (set or struct) in the top level we have a
specific hash, while simple fields (attributes) are stored all
together in a dedicated hash, named _top.

The keys of the various objects are again composed of
various parts, and here, since we have various hashes for
each object, we have a more complex structure for keys, as
in the following examples:

user:1001:_top
user:1001:personal

user:1001:tweets[]
Moreover, to keep track of the components of an object,
we have an additional set, with a key that identifies the
object itself (in the example, user:1001), containing the
(suffixes of the) names of the hashes the object is made of.

As it turns out, assumptions we made for defining Redis
translation are somehow close to HBase one. In fact, in our
translation, Redis hashes roughly correspond to HBase
column families (each containing the qualifiers map).
However, object data in Redis are spread throughout many
keys, whereas in HBase it is contained in a single record. As
a consequence, we had to define in Redis support struc-
tures to keep track of the keys associated with each object,
such as the set containing the hash names.

6. Queries

In this section we illustrate how SOS handles the
specific structures of the various data stores under con-
sideration when a GET, PUT, or DELETE operation is submitted
to the interface.

6.1. HBase

Let us first consider the simplified operations illu-
strated at the end of Section 4.2, where collection,
oSQL systems, Information Systems (2013), http://dx.doi.
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object key: users
type: set
values: [1001, 1002, ...]

object key: user:1001
type: set
values: [_top, personal, tweets[], ]

object key: user:1001:_top
type: hash
values:

username = "bob1987",
password = "thisisapassword"

object key: user:1001:personal
type: hash
values:

firstName = "Bob",
lastName = "Smith",
country = "Italy",
city = "Rome"

object key: user:1001:tweets[]
type: hash
values:

[0]:id = "2039485563"
[0]:text = "Hello World!"
[0]:geo.longitude = "12.44751"
[0]:geo.latitude = "41.83764"
[1]:id = "4059382747"
...

Fig. 7. Redis: the translation strategy with several hashes for each object.
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identifier and possibly field are mentioned separately. Let
us also recall that, according to the translations illustrated
in Section 5, objects stored into HBase by our interface can
be organized following two different translation patterns:
the first one uses several column families (one for every
first level component of the object), and the second one
uses only one column family.

In this case, the interface simply identifies the table
having the same name as the specified collection and
performs the requested action on the row having the
given object ID as key: if the action corresponds to a PUT

then a new row is created or the existing one is updated; if
the action is a DELETE, then the row is removed from the
table, finally if the action is a GET then the object is
retrieved according to the data stored in the column
families of that row. For these simplified operations, the
implementation of the operation is the same for the two
translation policies, since object keys in both cases
uniquely identify rows. The only difference is in how the
data are stored and retrieved into and from the column
families of the table: under the first translation pattern,
SOS accesses data belonging to all the column families,
whereas under the second one SOS accesses only the
_uniqueFamily family.

In the general case of operations that specify complex
paths, the implementation needs to navigate the tree
structure of the object and so SOS has to map the steps
of the path to the corresponding HBase structures coher-
ently with the translation policy used for storing that data.
If the first translation policy is used then the accessing
Please cite this article as: P. Atzeni, et al., Uniform access to N
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pattern is interpreted as

table=row=columnFamily=qualifier

where the first step is mapped into a HBase table name,
the second step into a row identifier, the third one into a
column family and the rest into qualifiers (linking the step
values for obtaining the qualifier name). Given the exam-
ple described in Fig. 4, if SOS receives the following query:

get("users/281283/contactInfo/office")
then it maps users into the table users, contactInfo into
the columnFamily contactInfo[], office into the column
office. If data are stored according to the second transla-
tion policy the accessing pattern becomes

table=row=qualifier

where the first step is mapped into a HBase table name,
the second step into a row identifier, and the subsequent
ones are linked together to form a qualifier name. The
platform is responsible to handle the query pattern and
considering _uniqueFamily as the default column family
containing data. According to this second data organiza-
tion the query:

get("users/281283/contactInfo")
maps users into the table users and contact data into
the column contactInfo[] of the column family
_uniqueFamily.

6.2. MongoDB

Given MongoDB hierarchical model and the paths that
characterize document keys belonging to the path are
interpreted in the following way:

collection=id=field=subfield=sub�subfield=…

the first element of the path corresponds to a collection
name, the second one to a document ID and the following
keys to nested fields. Given the correspondence between
the SOS model and MongoDB one, this path translation
holds both for SOS-defined databases and for those
defined by the native MongoDB interface. In this way,
SOS can seamlessly exploit data defined by the native
interface, while, at the same time, data inserted by SOS can
be exploited by the native interface as well.

In a real usage scenario, a developer would take advantage
of SOS for common use cases like simple insertions and
retrievals, while relying on the native libraries for complex
functions that are specific to MongoDB.

6.3. Redis

When it comes to queries and path interpretation,
Redis specificity requires us to adopt a slightly different
approach with respect to the other data stores we support.

Given the lack of a hierarchical data model (unlike
document stores with collections and objects, and exten-
sible record stores with tables and rows), Redis developers
have to store structured data making use of conventions
and leveraging the different data types Redis itself
provides.
oSQL systems, Information Systems (2013), http://dx.doi.
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As a consequence, given a hierarchical path in our
interface, SOS has to figure out how the path is indeed
implemented in the underlying database, sorting out a
few alternative ways, and eventually returning matching
results.

It is worth noting that this effort is only required for
accessing data inserted by the native Redis interface,
whereas SOS data are obviously guaranteed to respect
our translation pattern and therefore easily retrievable.

Alternative storage patterns considered by our interface
are related to the use of hashes and descriptive keys. As we
discussed in Section 2, in key-value stores, hierarchical
structures can be simulated by using long, composite keys
whose structure describes which part of the tree the value
belongs to. We also saw that hashes can be used in Redis to
represent lower level structs.

As it turns out, hashes and descriptive keys can be
combined in many alternative ways. In our default transla-
tion, an object is made of a number of keys, whose values
are the hashes containing the actual values of the fields.
Hash keys are indeed descriptive, since they are made of a
sequence made of

collection�name : id : hash�name

As shown also in the translation examples, hash fields
may have, in turn, descriptive keys, needed when the
object hierarchy is deeper than two levels. The actual SOS
key structure is therefore

collection=id=hash�name=field=subfield=sub�subfield=…

This way, a path made of N steps is mapped into a
descriptive key made of three steps (where the third step is
the hash name), followed by a hash field with a descriptive
key made of N−3 steps. This specific partitioning schema is
reasonable but indeed quite arbitrary, making it entirely
possible to find databases where, for instance, there are two
levels of collections, or hashes are not used at all.
Fig. 8. Architec
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However, a general pattern can be found, by saying that
a path composed of N steps can be matched by any
structure identified by a descriptive key made of J steps
(where the J-th step is the hash name), followed by a hash
field identified by a descriptive key made of K steps, where
J þ K ¼N.

key:key:key:hash-key {

field:field:field ¼ value
}

In the example above, J¼4 and K¼3.
Following this pattern, SOS can be configured to access

data by expecting a particular combination of J and K.
Otherwise, if no instructions are given, SOS searches for
matching structures for any combination of J and K. As it
turns out, for paths of length N, there are exactly N
possible combinations of J and K to be expected.

For instance, given any path made of 4 steps, the
following structures would match:
ture of SO

oSQL sy
1.
 key:key:key:key ¼ value

2.
 key:key:hash-name {
field ¼ value

}

3.
 key:hash-name {

field:field ¼ value
}

4.
 hash-name {
field:field:field ¼ value

}

7. The Platform

The architecture of the SOS system is organized in two
main modules (Fig. 8):
�
 Common Interface, responsible for the methods offered
by our interface.
S.
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�
 Common Data Model, responsible for managing the
translations from our data model to the specific struc-
tures of the systems.

Each of these modules exposes a general interface:
NonRelationalHandler for the common interface, and
NonRelationalMapper for the common data model. The
NonRelationalHandler is responsible for exposing put,
get and delete operations, and for general aspects like
caching and connection pooling. The main operations are
defined according to the following signatures:
�

the
han

P
o

void put (String path, Object o)

�
 void delete (String path)

�
 Set oObject4 get (String path)
They are then delegated to NonRelationalMapper,
which is responsible for the translation logic and for the
access to the database. Then, NonRelationalMapper

serializes the objects according to the tree structure of
the common data model and deserializes them when a
get request is submitted to the system.

In the current version of the tool, we implemented the
tree structure in JSON, as there are many off-the-shelf
libraries for Java object serialization into JSON. The imple-
mentation is based on the following mapping between the
common data model and JSON format:
�
 Sets are implemented by arrays.

�
 Structs by objects.

�
 Attributes by values.
As the final step, each request is encoded in terms of
native NoSQL DBMS operations, and the JSON object is
given a suitable, structured representation, specific for the
DBMS used.

We have implementations for these interfaces in the
three systems we currently support. For instance, the
following code8 is the implementation of the NonRela-

tionalHandler interface for MongoDB. The adapter
wraps the conversion of the path into MongoDB data
structure, and is responsible for calling the specific opera-
tion to a technical format (this responsibility is delegated
to objectMapper, a shared object that all the handlers
invoke in order to perform this task) which is finally
persisted in MongoDB.

public class MongoDBHandler

implements NonRelationalHandler {
public void put(String path, Object obj) {
ByteArrayOutputStream baos¼

new ByteArrayOutputStream();

this.objectMapper.writeValue(baos, obj);

ByteArrayInputStream bais¼
new ByteArrayInputStream(

baos.toByteArray());

this.mongoDbMapper.persist(path,

new ByteArrayInputStream(bais));
8 For the sake of the readability we report here a compact version of
code that omits some details, such as initializations and exception
dling.
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baos.close();

bais.close();

}

Here, method objectMapper.writeValue(…) seri-
alizes object obj according to our data model and method
mongoDbMapper.persist() is responsible for interpret-
ing the path according to our model and saving the object
accordingly.

As a second case, let us consider the implementation of
NonRelationalHandler for Redis. The handler at first
establishes the connection with the data store (by using
Jedis, a client for Redis) then, as for MongoDB, instantiates
the specific mapping of Java objects into Redis manageable
resources. In particular, Redis needs the concept of collec-
tion, defining a sort of hierarchy of resources, typical in
resource-style architectures. It can be seen that the hier-
archy is simply inferred by the mapper from the path
coming from the uniform interface.

public class RedisNonRelationalHandler

implements NonRelationalHandler {
public void put(String path, Object object) {

Jedis jedis¼pool.getResource();

ByteArrayOutputStream baos¼
new ByteArrayOutputStream();

this.objectMapper.writeValue(baos, object);

ByteArrayInputStream bais¼
new ByteArrayInputStream(

baos.toByteArray());

this.redisMapper.persist(path, bais);

baos.close();

bais.close();

}

8. Application example

In this Section we present the actual implementation of
the Twitter example mentioned in Section 4.

The application is implemented by means of a small
number of classes, one for users, with a method for
registering new ones and for logging in, one for tweets
with methods for sending them, and finally one for the
“follower-followed” relationship, for updating it and for
the support to listening. Each of the classes is implemen-
ted by using one or more database objects, which are
instantiated according to the implementation that is
desired for it (MongoDB for users, Redis for tweets, and
HBase for the fellowships). More precisely, the database
objects are indeed handled by a support class that offers
them to all the other classes.

As an example, let us see the code for the main method,
sendTweet() for the class that handles tweets. We show
the two database objects of interest, tweetsDB and
followshipsDB of the NonRelationalHandler with
the respective constructors, used for the storage of the
tweets and of the relationships, respectively. Then, the
operations that involve the tweets are specified in a very
simple way, in terms of put and get operations on the
“DB” objects.
NonRelationalHandler tweetsDB¼
new RedisDbNonRelationalHandler();

NonRelationalHandler followshipsDB¼
QL systems, Information Systems (2013), http://dx.doi.
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new HBaseNonRelationalHandler();

…
public void sendTweet(Tweet tweet) {

// ADD TWEET TO THE SET OF ALL TWEETS

tweetsDB.put("tweets/" + tweet.getId(),

tweet);

// ADD TWEET TO TWEETS SENT BY USER 281283

Set oLong4 sentTweets¼
tweetsDB.get("sentTweets/" + user.getId());

sentTweets.add(tweet.getId());

tweetsDB.put("sentTweets/" + user.getId(),

sentTweets);

// NOTIFY FOLLOWERS

Set oLong4 followers¼
followshipsDB.get("followers/" +

user.getId());

for(Long followerId : followers) {
Set oLong4 unreadTweets¼

tweetsDB.get("unreadTweets/" +

followerId);

unreadTweets.add(tweet.getId());

tweetsDB.put("unreadTweets/" + followerId,

unreadTweets);

}
}

It is worth noting that the above code refers to the
specific systems only in the initialization of the objects
tweetsDB and followshipsDB. Thus, it would be possi-
ble to replace an underlying system with another by
simply changing the constructor for these objects.

In a technical context, it is clear that an application such
as the one described above can be easily implemented from
scratch, given the managers for the various systems. It is
important to notice that systems built on this programming
model address modularity, in the sense that the NoSQL
data stores can be easily replaced without affecting the
client code.

9. Experiments

In this section we show how SOS main operations
perform, comparing them with their native counterparts
in the libraries of our supported systems.

Being performances one of the major driving factors
towards the adoption of NoSQL systems, experiments will
focus on evaluating the latency overhead introduced by
the SOS layer in the execution of common insert/retrieve
operations. However, whenever the correspondence
between an SOS operation and the native one is not trivial,
other aspects will be considered as well, like verbosity of
the code and coupling with the specific objects structure.

9.1. Goals

Producing objective measurements about data store
performances is a hard task by itself. It requires trying
out different workloads, hardware configurations, and
tuning clustering aspects like consistency and availability
to ensure fair comparisons are produced [15]. The experi-
ments we present here do not have the claim to provide
insights about specific system behaviour and should not
be interpreted as a benchmark for comparing their pure
performances. They instead concentrate on evaluating SOS
Please cite this article as: P. Atzeni, et al., Uniform access to N
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efficiency against that of the native systems SOS itself is
built upon, within the same hardware configurations
and workloads, in order to produce unbiased, repeatable
results about SOS behaviour.

Also, being the SOS overhead essentially related to the
back and forth translation of the objects between their
Java representation, our common data model, and the data
store structures themselves, we expect it to be orthogonal
to the complexity of the queries executed, and to stay
almost constant throughout the different operations tested
on the various systems.

9.2. Hardware and software configuration

All experiments were run on a single machine config-
uration. However, since SOS translations run locally and in
main memory, we would expect the same results also with
more complex, cluster configurations. The machine has an
Intel Core i7 quad-core processor running at 2 GHz, 8 GB of
main memory, and a 240 GB SSD hard drive. The operative
system is OSX 10.8.1.

We used MongoDB version 1.8.5, accessed through the
official Java driver, version 2.5.3. Redis version is 2.4.6,
accessed through the Jedis driver, version 2.0.0. HBase
version is 0.90.0. Finally, Java version is 1.6.0.

9.3. Operations

Experiments focused on two main operations:
�

oSQ
Insertion of a single object.

�
 Retrieval of a single object by means of a lookup on its

identifier.

The two operations correspond to the primary use of
the SOS put and get, where objects are addressed by
specifying their own identifier and the collection they
belong to.

For both operations, we compare the SOS implementa-
tion with a custom implementation we developed out of
the native interfaces the systems ship with. The custom
implementation should match the correspondent SOS
operation semantics, sometimes resulting in a combina-
tion of atomic native operations being used. For instance,
in a PUT operation, systems are not provided with any
assumption about whether the object they are going to
insert may exist in advance or not. In SOS, the semantics of
the PUT operation, in case of collisions on the identifier,
imply the overwriting of the existing object with the new
one. Actually, this is also the default behaviour of many
NoSQL systems. However, for systems that behave differ-
ently (e.g. HBase), the native insertion is adapted to match
SOS semantics, by deleting preemptively the identified
object before the PUT itself.

9.4. Experimental setting

We developed four implementations of our use case: one
using the SOS interface and three using the native interfaces
of the data stores we consider (one implementation for each
L systems, Information Systems (2013), http://dx.doi.
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data store). The various implementations handle the same
data and, in order to have a meaningful comparison, native
implementations have been developed by using only the
basic operations that SOS provides support for. Actually,
one would argue that pure native implementations could
take advantage of the specific operations that data stores'
interfaces provide, which would arguably provide more
optimized results. However, since SOS data mapping is
compatible with native interfaces one, the use of SOS does
not rule out the possibility of exploiting the native operations
themselves. In fact, SOS can be used together with native
interfaces, thus not preventing specific optimizations on the
data store. For this reason, in our experiments we only
consider and compare performances of those native opera-
tions that have a counterpart in SOS, being the only ones
that, in a real usage scenario, would be replaced by SOS.

In running the experiments, we considered a number of
factors that could affect the objectiveness of the results.
These factors are usually related to the specific behaviours
of the various data stores. Some examples are:
�

P
o

Caching.

�
 Connection pooling.

�
 Ramp-up period before achieving full speed.

�
 Impromptu events (index updating, flushing, etc.).
We also noticed that most of these factors tend to
stabilize, or reach a predictable behaviour, after a number
of consecutive calls (insertions/retrievals) to the data store.
This threshold varies with the specific system, and, in
general, is around 10,000 calls.
Fig. 9. HBase exp

Fig. 10. Redis exp
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That said, operations are tested under three different
workloads (sessions): 2000, 20,000 and 200,000 sequential
calls.

Each session starts with 20,000 pilot calls, used to
stabilize the data store behaviour. Then, the actual calls,
used for measurements, are segmented into runs of 1000
consecutive calls. SOS runs and native runs are executed
on the same database and are interlaced, to further reduce
the impact of impromptu events. At the end, the duration
of SOS runs is summed, and an average is computed to get
the duration of the single call. The same happens for the
native runs. Finally, the average overhead introduced by
SOS is computed by subtracting the average native call
duration from the SOS one.

9.5. Results and discussion

For each system, we ran the experiments under the
three different workloads. As expected, SOS overhead is
not affected by query duration and stays quite constant
across different queries and systems. Also, being the SOS
translations run in main memory, latency produced turns
out to be very low, when compared to the entire query
execution time.

As shown in Figs. 9–11, latency in insertions ranges
from being almost negligible in MongoDB, where data
mapping is the easiest, to slightly less than 0.1 ms in Redis.
Latency in retrievals is significantly lower, and stays under
0.02 ms for all the systems tested.

It is worth noting that, being MongoDB insertions
asynchronous with respect to the method call return,
we are only able to reliably estimate the SOS overhead,
eriments.

eriments.
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Fig. 11. MongoDB experiments.

User resultUser = null;
Get get = new Get(Bytes.toBytes(

String.valueOf(281283)));
get.addFamily(Bytes.toBytes(columnFamilyName));
try {

Result result = table.get(get);
resultUser = new User();
resultUser.setFirstName(Bytes.toString(

result.getColumnLatest(
Bytes.toBytes(columnFamilyName),
Bytes.toBytes("firstName")).getValue()));

resultUser.setLastName(Bytes.toString(
result.getColumnLatest(

Bytes.toBytes(columnFamilyName),
Bytes.toBytes("lastName")).getValue()));

resultUser.setId(Bytes.toLong(
result.getColumnLatest(

Bytes.toBytes(columnFamilyName),
Bytes.toBytes("id")).getValue()));

resultUser.setPassword(Bytes.toString(
result.getColumnLatest(

Bytes.toBytes(columnFamilyName),
Bytes.toBytes("password")).getValue()));

resultUser.setUsername(Bytes.toString(
result.getColumnLatest(

Bytes.toBytes(columnFamilyName),
Bytes.toBytes("username")).getValue()));

} catch (IOException e) {
e.printStackTrace();

} finally {
return resultUser;

}

Fig. 12. The HBase native code for a simple SOS GET.

P. Atzeni et al. / Information Systems ] (]]]]) ]]]–]]]16
whereas the total insertion duration should be much
higher than that measured by our experiments.

As a conclusion, we believe that the overhead intro-
duced by SOS should not be a concern in most application
scenarios.

10. Related work

To the best of our knowledge, SOS is the first proposal
that aims to provide support to the management of
heterogeneity of NoSQL databases.

The approach for SOS we describe in this paper sup-
ports the heterogeneity of different NoSQL data models by
defining a common interface that relies on a general data
model. The idea of a common, pivot model finds its basis in
the MIDST and MIDST-RT tools [4–6]. In MIDST, the core
model (named “supermodel”) is the one to which every
other model converges. Whereas MIDST faces heterogene-
ity through explicit translations of schemas, in SOS sche-
mas are implied and translations are not needed. The SOS
common data model, therefore, is used to point out a
common interface. Also, the common data model in MIDST
generalizes the various models of interest, whereas in SOS
it is at an intermediate level, to provide suitable support.

The need for a runtime support to interoperability of
heterogeneous systems based on model and schema
translation was pointed out by Bernstein and Melnik [8]
and proposals in this direction, again for traditional (rela-
tional and object-oriented) models were formulated by
Terwilliger et al. [21] and by Mork et al. [16]. With
reference to NoSQL models, SOS is the first proposal in
the runtime direction: in fact, the whole algorithm takes
place at runtime and direct access to the system is granted.

From a methodological point of view, the need for a
uniform classification and principle generalization for
NoSQL databases is getting widely recognized; it was
described by Cattell [10], reporting a detailed character-
ization of non-relational systems.

Stonebraker [18] presents arguments tending to dimin-
ish the importance of NoSQL systems in the scientific
contest. Specifically, Stonebraker denounces the absence
of a consolidated standard for NoSQL models. Also, he uses
the absence of a formal query language as a supplemen-
tary argument for his thesis. Here we move from the
assumption that non-relational systems have a less strict
data model which cannot be subsumed under a fixed set
of rules as easily as for the relational system. Indeed, our
Please cite this article as: P. Atzeni, et al., Uniform access to N
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work can be a starting point for a standard interface, a
common data model and a general query language.

11. Conclusions

In this paper we introduced a programming model that
enables homogeneous treatment of non-relational schemas.

We provided a common data model that allows the
creation and querying of NoSQL databases defined in
MongoDB, HBase and Redis using a common set of simple
atomic operation. We also described an example where
the interface we provide enables the simultaneous use of
several NoSQL databases in a way that is transparent for
the application and for the programmers.
oSQL systems, Information Systems (2013), http://dx.doi.
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It could be observed that such elementary operations
might reduce the expressive power of the underlying
databases. Actually, in this paper we do not deal with a
formal analysis of information capacity of the involved
models. However, it is apparent that when lower level
primitives are involved, expressive power is not limited
with reference to the whole language, but only to the single
statement. This means that a query that can be expressed as
one statement in HBase, for example, will require two or
more statements in the common query language.

As an additional observation, let us comment on a
couple of aspects on the code that needs to be written
for applications by using SOS in comparison with the
native one. The SOS code is indeed much shorter and
decoupled from the actual objects structure. For example,
let us consider an SOS GET:

databaseHandler.get("users/281283");
It specifies operations that would require a much
longer piece of code when using native interfaces, as
shown in Fig. 12 with reference to HBase. Let us also
observe that the native code also needs to refer to the
internal structure of the object, and therefore it would
have to be rewritten if the structure evolves. Instead, the
SOS code stays the same even case of changes, which is a
welcome feature in a flexible world like the NoSQL field.

To the best of our knowledge this is the first attempt to
reconcile NoSQL models and their programming tactics
within a single framework. Our approach both offers a
theoretical basis for unification and provides a concrete
programming interface to address widespread problems.

We enable a sort of federated data access where
different NoSQL databases can be used together in a single
program. This might be even adopted in the future devel-
opment of data integration tools where adapters towards
NoSQL databases are still missing.
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