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A B S T R A C T

Manually integrating data of diverse formats and languages is vital to many artificial intelligence
applications. However, the task itself remains challenging and time-consuming. This paper
highlights the potential of Large Language Models (LLMs) to streamline data extraction and
resolution processes. Our approach aims to address the ongoing challenge of integrating het-
erogeneous data sources, encouraging advancements in the field of data engineering. Applied on
the specific use case of learning disorders in higher education, our research demonstrates LLMs’
capability to effectively extract data from unstructured sources. It is then further highlighted
that LLMs can enhance data integration by providing the ability to resolve entities originating
from multiple data sources. Crucially, the paper underscores the necessity of preliminary data
modeling decisions to ensure the success of such technological applications. By merging human
expertise with LLM-driven automation, this study advocates for the further exploration of
semi-autonomous data engineering pipelines.

. Introduction

Data integration is a critical step of any pipeline when considering multiple heterogeneous data sources [1]. Our previous
ork [2] has shown how an interconnected graph schema, modeled on Neo4j using data sources of different structures and

anguages, can yield insights that would not have otherwise existed had the sources existed in the database independently. However,
he manual construction of the graph database presented a significant limitation: the full integration was arduous and time-
onsuming. Despite considerable advancements in data integration automation, both through traditional semantic techniques [3,4]
nd recent language model applications [5], there remains a critical dependency on extensive fine-tuning over large training datasets.
he necessity for extensive training stems from the requirement for models to possess a deep comprehension of linguistic subtleties
nd domain-specific knowledge relevant to the studied use-case [5].

Large Language Models (LLMs) have significantly enhanced the ease with which we can retrieve and interpret data, showcasing
he ability to handle a diverse range of tasks. LLMs often require merely one or a few examples to perform tasks, and in certain cases,
ave outperformed traditional supervised models in terms of effectiveness and efficiency [6,7]. Despite the potential benefits, [8]
oints out that the effectiveness of LLMs in data integration, especially in completing complex tasks like entity matching or
esolution, remains uncertain. On the other hand, [9] argues that the unique ability of LLMs to understand semantic ambiguities and
ntegrate data from real-world scenarios necessitates a fundamental rethinking of established data management approaches. This
erspective underscores the necessity to recognize the potential benefits of incorporating these advanced tools into data management
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strategies. Considering this, our paper investigates the use of LLMs to aid in the automation of data extraction and integration tasks.
The work further investigates the collaborative role that human data modeling design could play to enhance such automated pipeline.
This is done by designing a conceptual schema for a unique and heterogeneous dataset from scratch, elaborating on the importance
of the design considerations. Consequently, we were able to use the schema to both guide the prompts fed into the LLM and ensure
that the output of the LLM respects the proposed schema. As a result, this paper demonstrated that the use of LLMs, guided by
prompts that consider human data modeling considerations, is a very encouraging approach to automate the integration of data
originating from heterogeneous sources. Hence, the contributions of this work are as follows:

1. Introducing a conceptual schema methodology designed to accommodate a selected dataset composed of multiple sources,
each varying in format and language.

2. Automating the extraction of entities from unstructured data sources using a Large Language Model in the context of the
defined conceptual schema.

3. Automating the data integration of entities originating from multiple data sources (structured/unstructured data) using a
Large Language Model in the context of the defined conceptual schema.

The introduction of data modeling and integration using LLMs into this paper’s methodology not only addresses the manual and
ime-consuming aspects of traditional data integration processes, but also addresses the advanced capabilities of LLMs to understand
nd process language nuances. This approach enables a more efficient and effective integration of diverse data sources, widening
he range of possibilities for data integration practices in various fields.

The remainder of the paper is structured as follows. Section 2 introduces the related work that supports the different approaches
nd strategies considered in our scientific methodology. Section 3 introduces the different types of structured and unstructured
ources that are used in our study. Section 4 details the data modeling choices that served as a foundation for the integration of the
eterogeneous sources and the manner in which an LLM can be used to automate the data integration process. Section 5 assesses the
uality of the proposed automated data integration process and describes some key takeaways and implications. Finally, Section 6
ummarizes our findings and proposes possible avenues for future research.

. Related work

Our approach lies in creating a graph representation of data coming from different sources to enable the execution of predictive
rtificial Intelligence algorithms [2]. Achieving this objective requires appropriate data engineering considerations, including the
efinition of a conceptual model to help design, develop and run these artificial intelligence solutions [10–12]. New research fields
re opening strong opportunities for the definition of conceptual models [13,14]. Simultaneously, research has also been devoted to
ddressing data integration with novel approaches [15–17]. As a result, it is imperative to investigate advancements in both fields:
odeling and integration. Prior to that, since the implementation is performed in Neo4j, a portion of this section is dedicated to

urther understanding the benefits of using such a tool.

.1. Data modeling using Neo4j graphs

One of the key challenges of our study has been to integrate various sources of information of different structures and languages.
or example, [18] already considered that integrating diverse and complex information such as structured databases, unstructured
ext, and multimedia content represented a significant challenge in Big Data applications. NoSQL databases have been discussed
s an appropriate solution for such endeavors due to their ability to adapt to different sources and data formats, as well as their
igh-performance capabilities and enhanced flexibility [19].

Graph data structures, which belong to the NoSQL family, are applied in areas where information about data inter-connectivity
r topology is of importance [20]. Modeling data as graphs allows querying relationships in the same manner as querying the data
tself. Instead of calculating and querying the connection steps as in relational databases, graph databases read the relationship from
torage directly [20]. Neo4j employs the so-called Property Graph Model [21]. Like any other graph database model, it relies on two
ypes of entities: nodes and edges. However, Property Graphs contrast with other graph data models in the way that they allow the
toring of properties directly on nodes and edges [21], which is not the case for other graph data models such as RDF [22]. Recent
iterature [23] commented on how graph databases are easily scalable, fast, efficient, and flexible. This was confirmed by [24] that
tilized Neo4j to model a time-evolving social network. The objective was to capture human activities and interactions sourced
rom mobile devices and wearable sensors. Notably, the study showcases the effectiveness and scalability of real-world queries,
ighlighting the efficiency of the approach [24]. Our study capitalizes on the capabilities of Neo4j to establish a directed graph,
acilitating the visualization of pertinent insights. The choice of Neo4j was particularly interesting, as it offered us the abilities to
ake advantage of the interconnectedness of a graph structure, while handling different data sources in a flexible and integrated
anner.

.2. Conceptual modeling and artificial intelligence

Datasets are nowadays analyzed by algorithms and systems with growing complexity. Conceptual modeling has always been
2
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modeling and dug in topics that include data modeling, process modeling, meta modeling, and model quality [25–27]. One of the
main questions during the last few years has been: ‘‘how conceptual modeling can help structure machine learning and practitioners’
projects ?’’ [11,28,29]. The conclusion has been that machine learning and data modeling can complement and help each other [30]
even to the point of defining systems that can auto-configure and optimize themselves [31]. The attention around this topic is
increasing to the point that a new research area identified with the CMAI acronym (Conceptual Model and Artificial Intelligence)
recently started to be developed [32]. In a similar vein, our conceptual modeling work has been oriented to complement value
adding AI applications, such as the recommender system proposed in our previous study [2]. Our present paper adopts a reciprocal
approach by taking advantage of Large Language Models to enhance data engineering tasks.

2.3. Advances in data modeling and integration

Defining a good conceptual model is still an open challenge in many research areas. Even recent literature shows how a big
esearch community is still working on defining and validating conceptual models for use-cases such as smart homes [33], European
aws [34] or even manufacturing business analytics [35]. Similarly, studies have shown that defining a conceptual model that
ntegrates many heterogeneous data sources is an even more complex and open challenge [27,36]. Many open questions persist,
articularly in the context of new tools and approaches like LLMs [16,17] or the synergy between knowledge graphs and natural
anguage [37].

The last several years have seen significant efforts to explore the use of NLP techniques and applications of language models
n the context of databases systems and conceptual modeling [38–40]. These applications also include data discovery and
ntegration [16,41,42]. For example, very encouraging results have emerged in using GPT-3.5 for the task of entity extraction
rom unstructured documents [43,44]. Other works such as [13,14] propose LLM-based tools that extract document values from
ata lakes. Recent research has also focused on considering GPT-3 in support of model construction and definition [45] or data
ransformation [46]. Some studies even attempted to substitute databases and data models with Generative AI Machines [47].

The problem of data integration has been widely studied in literature [15,48]. Classical solutions traditionally define a unified
ramework based on general meta-structures and a set of rules to map the sources into a target model [49,50]. In a similar fashion,
ur work maps all the available data into a target schema made of entities coming from different data sources. According to our
esearch, a conceptual model is indeed essential to succeed in integrating data from heterogeneous sources. That is why, our present
tudy explores how LLMs can be used to support the automation and enrichment of a graph data model. This research field is only
tarting to be explored, but some approaches have already shown good results [13,14,43,45].

. Dataset

The dataset used to demonstrate the data modeling and integration methodology is the same one used in our previous work [2].
he research falls under the Vrailexia project, an EU-funded project comprised of a consortium of universities across Europe [51].
he three different data sources made available as part of the project were questionnaires, interview transcripts, and virtual reality
VR) simulations. The content of this data centers around learning disorders in higher education. Hence, the details in this section
hall be heavily specific to this topic. Each source will be described to provide the context for the data modeling considerations in
ection 4.

.1. Questionnaire

The Vrailexia project has collected valuable data from dyslexic and non-dyslexic students through questionnaires digitally
istributed in high schools and universities in France and Spain.

ata description
The questionnaires capture the perception of students with respect to how potential difficulties affect them in their studies and

ow useful they would consider specific tools/strategies to cope with these challenges. Hence, the data collected from this source are
urely personal subjective opinions of the respondent. The questionnaires are provided in tabular form, serving as the first structured
ata source available for use. Table 1 describes the data source’s structure and its main components. The questionnaire collects
ersonal information relating to the respondents such as age, gender, dyslexic members in family, and educational background.
urthermore, it aims to understand what are the respondents’ potential learning disorders, learning difficulties and their perceived
sefulness of tools and learning strategies.

Table 1
Breakdown of questionnaire columns.
Category Number of columns

Personal Information 45
Learning Disorders 6
Severity of Learning Difficulties (Scale 1–5) 13
Usefulness of Tools (Scale 1–5) 18
Usefulness of Learning Strategies (Scale 1–5) 22
3
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Some of the tools and learning strategies are filled with the answer ‘‘I don’t know’’ to indicate that a student was not familiar with
specific solution (see examples in Appendix Table A.4). There were a total of 2106 respondents collected from both France and

pain. Approximately 23% of the respondents needed to be discarded as a result of leaving the majority of fields blank. 16% of the
espondents had Dyslexia, often combined with other learning disorders. It proved difficult to collect data for a large percentage of
yslexic respondents given that Dyslexia affects 5–17.5% of the population [52,53]. The average age of respondents is 21.5 and the
ajority are Female (69.5%). The average rated severity across all problems by students with learning disorders is 3.16 compared

o 2.43 for students without any learning disorder.

ata pre-processing
The pre-processing of the French and Spanish questionnaires involved several steps to clean and transform the data. The

ransformed columns were renamed to be more concise and descriptive. These final names would eventually be used as the names
f the nodes modeled in the graph database. For example, questions such as ‘‘What is your age? Do not enter your date of birth’’ and

‘Which university are you from?’’ are reformulated to ‘‘Age’’ and ‘‘University’’ respectively. Some columns such as the age required
ome additional pre-processing as the answer formats were not consistent or were invalid. Overall, these pre-processing steps helped
o clean and organize the questionnaire data, ensuring that it was in a suitable format for graph creation in Neo4j.

.2. Virtual reality (VR) simulations

As part of the present project, data collection from VR simulations was performed with dyslexic students and non-dyslexic
tudents. The purpose of the VR test is to investigate whether providing Dyslexic students with an interactive and immersive
etting could enhance their learning experience, whilst also educating teachers on the considerations to make for students in such
ondition [54].

ata description
Today, data has been collected in French, Spanish, and Italian universities. The participants are asked to perform two types of

ests in a VR environment: (1) A Silent Reading test to assess performance; (2) A Psychometric Rosenberg [55] test for the assessment
f anxiety, self-esteem and self-efficacy. The silent reading portion of the VR is a text comprehension exercise of which a respondent
as to answer a series of elementary questions based on a text. The psychometric portion of the test (Rosenberg) seeks to survey
he respondent’s level of confidence by asking them to rank a series of general questions on a scale of 1 (Strongly Disagree) to 5
Strongly Agree).

The data are exported in tabular format in three separate tables each storing the information about the user, silent reading
est, and Rosenberg test respectively. For example, the table storing the data regarding the silent-reading contains two columns for
ach of the six questions: the first column, a boolean representing whether the respondent answered the question correctly, and
he second, the time that has elapsed (in seconds) since the beginning of the test upon the respondents completing their answer. A
ample of a few columns from the three tables have been joined in Appendix Table A.5.

Overall, the data from the VR provide a complementary secondary structured data source with information about the respondents
hat would need to be integrated with data from the Questionnaire. At the time of conducting this research, only 100 responses were
ollected using the VR technology (of which 40% had at least one learning disorder) as it was only rolled-out for data collection in
023. Hence, the VR data was only used to model the schema of the database and to show how data from different sources can be
ntegrated.

ata pre-processing
As the first crucial pre-processing step, the names of respondents were anonymized by dropping the information for analysis. In

he silent-reading test, response times were recorded in a cumulative manner each time a respondent answered a question. As the
roperty of interest was the elapsed time for each individual question, the cumulative time records were transformed accordingly. In
his test, the respondents’ disorders were all collected in one column and so the answers needed to be parsed such that each disorder
as label-encoded. Finally, the age column required similar pre-processing as that described in the questionnaire by correcting
nswers provided in an invalid format.

.3. Interview transcripts

The interviews’ data was made available as text files of text-to-speech transcribed questions and answers with 10 French experts.

ata description
Various topics were covered related to students with learning disorders. Broadly speaking, the content of the interviews could

e extracted and categorized into several themes: the learning disorders cited in each interview, problems encountered by students
ith such disorders, and finally the tools/strategies that could be useful in coping with learning disorders or a specific difficulty.
here were roughly 25 questions per interview. The interview transcripts serve as the unstructured data source in demonstrating
he methodology.
4
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Data pre-processing
No pre-processing was conducted on these files. However, the title of the page was removed and names of the experts and

interviewers were anonymized by replacing them with ‘‘Expert’’ and ‘‘Interviewer’’ respectively.

4. Methodology

This section describes the methodological steps undertaken to model and integrate data from the multiple sources of interest.
In Section 4.1, the modeling approach is introduced and later demonstrated with a conceptual schema of the structured and
unstructured data sources. After that, Section 4.2 details the automation of data extraction. Section 4.3 addresses how the extracted
entities were disambiguated. Finally, Section 4.4 describes the data resolution of instances originating from the different data sources.

The methodological steps of our study, as detailed in Section 4, are structured to enable the adaptation of our modeling approach
to a broad array of use-cases. As mentioned previously in Section 1, and further justified in 2.1, Neo4j is the database system of
choice to store information from the various data sources. Hence, the conception of the schema is conducted in a manner that
follows the conventions of graph data modeling and Neo4j design. This means that schema representations are in property graph
model form whereas queries are demonstrated using Cypher: a query language optimized for property graphs [56].

4.1. Modeling the conceptual schema

Conceptual models offer the ability to integrate heterogeneous sources, creating a base for uncovering insights, and developing
data-driven solutions. However, designing such conceptual models that deal with multiple sources can present multiple challenges.
There are key differences in structure, format, and content between the sources as well as differences that may exist within each
source itself. The following Sections 4.1.1 and 4.1.2 both describe our data modeling steps and introduce the pillars that compose
the final schema of the integrated and interconnected graph database (Fig. 6).

4.1.1. Structured data sources
As described in more details in Section 3, the questionnaire collects the following information about the respondents:

• their personal information
• their learning disorders, if any
• their self-assessment about how problems associated with the disorders affect them in their daily lives
• their perception of the usefulness of tools and learning strategies that are known to be used by students with learning disorders.

Given the central role of the respondents, we decided to model them as nodes containing their personal information as properties
(e.g. anonymized identifier, age, and gender). Learning disorders (e.g. dyslexia, dysorthographia, dyspraxia, etc.) could also be
treated as characteristics of respondents but were instead modeled as an independent node type, since there was an interest in
capturing their relations to other nodes. Each problem, tool, and strategy was then categorized under their own respective node
types as they interact with the respondent rather than being inherent characteristics. Under these modeling choices, each respondent
was linked to the other four defined node types. Hence, the corresponding schema was centered around a dedicated node type called
Respondent, as shown in Fig. 1.

Fig. 1. Conceptual schema of the relationship between the Respondent node and the nodes derived from the questionnaire.
5
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A Respondent node HAS a set of Disorder nodes and a set of Problem nodes. The Respondent node is also HELPED_BY
sets of Strategy and Tool nodes. The relationships between the different nodes had to consider the answers of the respondent,
who rated each problem, tool, and strategy on a scale from one to five — a measure of a respondent’s connection with a specific
node. These values were modeled as the Strength attribute of the relationship. As an example, to find the respondents who consider
certain problems to be the most severe, one could use a navigation scheme making use of the Strength edge attribute. In Cypher
syntax:

1 (: Respondent)-[: HAS {strength: 5}]->(:Problem)

The answers of each respondent are easily traced back thanks to this representation. It was decided to relate every respondent to
all the nodes of types Problem, Tool, and Strategy, irrespective of the strength of their answer. The one exception was in the
case where the answer was left blank as this meant that the respondent had no prior experience or knowledge about the concerned
instance.

Storing the Strength attribute in the relationships instead of in the Problem, Tool, and Strategy (PST) nodes ensures that
no information is lost and prevents node or attribute redundancies. This modeling choice further facilitates the use of graph science
algorithms to process the database as a weighted graph. One limiting consequence however is that clustering algorithms, such as
k-means, are restricted to node attributes in Neo4j [57]. In our schema, executing these functions would imply disaggregating edge
properties (such as Strength), defeating the purpose of their modeled intent.

The VR data source, that serves as the second source of structured data, complements the questionnaire by providing further
details about the characteristics of the respondents. The VR test is modeled in a similar way by creating relationships between
Respondent nodes and the two additional node types (Test and Confidence), as illustrated in Fig. 2. Answers from the
silent reading test were modeled under Test nodes, while responses to the Rosenberg test fell under Confidence nodes. The
two consequent relationships depict the cases where a respondent ANSWERED a test that measured their reading performance and
FEELS a specific confidence level, as indicated through the Rosenberg questions. Similar to the Questionnaire, the test results and
confidence level of the respondent are stored as an edge attribute. For example, if the goal was to identify respondents who answered
a question correctly in less than ten seconds, the Cypher query for extracting the information from the graph is:

1 (: Respondent)-[r: ANSWERED {correct-answer: True})->(:Test)
2 WHERE r.time-taken < 10

The provided conceptual schema allows for a natural integration between the Questionnaire and VR test through the Respon-
dent and Disorder nodes. In practice, it is important to consider that there are issues that require additional attention before
achieving true integration. One such issue is the multi-lingual nature of the dataset (the questionnaire existed in both French and
Spanish). Node names were stored in French by default but also had complementary attributes with machine translations in English,
Spanish, and Italian. There is a long history of studies on the effectiveness of commercialized Neural Machine Translation Models
such as Google Translate to translate in many languages across several applications [58,59]. Another issue is to deal with cases
where a respondent had contributed to both the questionnaire and VR tests. Some controls were implemented to address such

Fig. 2. Conceptual schema of the relationship between a Respondent node with nodes derived from VR dataset.
6
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cases to prevent any overwriting of personal information, thus ensuring proper and accurate data reconciliation. An additional
attribute named Source was created within Respondent nodes to trace which data sources a respondent completed. Integrating
these structured data sources was eventually rather straightforward thanks to the properties that were introduced for reconciliation.
In contrast, the task was considerably more challenging for the unstructured data coming from the interviews.

4.1.2. Unstructured data sources
Modeling unstructured data sources is significantly less intuitive than that of their structured counterparts. Whereas structured

data nodes and relationships can be intuitively interpreted, unstructured data sources require more complex considerations.
Moreover, relying solely on human assessment could hinder any attempt to automate the data engineering pipeline. As described
in Section 3, the unstructured data of this study was collected in the form of interview transcripts with experts to better understand
the characteristics of learning disorders, the problems they may cause in higher education, and the ways in which affected students
could address these problems. Using this information, it is possible to enrich the existing schema by modeling a new node type,
Expert, that is critical for tracing the source of stored interview data. Each expert is modeled as a node with a unique anonymized
identifier, having the language of the interview and the name of the transcript file stored as attributes of the node. Fig. 3 highlights
the schema modeled with this new node type.

Fig. 3. Conceptual schema of the relationship between the Expert node, the nodes derived from the interview, and the resulting causal relationships.

The Expert node, as such, MENTIONS other nodes. This enables both to trace the origin of any Disorder or PST nodes to their
source expert. There are two additional relationships that can be further inferred from the interview data, namely that Problem
nodes can be CAUSED_BY specific Disorder nodes and that Problem nodes can be ADDRESSED_BY Tool and Strategy
nodes. These relationships are critical in that they create causal links between the different nodes, hence contributing to a more
interconnected graph structure. Moving forward, a Named-Entity Recognition task was designed and implemented to efficiently
extract data from the interview transcripts in an automated and scalable fashion. Its aim was to automatically extract information
from transcripts according to the modeling decisions illustrated in Fig. 3. The following subsection shall detail the methodology
employed for this step of the data engineering pipeline.

4.2. Data extraction

As the structured sources are available in tabular form, categorizing the columns into their respective nodes is sufficient for
loading data into the database. Specific transformations are made to facilitate the loading of such data into Neo4j, but these are
not to be detailed as they are not the focus of this paper. In contrast, the data of interest from the unstructured sources are not
immediately accessible. In the example of the interviews, the data relating to each entity is scattered throughout the transcripts.
Therefore, a Named Entity Recognition (NER) task is required before any database integration. An illustration of the task to be
performed is proposed in Fig. 4. To ensure the scalability of the data integration pipeline, it is imperative to rely on an automated
method to conduct the extraction process. Our paper proposes to do so using Open AI’s ‘‘GPT-3.5-Turbo’’ Large Language Model
(LLM). As previously discussed, this approach aims to demonstrate that with the correct data modeling choices and prompting, there
is a promising path to automating data integration in a generalized manner without necessarily requiring heavy machine learning
model training and deployment. The NER task conducted by the LLM needs to be able to perform node and relationship extraction
like the one illustrated in Fig. 4.

As part of the process of extracting nodes and relationships, unstructured interview transcripts underwent a series of processing
steps. First, these sources were segmented into manageable chunks to accommodate the LLM’s context window — its input token
limit. Each chunk was composed of a sequence of a question from the interviewer followed by the corresponding expert’s answer.
7
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Fig. 4. NER-based integration of interview data.

Chunks were all assigned metadata containing their file name and exact location in the raw transcripts. As stated in Section 4.1.2,
such information is later stored as node attributes to ensure the traceability of each piece of information.

Second, a prompt was constructed to employ the LLM to conduct the NER task. The drafted prompt provides details on the
information to be extracted as well as formatting guidelines. Here, it was important to provide context in a manner that respected
the schema previously shown in Fig. 3. The prompt also incorporates a few-shot learning approach by feeding the LLM with
example chunks along with the respective nodes and relationships that can be extracted from them. Constructing a strong prompt
was particularly challenging, as the LLM can be prone to hallucinate or deviate from its specified task. There is no established
comprehensive method yet to evaluate prompt design [60]. Hence, our prompt engineering step required many iterations and
refinements to cope with the sensitivity of the LLM’s interpretation of its provided instructions. The significant role of prompt
optimization to improve results was also demonstrated in other studies [61]. An excerpt from our final prompt can be found in
Appendix Fig. B.7.

Third, a rigorous post-processing pipeline was implemented to ensure the proper formatting of the extracted entities. The LLM
outputs were formatted strings of texts, on which a series of controls were applied to ensure their conformity to the prompted
instructions. Outputs were transformed into lists of nodes and relationships that were consequently loaded into the graph database.
These entities were only introduced into the database if they respected the modeled schema in Fig. 3. All imported nodes names
were stored in their original language. Machine translations of these names were added as node attributes in all the other official
languages of the Vrailexia project. This task was done as part of the NER process to ensure that the translations account for the
context used by the LLM during extraction. New studies have already shown the competitiveness of LLMs at translation compared
to traditional approaches [62,63]. Our NER method enabled dealing with unstructured data in an automated way, the quality of
which is further addressed in Section 5. Prior to that, a complementary task to NER in charge of handling extracted duplicates,
called disambiguation, is described in the next subsection.

4.3. Node disambiguation

A disambiguation strategy was deployed as the final processing step of the unstructured data extraction to enhance data
representation and trim out ‘‘near’’ duplicate node names from the NER task described in Section 4.2. The disambiguation involves
computing textual embeddings of the node names and their pairwise cosine similarity values. The node names were first pre-
processed to remove stop words and frequent words specific to each node type prior to computing these embeddings. Nodes with a
cosine similarity of 0.98 and higher are flagged for merging. The duplicate candidates are consequently merged together by selecting
one node name to be kept. Ideally, the preserved node name is the one having the most number of pairs in the duplicate groups. In
cases where multiple nodes held the highest number of duplicates, the preserved name was randomly selected from among them.
As this step aims to identify duplicates, it was reasonable, through trial and error, to set such a high threshold of cosine similarity.

Node disambiguation was not a focus of this paper but rather a sub-step between NER and entity resolution. The decision to
further explore or optimize disambiguation in the future shall be made depending on the outcomes of these two steps. Nevertheless,
disambiguation helped to ensure that the database does not suffer from a large volume of redundancies, which is essential to the
data integration described in the next subsection.

4.4. Data integration and resolution

The final step of the data engineering pipeline involves the integration of the dataset in a manner that enables navigation
across multiple data sources. Specifically, data resolution (or entity matching/entity resolution) is achieved by connecting similar
8
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Fig. 5. Example of two syntactically similar Problem node names originating from the questionnaire and interview transcripts respectively.

Problem, Tool, and Strategy nodes coming from heterogeneous sources. The illustrative example in Fig. 5 depicts two
Problem nodes coming from different sources conveying synonymous meanings. Data resolution aims to connect those two nodes.
Such an operation was critical in our previous work [2], which aimed at developing a recommender system use-case based on a
multi-source graph database. Data resolution was required to recover the insights from the expert interviews on how to address the
most severe issues of Dyslexic students from the questionnaires. This task had however been previously handled manually in [2],
requiring a considerable amount of time and representing an obstacle for automation.

Automating this approach faces a challenge: the inherent synonymy across the data sources is not always as explicit as illustrated
in Fig. 5. Similar nodes are often connected through analogous descriptions, contexts, or situations. Simply considering the cosine
similarity of textual embeddings or resorting to other traditional semantic approaches is insufficient to capture such nuanced
similarities [64] without introducing many false positives and false negatives. Therefore, it was necessary to take on the difficult
endeavor of not only resolving nodes that had syntactic similarities as that shown in Fig. 5, but also resolving nodes having a
contextual or nuanced common meaning, such as between ‘‘Reading Difficulties’’ and ‘‘Size of Text’’ (a relationship thematic in
nature). An LLM prompting approach was again employed to systematically attempt the challenge of achieving data integration in
an autonomous manner.

Several attempts were made at engineering a prompt that provided the LLM with sufficient context to label a pair of nodes. The
final prompt defined that nodes would be linked if they shared one of three types of similarities: syntactic, thematic, or functional.
Each similarity type was carefully defined in the prompt. In addition, the model was asked to explain the reason behind deeming
a pair similar or not before providing a label. Research has shown that such chain-of-thought prompting could improve the ability
of LLMs to conduct complex tasks [65]. The excerpt from our final prompt can be found in Appendix Fig. B.8. An IS_SIMILAR
relationship is introduced into the schema in cases where node names within the same node type are deemed similar and happen to
originate from different data sources. The final conceptual schema therefore ensures interconnectedness, enabling comprehensive
data analyses. Fig. 6 shows the final schema including the data resolution provided by this latest step.

Fig. 6. Final graph representation of the modeled schema.
9
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5. Discussion and results

This section evaluates the performance of the proposed data extraction and integration pipeline. The feasibility of integrating
uch methods into the overall data engineering pipeline is assessed through the computation of common evaluation metrics. The
ection concludes with key takeaways and implications from this work.

.1. Named entity recognition

The NER conducted by the LLM loads a total of 1,011 PST and Disorder nodes, with the Strategy nodes forming the largest
group of 360 distinct names (see full breakdown in Appendix Table C.6). From these nodes, 345 relationships were imported into
the database (see full breakdown in Appendix Table C.7). Evaluating nodes and relationships generated by the LLM is challenging
since the data sources are unstructured. The paragraph containing the exact location of entities is recorded to assess their actual
relevance and validity. A common approach to evaluate a model’s NER is to compute precision, recall, and the consequent
F1-score [6,44,66–68].

A quality evaluation dataset was designed by sampling 10% of the raw chunks from the interview transcripts along with their
respective generated nodes and relationships. We concede that such approach can be prone to sampling bias. In fact, studies have
considered this to be a demonstrative approach but have also noted the possibility of having a high variance in the results after
sampling repetitions [16,69]. Nevertheless, this demonstration could provide an understanding of whether further investigation
into using such tools is worthwhile. The sample was stratified such that it represented content from all the experts. Three
reviewers were then tasked to collectively read the sampled chunks and perform a manual NER to establish a ground truth of
nodes and relationships. Their results were then compared to the ones’ extracted from the model by recording the true positives
(correctly identified node/relationship), false positives (falsely identified node/relationship), and false negatives (unidentified
node/relationship). Table 2 below summarizes the results of the evaluation.

Table 2
Sample quality evaluation of GPT-3.5-Turbo on NER Task (in %).
Entity Recall Precision F1-score

All 75.41 69.84 72.49
Nodes 89.84 75.11 81.80
Relationships 52.87 58.64 55.34

In terms of node extraction, an F1-score of 81.8% is high considering that the LLM has not been fine-tuned on this project’s
efined node types and rather simply given definitions with two corresponding examples. The reviewers noted that some of the
entences in the chunks were difficult to understand as a result of missing words or incorrect transcribing of speech-to-text. Data
uality is surely a limitation that is difficult to improve without introducing extra steps that may limit the scalability of the pipeline.
ooking further into the defects, an analysis of the false positives in the sample found that there are a few relevant examples that
ere assigned to the wrong node type. The Disorder nodes were the ones most affected by this issue. However, these nodes may

hold a low impact on the overall database, as theoretically their weak semantic similarity to any of the nodes originating from the
structured sources would lead them to have a very low graph degree. Other false positives were found to be due to node names
composed of one word only, bearing no real meaning as a standalone. One such example of that was ‘‘Stubbornness’’, which was
extracted by the LLM to be a Problem node. Such naming causes interpretation issues. One could wonder, for instance, if the
problem refers to ‘‘dyslexics being stubborn’’, which would be completely wrong and misleading. After tracing back the chunk,
‘‘Stubbornness’’ was actually referring to the ‘‘stubbornness of teachers that sometimes refuse to accommodate the learning needs of
Dyslexic students’’. As a consequence, a description attribute was later introduced as a takeaway from this issue: effectively backing
up each node name with a contextual and detailed sentence. This description attribute was generated after completing the NER step
by feeding the chunks again to the LLM, but this time with the extracted node names as context. In fact, this description attribute
was integrated as a way to improve the quality of the Data Resolution task described in Section 5.2.

Since the relationships are extracted directly from the resulting nodes, the F1-score of 55.34% is unsurprisingly lower.
An incorrect node classification automatically flags its relationships as false. Other research seems to find similar patterns in
performances between nodes and relationships [44]. Therefore, the evaluation of extracted relationships should not be scrutinized
with the same breadth. Interestingly, precision, fared higher than recall. This lower recall was amplified by missing nodes from the
node extraction task. The phenomenon was found to be especially true when the LLM failed to find Disorder nodes, which in
turn caused the model to miss relationships with several distinct Problem nodes.

Overall, the results are very promising. The automatic pipeline was able to process all the interview transcripts and load the
xtracted information in about 1 h, which could be made significantly shorter if task parallelization was introduced. In comparison,
he human evaluation, comprising of three reviewers, working together to identify all the nodes and relationships for only a 10%
ample, took 2.5 h. Based on this, a naive estimate for a fully manual NER could be assumed to be about 25 h. This is excluding the
atigue that could ensue over time and the breaks (in days) which could be required. Thus, the entity extraction by humans could
asily take a few days for only 10 interview transcripts. The proposed automatic pipeline therefore surely offers strong potential
ains in terms of time consumption.

While the current approach already offers encouraging results, there are several avenues that can be explored to improve the
10
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creating a ground truth and also accept that the model would be specialized on a certain corpus of nodes and relationships [70].
Another potential solution is retrieval augmented generation (RAG) [70], a method that enriches the context provided to the LLM
using a knowledge base. In fact, RAG can be further enhanced by following a framework [71]. Finally, the prompt generation can
be delegated to a secondary LLM that has been fine-tuned to generate instructions specific to NER [72,73]. The benefits of such
potential improvements can apply to a wide array of tasks, including the one covered in Section 5.2.

5.2. Data resolution

The data resolution task can be thought of as a binary classification task. Hence, the same metrics of Section 5.1 shall be used.
here were 17,981 potential similar pair of nodes extracted from the questionnaires and interviews. In a real-world setting, it would
ot be practical to evaluate the total set and so 2% of the pairs were evaluated. Two reviewers were tasked to determine whether
pair of nodes were similar by simply labeling 1, when similar, or 0 otherwise. The reviewers were provided the same instructions

s the LLM to define the context of when to classify a pair of phrases as similar. They were also provided node descriptions to help
nderstand the context of nodes extracted from the interviews, as described in Section 5.1. Finally, the reviewers were privy to
he node type of each assessed pair. This information was not provided to the LLM to prevent entity matching biases, potentially
nduced by the pair sharing the same node type.

The sampling strategy was meticulously designed to ensure an equal distribution between positive and negative instances to
iligently evaluate the data resolution task. As the dataset was significantly unbalanced (thought to have less than 10% of positive
xamples), a special method was adopted to streamline the sample creation. The 17,981 pairs were sorted in descending order of
airwise cosine similarity to increase the likelihood of sampling positive examples. The group of reviewers consequently determined
hether a pair was similar until 1% of the total number of pairs was filled with positive examples. Evidently, as a result of the
reviously mentioned imbalance in the dataset, an equal number of negative examples were also identified through this iterative
rocedure. The fact that all these negative examples were sourced from the pool of high cosine similarity indicates that it is more
hallenging for the LLM to avoid false positives compared to resorting to random sampling.

Table 3 outlines the results of the LLM on the data resolution task for the selected sample. The results of the LLM were
enchmarked against a baseline model that clustered the node names’ textual embeddings using OpenAI’s ‘‘ada-002’’ model. This
aseline approach aims at grouping similar nodes together. It effectively identifies synonymous entities originating from different
ata sources, categorizing them under common cluster identifiers. The clustering was conducted using k-means, assigning the optimal
alue of k based on the highest average silhouette score.

Table 3
Results of the data resolution task (in %).
Model Node type Precision Recall F1-score

Baseline: Clustered Embeddings

Problem 91.67 29.72 44.40
Tool 36.00 24.32 23.03
Strategy 85.71 16.22 27.27
Total 59.09 23.42 33.54

GPT-3.5-Turbo

Problem 63.83 81.08 71.42
Tool 63.33 51.35 56.72
Strategy 80.77 56.76 66.67
Total 67.96 63.06 65.42

The LLM outperformed the baseline on all metrics when looking simply at the ‘‘Total’’ values, achieving a final F1-score of
5.42%. The Baseline outperformed only on the precision metric of the Problem and Strategy nodes. Relying on textual

embeddings, the Baseline model reached high precision by simply finding most of the syntactic similarities such as ‘‘Reading
Difficulties’’ and ‘‘Difficulty to Read’’. However, as illustrated by its poor recall, this model is unable to satisfy the requirements
for contextual and thematic similarities such as between ‘‘Reading Difficulties’’ and ‘‘Size of Text’’ or between ‘‘Text with every
other line highlighted’’ and ‘‘use colors to underline text’’. This is interesting considering that we expected that the LLM would be at
a disadvantage as a result of our sampling strategy biasing toward higher cosine similarity, hypothesized to benefit the clustering of
textual embeddings. The higher precision for Problem and Strategy nodes is therefore explained by the model only classifying
a pair as similar in a very small portion of instances, limiting the chances of causing false positives. It is somewhat surprising that
the precision of the Baseline on Tool was very low. Upon investigation of the examples, it was found that many of the unrelated
pairs of Tool names contained the word ‘‘Dyslexic’’ or ‘‘Dyslexia’’, increasing their cosine similarity and misleading the baseline
model to generate false positives. Considering this, it is impressive that the LLM was able to cope with such pitfalls and classify
correctly such nuanced examples as those provided above. It is worth noting however that in a considerable number of false positive
examples, the model was providing too broad justifications for thematic similarity. For example, a pair of Problem nodes were
labeled as similar because they were both ‘‘describing a difficulty in an educational setting’’ — the definition of the Problem node
type. Ironically, a prompt optimization that attempted to correct this by giving the model context about the pair’s node type yielded
a slightly lower precision.

In addition to the potential improvements proposed in Section 5.1, one can simply use a more advanced model like GPT-4,
which has been shown to yield higher F1-scores at entity resolution [74]. Moreover, one can change the prompt to only focus
11
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However, it could be more interesting to change the conception of the data modeling to accommodate for the fact that language
is in reality nuanced and that not all relationships are simply syntactic in nature. For example, the prompt can be modified to
also provide a confidence score if a pair is deemed similar [75]. Even though some studies observed that such method yielded
case-dependent results [76], this probability could be stored as an edge attribute of the similarity link, allowing for a more in-
depth analysis within the graph database. Alternatively, the modeling of the relationship, IS_SIMILAR, can be modified to allow
for three different possible relationships between two nodes from different data sources. For example, the relationships could be
IS_SYNTACTIC_SIMILAR, IS_THEMATIC_SIMILAR, and IS_FUNCTION_SIMILAR: the three possible contextual similarities defined to the
LLM, as mentioned in Section 4.4. This further exemplifies the importance of conceptual data modeling. In fact, [77] has constructed
a semantic framework to help human experts define a more comprehensive strategy to dealing with similarities when attempting
to integrate heterogeneous data sources. Combining such frameworks with our explored methodology may enhance the semantic
capabilities of LLMs.

5.3. Key takeaways and implications

To summarize, this research did not aim to find the perfect automatic tool for data integration, but to explore the potential of
Large Language Models (LLMs) in enhancing this process. The findings reveal that LLMs hold great promise. Minor adjustments to
prompts significantly impacted F1-score (increased by a factor of 1.76 in the case of entity resolution), highlighting the sensitivity
of these models. Data modeling proved invaluable for crafting effective prompts and contextualizing the instructions, reinforcing
the idea that while technology aids, it cannot replace the foundational task of data modeling. Post-processing the LLM’s output
emerged as a critical step, addressing issues like formatting errors, token limits, and incorrect node or relationship generation. This
underscores the importance of a robust data integration pipeline to manage such challenges, indicating areas for further refinement
and exploration in the realm of data privacy and processing efficiency.

Acknowledging the limitations of our work is equally important for a comprehensive understanding. The work has shown that
the data engineering pipeline can be automated in a manner to aid humans. However, it is still unclear how such approach can
be scaled to big data applications. The computational complexity of the tasks, especially that of entity resolution, could pose a
problem in cases of high volumes. Regardless, such methodology can prove to be vital to practitioners not operating in such cases.
Another limitation stems from the inherent bias associated with using a sample evaluation. This does not diminish the conclusions
themselves, however it is important to work and establish a comprehensive sampling framework to evaluate such large datasets
considering that a full evaluation is probably unrealistic in most use-cases. Finally, the data privacy concerns relating to using LLMs
cannot be ignored. If such concerns arise, one could rely on open-source models, such as Mixtral [78], Mistral [79] or Llama2 [80],
if the right resources are available.

6. Conclusion

This study demonstrates the effectiveness of a novel application of Large Language Models (LLMs) for integrating heterogeneous
data sources into a graph database. Through a comprehensive methodology that includes data modeling, extraction, and integration,
supported by technologies such as Neo4j and GPT-3.5-Turbo, complex data processing tasks can potentially be streamlined. Although
the data modeling choices have been centered around one specific dataset, several steps such as those relating to the modeling of
entities as well as the decision of where to store attributes can be expanded to other use-cases. This is especially applicable in the
context of an educational environment. The evaluation of both Named Entity Recognition and Data Resolution tasks illustrates the
effectiveness and efficiency of LLMs in handling diverse data types. The project highlights the synergy between human expertise in
data curation and AI’s capabilities: opening avenues for more nuanced and scalable research databases.

Our future work aims to develop a more robust framework for data modeling that can better capture the complexities of
educational data. The development of such a framework could also include an exploration to enhance an LLM’s understanding
of nodes and relationships by leveraging techniques such as retrieval augmented generation (RAG) and further prompt-engineering.
In addition, data modeling can be improved by accounting for the nuanced nature of language, potentially employing probabilistic
approaches to similarity and exploring the inclusion of syntactic, thematic, and functional relationships into the conceptual schema.
Moreover, since model fine-tuning is difficult due the lack of available ground truth, it is worthwhile investigating generating a
synthetic dataset using LLMs that are specifically tailored to the use-case [81]. It has also been established that different results
could be obtained from repeated executions of LLMs [82]. To assess the robustness of the proposed approach, it could be interesting
to perform a statistical analysis on multiple runs of the data extraction and integration processes. This quantitative evaluation could
also provide the opportunity to compare the robustness of different language models on this specific task. Finally, the optimization
of the disambiguation process presents a rich avenue for further research that is not covered here, as this study primarily focused
on data extraction and resolution.
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ppendix A. Nature of data used

See Tables A.4 and A.5.

ppendix B. Sample prompts for data integration

See Figs. B.7 and B.8.

ppendix C. Summary of data extracted from expert interviews using LLM

See Tables C.6 and C.7.

Table A.4
Example data from select columns of the questionnaire.
Variable Respondents

id 155 34
How old are you ? (do not enter your date of birth) 22 229
Gender F Prefer Not To Say
Dyslexics in Family Mother, Brother -
What university are you from? Nanterre Univ. CentraleSupélec
Are you dyslexic? Yes No
Have you been diagnosed with dyslexia? Yes -
*IF YOU ANSWER YES TO THE PREVIOUS QUESTION* - What
other difficulty(s) do you have besides dyslexia? [Calculation
difficulty - dyscalculia]

Yes -

*IF YOU ANSWER YES TO THE PREVIOUS QUESTION* - What
other difficulty(s) do you have besides dyslexia? [Other]

- -

Reading Difficulties 5 2
Presentation Attention 4 4
Audiobook Quality I don’t know 2
Images for Words 4 2
Oral Exams 3 1

Table A.5
Example data from select columns of the VR set.
Variable Respondents

id 361 362
created_at 2022-12-12 10:56 2022-12-12 18:00
age 22 32
sex female male
dyslexia_type Dysorthography Dyscalculia
language 4 4
‘‘Press quickly and twice in a row the yellow button’’ Time 81.0019 44.9134
‘‘Press quickly and twice in a row the yellow button’’ Correct TRUE TRUE
‘‘Try to say the word kiss/bisous/beso/bacio’’ Time 0 64.3253
‘‘Try to say the word kiss/bisous/beso/bacio’’ Correct FALSE TRUE
‘‘I feel that I am a person of worth, at least on an equal plane with others’’ 1 2
‘‘I feel that I have a number of good qualities’’ 1 2
13
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Fig. B.7. Excerpt from prompt used for NER task (text formatted as TEXT are user inputs).

Fig. B.8. Excerpt from prompt used for Entity Resolution task (text formatted as TEXT are user inputs).
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Table C.6
Extracted nodes from the interview transcripts using LLM.
Entity Number of nodes

Disorder 61
Problem 314
Tool 276
Strategy 360

Table C.7
Extracted relationships from the interview transcripts using LLM.
Entity pair Number of relationships

(Problem, Disorder) 83
(Problem, Tool) 125
(Problem, Strategy) 137
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