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Titre: Integration de données : un défi en constante évolution pour de nouvelles perspectivesde recherche
Mots clés: Integration de données, NoSQL, Data pour IA, Métamodèles
Résumé:Les données sont omniprésentes et peuventêtre produites et stockées à partir de touttype de contextes au quotidien. Les struc-tures utilisées pour stocker les données sonthétérogènes, en constante évolution et util-isées par les applications selon des modèlesvariés. Il est démontré que la valeur essentiellede toute application réside dans sa capacité àaccéder à des données utiles et fiables. Leurtraitement permet d’extraire de la valeur et desinformations essentielles. D’autre part, plus lesdonnées sont différentes et hétérogènes, plusleur analyse, leur compréhension et les prédic-tions possibles sont complexes.Dans ce travail, je résume une partie de mescontributions de recherche au domaine de

l’intégration de données hétérogènes. La pre-mière partie présente des scénarios classiquesd’intégration de données sur des bases dedonnées NoSQL. La deuxième partie abordele défi du développement de nouvelles tech-niques d’intégration conçues pour alimenterles algorithmes d’intelligence artificielle. Jeprésente aussi les applications issues de mul-tiples domaines utilisés comme études de caslors du développement des idées de recherche: villes intelligentes, stockage du carbone, pro-filage utilisateur, reconnaissance musicale etintégration de données médicales. Enfin, ladernière partie examine l’application des tech-niques d’intégration de données à de nouveauxdéfis et le développement de nouvelles per-spectives axées sur les données pour l’IA.

Title: Data integration: a perpetually evolving challenge for new research perspectives
Keywords: Data integration, NoSQL, Data for AI, Metamodeling
Abstract: Data is everywhere and can be pro-duced and stored from everyday scenarios.The structures used for storing data are hetero-geneous, continuously evolving, and consumedby applications according to different patterns.It is demonstrated that most of the value of anyapplication is in the ability to access useful andreliable data. From data processing, we can ex-tract value and insights. In addition, the moredifferent and heterogeneous the data are, themore challenging it is to analyze, understand,and make predictions on top of them.In the HDR manuscript, I summarize part ofmy research contributions to the field of het-erogeneous data integration. The first part of

the manuscript presents classical data integra-tion scenarios on NoSQL databases. The sec-ond part addresses the challenge of develop-ing new integration techniques conceived forfeeding Artificial Intelligence algorithms. Theillustration will focus on applications arisingfrom multiple domains used as case studiesduring the development of the research ideas:smart cities, carbon storage, user profiling, mu-sic recognition, and medical data integration.Finally, the last part investigates the applica-tion of data integration techniques to new chal-lenges and the development of new prospec-tive oriented in data for AI.
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1 - Introduction

Data can be produced and stored according to different representations and
structures. This heterogeneity is an always-evolving playground set for data-
integration research. The key challenge is to ensure that any application using
these sources can extract value by combining all of them: no matter their
nature and size, no matter how different they become, and no matter how
the applications will evolve.
Data integration canbe seen as an ever-evolving research challenge that adapts
in order to support new data sources, new languages, new formats, and new
applications. For the past 15 years, I have been interested in various research
problems related to data integration, working in strong collaboration with
colleagues and PhD students from companies and research laboratories in
France and abroad. My research has focused on (i) the problems related to
data integration using a meta model approach; (ii) exploring the potential
of Large Language Models (LLMs) to streamline data extraction and resolu-
tion processes (iii) those relating to the integration andmanipulation of large
datasets for running applications using Artificial Intelligence in a real industry
real-case scenario.

Data 
Integration

Graph and LLM 
Abstract

Metamodel for 
NoSQL

Enriching Time 
Series

Artificial 
Intelligence

Data for AI
analysis

GEOTS Vrailexia Smart Cities and
Energy Conversion

NOAM ProclaimGARDD

Figure 1.1: Contributions of the manuscript
Data integration enables transparent access to heterogeneous data sources,
and an application can access multiple autonomous and heterogeneous (dif-
ferent datamodels, data schemes, data collection systems) sources uniformly,
without affecting the behavior of each source. Having such an integrated and
uniform view of data helps any application to run and analyze data also in
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the dynamic environment of Artificial Intelligence technique. As shown in Fig-
ure 1.1 during my research I explored the challenge from both sides. As first I
analyzed different techniques for integrating data (contribution in blue) then
I explored how such data can be beneficial for multiple applications and con-
text (contributions in red). Such exchange between data and Artificial Intelli-
gence is still an open challenge that is going to guide my future research.

1.1 . Overview of the contributions

The work presented in this manuscript focuses on a selection of my research
contributions in data integration. The research deals with the design of data
models and their practical usage by different applications. In the rest of this
introduction, I present an overview of the research contributions.
Previous Research

During my master’s thesis and during my PhD, I explored data integration
techniques from a number of perspectives. From the theoretical perspec-
tive, we consider Model Management as the framework to formalize transla-
tion problems. A schema, an instance of a certain model, will be translated
to another schema instance of a target model. We recognize the need for a
model-independent solution to schema and data translation and, in general,
to model management problems. Hence, we presented MIDST, a tool born
from many years of experience on schema and data translation, based on a
metalevel approach [J11]. From the performance perspective, we appreciate
the value of runtime environments, where translations are not performed out
of the system with an import-translate-export process; by contrast, we illus-
trate, as a novel contribution, MIDST-RT, an evolution of MIDST, where trans-
lations are performed at runtime and even generate views of data [J10], [I21].
During these years, the newly introduced NoSQL systems gaveme the oppor-
tunity to develop SOS, a uniform interface to these systems that also explored
indexing strategies [J9], [I19].
Metamodel Data Integration - NOAM for NoSQL

After the achievement of the first promising results with SOS, I continued
working on the NoSQL datastores, finalizing the formalization of the research
studies on the definition of a general data model whose objective was to ex-
press the main characteristics of the NoSQL datastore families. In this re-
search, I continued exploring meta-modeling and the research in collabora-
tion with Luca Cabibbo and Paolo Atzeni (RomaTre University). The results
are described in Chapter 2 [J6], [I17]. A second part of this research on NoSQL
databases was also developed in collaboration with Ioana Manolescu (INRIA),
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where we explored how to efficiently distribute data in Amazon DynamoDB
[I16], [B1], [I20]. The same research track was extended to MongoDB, where,
with an intern,ModithaHewasinghage, and aPostDoc student, Adnan ElMous-
sawi [I13], we explored how to integrate and distribute data in a cloud envi-
ronment and in MongoDB [J5], [I12].

Graph data integration and LLM

In this second phase of the studies, I focused on graph data representation
and the emerging Large Language Model (LLM) techniques. The dataset used
to demonstrate the data modeling and integrationmethodology represented
data of dyslexic students in the context of the Vrailexia project, an EU-funded
project led by a consortium of universities across Europe. The three different
data sources made available as part of the project were questionnaires, inter-
view transcripts, and virtual reality (VR) simulations. After the definition of an
interconnected graph schema, modeled on Neo4j, I explored the potential of
Large Language Models (LLMs) to streamline data extraction and resolution
processes. The approach aims to address the ongoing challenge of integrat-
ing heterogeneous data sources, encouraging advancements in the field of
data engineering [J2], [I5], [J3]. This research is illustrated in Chapter 3.

Data Integration for Smart Cities and Energy Conversion

Thanks to the expertise in data integration methodologies all along my re-
search, wedecided, in collaborationwith EkaterinaGilman (University ofOulu),
to study all themodels of data integration useful for smart cities development.
This work is described in Chapter 4. The research was extended to energy
conversion problems in collaboration with Tatiana Morosuk (TUB - Germany)
and an intern, Konstantinos Mira. The research showed how it is possible to
use artificial intelligence and machine learning algorithms in energy conver-
sion, management evaluation, and optimization tasks. The work shows how
essential it is in this context to give priority to acquiring and integrating real-
world experimental and simulated data and adopting standardized, explicit
reporting in research publications [J1],[J4].

Time series for AI

In the context of an industry collaboration with the SLB company, I focused
on integrating attributes coming from heterogeneous sources. The first part
of this research was developed by a Ph.D. student, Molood Arman, and an
intern, René Gómez Londoño. In this research context, we developed PRO-
CLAIM (PROfile-based Cluster-Labeling for AttrIbute Matching), a metamodel
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that performs an automatic, unsupervised clustering-based approach tomatch
attributes of a large number of heterogeneous sources [I8], [I1].
Thanks to the work of a second PhD student, Shwetha Salimath, we integrate
time series into this model. We then developed on top of this data a Python
library, GeoTS, to apply cutting-edge time series classification models to per-
form data correlation in a completely automated setting. The development of
this library was possible thanks to the flexibility of the newly designed model
[I12].

Other work

With respect to the different possible data representations and usages, I also
studied data coming from Twitter, defining a new approach that identifies
the reputation of an entity on the basis of the set of events it is involved in,
by providing a transparent and self-explanatory way for interpreting repu-
tation[J8], [I14], [I15]. Again, focused on the discovery and manipulation of
entities, I analyzed data coming from a statistical environment. In collabo-
ration with the Central Bank of Italy, we explored a high-level language, EXL,
used for the declarative specification of statistical programs, and a transla-
tion into executable form in various target systems is available. The language
is based on the theory of schema mappings, in particular those defined by
a specific class of TGDs, which we actually use to optimize user programs
and facilitate the translation towards several target systems [J7], [I18]. I also
explored metal forging processes and the usage of advanced finite element
methods. In collaboration with three interns, Shwetha Salimath, Siying Li,
and Meduri Venkata Shivadity, we explored the possibility of using a Graph
Neural Network-based graph prediction model to act as a surrogate model
for parameter search space exploration, and which exhibits a time cost re-
duced by an order of magnitude[I6], [I7], [I9], [I10]. Finally, with the collab-
oration of an intern (Dylan Sechet) and a colleague (Matthieu Kowalski), we
explored the possibility of developing a reliable coarse-level instrument de-
tection methodology by bridging the gap between detailed instrument identi-
fication and group-level recognition, paving theway for further advancements
in this domain [I4].

1.2 . Organization of the manuscript

This manuscript is structured along four main chapters (Chapters 2 to 5) de-
voted to the different lines of researchpresented above. To keep themanuscript
self-contained, each chapter beginswith a concise presentation of background
concepts. Chapter 6 concludes themanuscript with perspectives about ongo-
ing and future research directions. Finally, Appendix A is a detailed curriculum
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vitae and Appendix B provides a complete list of publications.
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2 - Data integration in NoSQL

NoSQL database systems are today an effective solution tomanage large data
sets distributed over many servers. In this chapter, we present a high-level
data model for NoSQL databases, called NoSQL Abstract Model (NoAM) and
show how it can be used as an intermediate data representation in the con-
text of a general design methodology for NoSQL applications having initial
steps that are independent of the individual target system. We propose a de-
sign process that includes a conceptual phase, as is common in traditional
application, followed (and this is unconventional and original) by a system-
independent logical design phase, where the intermediate representation is
used as the basis for both modeling and performance aspects, with only a
final phase that takes into account the specific features of individual systems.
The chapter is adapted from the following papers a:

• Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, Riccardo Torlone: Data
modeling in the NoSQL world, Comput. Stand. Interfaces 2020

• Paolo Atzeni, Luigi Bellomarini, Francesca Bugiotti, Marco De Leonardis:
Executable schemamappings for statistical data processing, Distributed Par-allel Databases 2018

aFor all the papers, a link is provided to direct access to the source.

2.1 Background and context . . . . . . . . . . . . 14

2.2 Methodology: the NoAM data model . . . . 20

2.3 Discussion and results . . . . . . . . . . . . . . 22

2.4 Related work . . . . . . . . . . . . . . . . . . . 32

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . 34

The chapter is organized as follows. In Section 2.1, we illustrate the features of
the main categories of NoSQL systems arguing that, for each of them, there
exists a sort of data model. In Section 2.2 we present NoAM, our system-
independent data model for NoSQL databases, and in Section 2.3 we discuss
our designmethodology for NoSQL databases. In Section 2.4we briefly review
some related literature. Finally, in Section 2.5 we draw some conclusions.

2.1 . Background and context
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mary : Player

username = "mary"

firstName = "Mary"

lastName = "Wilson"

rick : Player

username = "rick"

firstName = "Ricky"

lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]
...

...

...

...

...

...

Figure 2.1: Sample application objects.

In this section we briefly present and compare a number of representative
NoSQL systems, to make apparent the heterogeneity (as well as the similari-
ties) in the way they organize data and in their programming interfaces. We
first introduce a sample application dataset, and then we show how to repre-
sent these data in the representative systems we consider.

2.1.1 . Running example
Let us consider, as a running example, an application for an on-line social
game. This is indeed a typical scenario in which the use of a NoSQL database
is suitable, that is, a simple next-generation Web application (as discussed in
the Introduction).
The application should manage various types of objects, including players,
games, and rounds. A few representative objects are shown in Figure 2.1. The
figure is a UML object diagram. Boxes and arrows denote objects and rela-
tionships between them, respectively.
To represent a dataset in a NoSQL database, it is often useful to arrange data
in aggregates [138, 183]. Each aggregate is a group of related application ob-
jects, representing a unit of data access and atomic manipulation. In our ex-
ample, relevant aggregates are players and games, as shown by closed curves
in Figure 2.2. Note that the rounds of a game are grouped within the game
itself. In general, aggregates can be considered as complex-value objects [1],
as shown in Figure 2.3.
The data access operations needed by our on-line social game are simple
read-write operations on individual aggregates; for example, create a new
player and retrieve a certain game. Other operations involve just a portion
of an aggregate; for example, add a round to an existing game. In general,
it is indeed the case that most real applications require only operations that
access individual aggregates [87, 92].

14



mary : Player

username = "mary"

firstName = "Mary"

lastName = "Wilson"

rick : Player

username = "rick"

firstName = "Ricky"

lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0]
rounds[1]

: Move : Move

moves[0]
moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Figure 2.2: Sample aggregates (as groups of objects).
Player:mary : ⟨

username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

⟨ game : Game:2345, opponent : Player:rick ⟩,
⟨ game : Game:2611, opponent : Player:ann ⟩

}
⟩

Player:rick : ⟨
username : "rick",
firstName : "Ricky",
lastName : "Doe",
score : 42,
games : {

⟨ game : Game:2345, opponent : Player:mary ⟩,
⟨ game : Game:7425, opponent : Player:ann ⟩,
⟨ game : Game:1241, opponent : Player:johnny ⟩

}
⟩

Game:2345 : ⟨
id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

⟨ moves : . . . , comments : . . . ⟩,
⟨ moves : . . . , actions : . . . , spell : . . . ⟩

}
⟩

Figure 2.3: Sample aggregates (as complex values).

2.1.2 . NoSQL database models
NoSQL database systems organize their data according to quite different data
models. They usually provide simple read-write data-access operations, which
also differ from system to system. Despite this heterogeneity, a few main
categories can be identified according to the modeling features of these sys-
tems [87, 346]: key-value stores, document stores, extensible record stores,
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plus others (e.g., graph databases) that are beyond the scope of this chapter.
2.1.3 . Key-value stores

In general, in a key-value store, a database is a schemaless collection of key-
value pairs, with data access operations on either individual key-value pairs
or groups of related pairs.
As a representative key-value store we consider here Oracle NoSQL [308]. In
this system, keys are structured; they are composed of amajor key and aminor
key. The major key is a non-empty sequence of strings. The minor key is a
sequence of strings. Each element of a key is called a component of the key.
On the other hand, each value is an uninterpreted binary string.
A sample key-value is the pair composed of key /Player/mary/-/username and
value "mary". In the key, symbol ‘/ ’ separates key components, while symbol
‘-’ separates themajor key from theminor key. The distinction betweenmajor
key andminor is especially relevant to control data distribution and sharding.
In a pair, the value can be either a simple value (such as the string "mary") or
a complex value. In the former case, it is common to use some data inter-
change format (such as XML, JSON, and Protocol Buffers [361]) to represent
such complex values.
Oracle NoSQL offers simple atomic access operations, to access and modify
individual key-value pairs: put(key, value) to add or modify a key value pair
and get(key) to retrieve a value, given the key. Oracle NoSQL also provides an
atomic multiGet(majorKey) operation to access a group of related key-value
pairs, and specifically the pairs having the samemajor key. Moreover, it offers
an execute operation for executing multiple put operations in an atomic and
efficient way (provided that the keys specified in these operations all share a
same major key).
The data representation for a dataset in a key-value store can be based on
aggregates. These are two common representations for aggregates:

• Representing an aggregate using a single key-value pair. The key (major
key) is the aggregate identifier. The value is the complex value of the
aggregate. See Figure 2.4a.

• Representing an aggregate using multiple key-value pairs. Specifically,
the aggregate is split in parts that need to be accessed or modified sep-
arately, and each part is represented by a distinct but related key-value
pair. The aggregate identifier is used as major key for all these parts,
while the minor key identifies the part within the aggregate. See Fig-
ure 2.4b.

The data access operations provided by key-value stores usually enable an
efficient and atomic data access to aggregates with respect to both data rep-
resentations. Indeed, all systems support the access to individual key-value
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key (/major/key/-) value
/Player/mary/- { username: "mary", firstName: "Mary", ... }
/Player/rick/- { username: "rick", firstName: "Ricky", ... }
/Game/2345/- { id: "2345", firstPlayer: "Player:mary", ... }a Single key-value pair per aggregate

key (/major/key/-/minor/key) value
Player/mary/-/username "mary"
Player/mary/-/firstName "Mary"
Player/mary/-/lastName "Wilson"
Player/mary/-/games[0] {game: "Game:2345", opponent: "Player:rick"}
Player/mary/-/games[1] {game: "Game:2611", opponent: "Player:ann"}
Player/rick/-/username "rick"
Player/rick/-/firstName "Ricky"
Player/rick/-/lastName "Doe"
Player/rick/-/score 42
Player/rick/-/games[0] {game: "Game:2345", opponent: "Player:mary"}
Player/rick/-/games[1] {game: "Game:7425", opponent: "Player:ann"}
Player/rick/-/games[2] {game: "Game:1241", opponent: "Player:johnny"}
Game/2345/-/id 2345
Game/2345/-/firstPlayer "Player:mary"
Game/2345/-/secondPlayer "Player:rick"
Game/2345/-/rounds[0] {moves: ..., comments: ...}
Game/2345/-/rounds[1] {moves: ..., actions: ..., spell: ...}b Multiple key-value pairs per aggregate
Figure 2.4: Representing aggregates in Oracle NoSQL.

pairs (useful in the former case) and most of them (such as Oracle NoSQL)
provide also the access to groups of related key-value pairs (required in the
latter case).

2.1.4 . Document stores
In a document store, a database is a set of documents, each having a complex
structure and value.
In this category, a widely used system is MongoDB [279]. It is an open-source,
document-orienteddata store that offers a full-index support on any attribute,
a rich document-based query API and Map-Reduce support.
In MongoDB, a database comprises one or more collections. Each collection is
a named group of documents. Each document is a structured document, that
is, a complex value, a set of attribute-value pairs, which can comprise sim-
ple values, lists, and even nested documents. Thus, documents are neither
freeform text documents nor Office documents. Documents are schemaless,
that is, each document can have its own attributes, defined at runtime.
Specifically, MongoDB documents are based on Binary JSON (BSON), a variant
of the popular JSON format. Values constituting documents can be of the fol-
lowing types: (i) basic types, such strings numbers, dates, and boolean values;
(ii) arrays, i.e., ordered sequences of values; and (iii) documents (or objects):
a document is a collection of zero or more key-value pairs, where each key
is a plain string, while each value is of any of these types. Figure 2.5 shows
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[
"username" : "mary",
"firstName" : "Mary",
"lastName" : "Wilson",
"games" : {

[ "id" : "Game:2345", "opponent" : "Player:rick" ],
[ "id" : "Game:2611", "opponent" : "Player:ann"]

}
]

Figure 2.5: The JSON representation of the complex value of a sample Playerobject.
collection document id document
Player mary {"_id":"mary", "username":"mary", "firstName":"Mary", ...}
Player rick {"_id":"rick", "username":"rick", "firstName":"Rock", ...}
Game 2345 {"_id":"2345", "firstPlayer":"Player:mary", ...}

Figure 2.6: Representing aggregates in MongoDB.
a JSON representation of the complex value of a sample Player aggregate
object given in Figures 2.2 and 2.3.
Amain document is a top-level document with a unique identifier, represented
by a special attribute _id, associated to a value of a special type ObjectId.
Data access operations are usually over individual documents, which are units
of data distribution and atomic data manipulation. The basic operations of-
fered by MongoDB are as follows: insert(coll, doc) adds a main document doc
into collection coll; and find(coll, selector) retrieves from collection coll all main
documents matching document selector. The simplest selector is the empty
document {}, whichmatches with every document; it allows to retrieve all doc-
uments in a collection. Another useful selector is document {_id:ID}, which
matches with the document having identifier ID. There is also an operation to
update a document. Moreover, it is also possible to access or update just a
specific portion of a document.
In a document store, each aggregate is usually represented by a single main
document. The document collection corresponds to the aggregate class (or
type). The document identifier ID is the aggregate identifier. The content of
the document is the complex-value of the aggregate, in JSON/BSON, including
also an additional attribute-value pair {_id:ID} for the identifier. See Figure 2.6.
Also in this case, the data access operations offered by document stores (such
asMongoDB) provide an atomic and efficient data access to aggregates. Specif-
ically, they generally support both operations on individual aggregates, or to
specific portions of them, thereof.

2.1.5 . Extensible record stores
In an extensible record store, a database is a set of tables, each table is a set of
rows, and each row contains a set of attributes (or columns), eachwith a name
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table Player
username firstName lastName score games[0] games[1] games[2]
"mary" "Mary" "Wilson" { game: ..., opponent: ... } { ... }
"rick" "Ricky" "Doe" 42 { game: ..., opponent: ... } { ... } { ... }

table Game
id firstPlayer secondPlayer rounds[0] rounds[1] rounds[2]
2345 Player:mary Player:rick { moves: ..., comments: ... } { ... }

Figure 2.7: Representing aggregates in DynamoDB (abridged).

and a value. Rows in a table are not required to have the same attributes.
Data access operations are usually over individual rows, which are units of
data distribution and atomic data manipulation.
A representative extensible record store is Amazon DynamoDB [18], a NoSQL
database service provided on the cloud by Amazon Web Services (AWS). In
DynamoDB a database is organized in tables. A table is a set of items. Each
item contains one or more attributes, each with a name and a value (or a set
of values). Each table designates an attribute as primary key. Items in a same
table are not required to have the same set of attributes— apart from the pri-
mary key, which is the only mandatory attribute of a table. Thus, DynamoDB
databases are mostly schemaless.
Specifically, the primary key is composed of a partition key and an optional sort
key. If the primary key of a table includes a sort key, then DynamoDB stores
together all the items having the same partition key, in such a way that they
can be accessed in an efficient way.
Distribution is operated at the item level and, for each table, is controlled by
the partition key only.
Some operations offered by DynamoDB are as follows: putItem(table, key, av)
adds (or modifies) a new item in table tablewith primary key key, using the set
of attribute-value pairs av; and getItem(table, key) retrieves the item of table
table having primary key key. It is also possible to access or update just a
subset of the attributes of an item. All these operations can be executed in
an efficient way.
In an extensible record store (such as DynamoDB), each aggregate can be
represented by a record/row/item. The table corresponds to the aggregate
class (or type). Theprimary key (partition key) is the aggregate identifier. Then,
the item can have a distinct attribute-value pair for each top-level attribute of
the complex value of the aggregate (or for each major part of the aggregate
that needs to be accessed separately). See Figure 2.7.
Again, the data access operations provided by the systems in this category
support an efficient data access to aggregates or to specific portions of them.

2.1.6 . Comparison
To summarize, it is possible to say that eachNoSQL systemprovides a number
of “modeling elements” to organize data, which can be considered the “data
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model” of the system. Moreover, the various systems can be effectively classi-
fied in a few main categories, where each category is based on “data models”
that, even though not identical, do share some similarities. In the next sec-
tion we show that it is possible to pursue these similarities, thus defining an
“abstract data model” for NoSQL databases.

2.2 . Methodology: the NoAM data model

In this section, we present NoAM (NoSQL Abstract Data Model), a system-
independent data model for NoSQL databases. In the following section, we
will also discuss how this data model can be used to support the design of
NoSQL databases.
Intuitively, the NoAMdatamodel exploits the commonalities of the datamod-
eling elements available in the various NoSQL systems and introduces ab-
stractions to balance their differences and variations.
A first observation is that all NoSQL systems have a data modeling element
that is a data access and distribution unit. By “data access unit” we mean
that the system offers operations to access andmanipulate an individual unit
at a time, in an atomic, efficient, and scalable way. By “distribution unit” we
mean that each unit is entirely stored in a server of the cluster, whereas differ-
ent units are distributed among the various servers. With reference to major
NoSQL categories, this element is: (i) a group of related key-value pairs, in key-
value stores; (ii) a document, in document stores; or (iii) a record/row/item, in
extensible record stores.
InNoAM, a data access anddistribution unit ismodeled by a block. Specifically,
a block represents a maximal data unit for which atomic, efficient, and scal-
able access operations are provided. Indeed, while the access to an individual
block can be performed in an efficient way in the various systems, the access
to multiple blocks can be quite inefficient. In particular, NoSQL systems do
not usually provide an efficient “join” operation. Moreover, most NoSQL sys-
tems provide atomic operations only over single blocks and do not support
the atomic manipulation of a group of blocks. For example, MongoDB [279]
provides only atomic operations over individual documents, whereas Bigtable
does not support transactions across rows [92].
A second common feature of NoSQL systems is the ability to access and ma-
nipulate just a component of a data access unit (i.e., of a block). This com-
ponent is: (i) an individual key-value pair, in key-value stores; (ii) a field, in
document stores; or (iii) a column, in extensible record stores. In NoAM, such
a smaller data access unit is called an entry.
Finally, most NoSQL databases provide a notion of a collection of data access
units. For example, a table in an extensible record store or a document collec-
tion in a document store. In NoAM, a collection of data access units is called
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Player

mary

username "mary"
firstName "Mary"
lastName "Wilson"
games[0] ⟨ game : Game:2345, opponent : Player:rick ⟩
games[1] ⟨ game : Game:2611, opponent : Player:ann ⟩

rick

username "rick"
firstName "Ricky"
lastName "Doe"
score 42
games[0] ⟨ game : Game:2345, opponent : Player:mary ⟩
games[1] ⟨ game : Game:7425, opponent : Player:ann ⟩
games[2] ⟨ game : Game:1241, opponent : Player:johnny ⟩

Game

2345

id 2345
firstPlayer Player:mary
secondPlayer Player:rick
rounds[0] ⟨ moves : ..., comments : ... ⟩
rounds[1] ⟨ moves : ..., actions : ..., spell : ... ⟩

Figure 2.8: A sample database in NoAM.

a collection.
According to the above observations, the NoAM data model is defined as fol-
lows.

• A NoAM database is a set of collections. Each collection has a distinct
name.

• A collection is a set of blocks. Each block in a collection is identified by a
block key, which is unique within that collection.

• A block is a non-empty set of entries. Each entry is a pair ⟨ek, ev⟩, where
ek is the entry key (which is unique within its block) and ev is its value
(either complex or scalar), called the entry value.

For example, Figure 2.8 shows a possible representation of the aggregates
of Figures 2.2 and 2.3 in terms of the NoAM data model. There, outer boxes
denote blocks representing aggregates, while inner boxes show entries. Note
that entry values canbe complex, being another commonality of variousNoSQL
systems.
Please note that the same data can usually be represented in different ways.
Compare, for example, Figure 2.8 with Figure 2.9. We will discuss this possi-
bility in the next section.
In summary, NoAM describes in a uniform way the features of many NoSQL
systems, and so can be effectively used, as we show in the next section, for
an intermediate representation in a NoSQL database design methodology.
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Player

mary ϵ

⟨username:"mary",
firstName:"Mary",
lastName:"Wilson",
games : {

⟨ game : Game:2345, opponent : Player:rick ⟩,
⟨ game : Game:2611, opponent : Player:ann ⟩

} ⟩

rick ϵ

⟨username:"rick",
firstName:"Ricky",
lastName:"Doe",
score:42,
games : {

⟨ game : Game:2345, opponent : Player:mary ⟩,
⟨ game : Game:7425, opponent : Player:ann ⟩,
⟨ game : Game:1241, opponent : Player:johnny ⟩

} ⟩

Game

2345 ϵ

⟨id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

⟨ moves :..., comments : ... ⟩,
⟨ moves :..., actions : ..., spell : ... ⟩

} ⟩

Figure 2.9: Another NoAM sample database.

2.3 . Discussion and results

Themain goal ofNoAM is to support a designmethodology forNoSQLdatabases
that have initial activities that are independent of the specific target system.
In particular, NoAM is used to specify an intermediate, system-independent
representation of the application data. The implementation in a target NoSQL
system is then a final step, with a translation that takes into account its pecu-
liarities.
The motivations to consider database design for NoSQL systems are as fol-
lows. It is important to notice that despite the fact that NoSQL databases
are claimed to be “schemaless,” the data of interest for applications do show
some structure, which should be mapped to the modeling elements (collec-
tions, tables, documents, key-value pairs) available in the target system. More-
over, different alternatives in the organization of data in a NoSQL database
are usually possible, but they are not equivalent in supporting qualities such
as performance, scalability, and consistency (which are typically requiredwhen
a NoSQL database is adopted). For example, a “wrong” database representa-
tion can lead to performance that are worse by an order of magnitude as well
as to the inability to guarantee atomicity of important operations.
Specifically, our designmethodology has the goal of designing a “good” repre-
sentation of the application data in a target NoSQL database, and is intended
to support major qualities such as performance, scalability, and consistency,
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as needed by next-generation Web applications.
The NoAM approach is based on the following main activities:

• conceptual data modeling and aggregate design, to identify the various
entities and relationships thereof needed in an application, and to group
related entities into aggregates;

• aggregate partitioning and high-level NoSQL database design, where ag-
gregates are partitioned into smaller data elements and then mapped
to the NoAM intermediate data model;

• implementation, to map the intermediate data representation to the
specific modeling elements of a target datastore.

In this approach, only the implementation depends on the target datastore.
We will discuss the various steps of this approach in the rest of this section.

2.3.1 . Conceptual modeling and aggregate design
Themethodology starts, as it is usual in database design, by building a concep-
tual representation of the data of interest, in terms of entities, relationships,
and attributes. (This activity is discussed in most database textbooks, e.g.,
[58].) Following Domain-Driven Design (DDD [138]), which is a widely followed
object-oriented methodology, we assume that the outcome of this activity is
a conceptual UML class diagram defining the entities, value objects, and rela-
tionships of the application. An entity is a persistent object that has indepen-
dent existence and is distinguished by a unique identifier (e.g., a player or a
game, in our running example). A value object is a persistent object which is
mainly characterized by its value, without its own identifier (e.g., a round or a
move). Then, the methodology proceeds by identifying aggregates.
The design of aggregates has the goal of identifying the classes of aggregates
for an application, and various approaches are possible. After the preliminary
conceptual design phase, entities and value objects are grouped into aggre-
gates. Each aggregate has an entity as its root, and it can also contain many
value objects. Intuitively, an entity and a group of value objects are used to
define an aggregate having a complex structure and value.
The relevant decisions in aggregate design involve the choice of aggregates
and of their boundaries. This activity can be driven by the data access pat-
terns of the application operations, as well as by scalability and consistency
needs [138]. Specifically, aggregates should be designed as the units on which
atomicity must be guaranteed [183] (with eventual consistency for update op-
erations spanning multiple aggregates [324]). In general, it is indeed the case
that most real applications require only operations that access individual ag-
gregates [87, 92]. Each aggregate should be large enough so as to include
all the data required by a relevant data access operation. (Please note that
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NoSQL systems do not provide a “join” operation, and this is a main motiva-
tion for clustering each groupof related application objects into an aggregate.)
Furthermore, to support strong consistency (that is, atomicity) of update op-
erations, each aggregate should include all the data involved by some integrity
constraints or other forms of business rules [408]. On the other hand, aggre-
gates should be as small as possible; small aggregates reduce concurrency
collisions and support performance and scalability requirements [408].
Thus, aggregate design is mainly driven by data access operations. In our
running example, the online game application needs to manage various col-
lections of objects, including players, games, and rounds. Figure 2.2 shows
a few representative application objects. (There, boxes and arrows denote
objects and links between them, respectively. An object having a colored top
compartment is an entity, otherwise it is a value object.) When a player con-
nects to the application, all data on the player should be retrieved, including
an overview of the games she is currently playing. Then, the player can se-
lect a game to continue, and data on the selected game should be retrieved.
When a player completes a round in a game she is playing, then the game
should be updated. These operations suggest that the candidate aggregate
classes are players and games. Figure 2.2 also shows how application objects
can be grouped in aggregates. (There, a closed curve denotes the boundary
of an aggregate.)
Aswementioned above, aggregate design is also driven by consistency needs.
Assume that the application should enforce a rule specifying that a round can
be added to a game only if some condition involving the other rounds of the
game is satisfied. An individual round cannot check, alone, the above condi-
tion; therefore, it cannot be an aggregate by itself. On the other hand, the
above business rule can be supported by a game (comprising, as an aggre-
gate, its rounds).
In conclusion, the aggregate classes for our sample application arePlayer and
Game, as shown in Figures 2.2 and 2.3.

2.3.2 . Data representation in NoAM and aggregate partitioning

In our approach, we use theNoAMdatamodel (Section 2.2) as an intermediate
model between application aggregates (Section 2.3.1) and NoSQL databases
(Section 2.1). We represent each class of aggregates bymeans of a distinct col-
lection, and each individual aggregate by means of a block. We use the class
name to name the collection, and the identifier of the aggregate as block key.
The complex value of each aggregate is represented by a set of entries in
the corresponding block. For example, the aggregates of Figures 2.2 and 2.3
can be represented by the NoAM database shown in Figure 2.8. The repre-
sentation of aggregates as blocks is motivated by the fact that both concepts
represent a unit of data access and distribution, but at different abstraction
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Player

mary

username "mary"
firstName "Mary"
lastName "Wilson"

games {⟨ game: Game:2345, opponent: Player:rick ⟩,
⟨ game: Game:2611, opponent: Player:ann ⟩ }

rick

username "rick"
firstName "Ricky"
lastName "Doe"
score 42

games
{⟨ game: Game:2345, opponent: Player:mary ⟩,
⟨ game: Game:7425, opponent: Player:ann ⟩,
⟨ game: Game:1241, opponent: Player:johnny ⟩ }

Game

2345

id 2345
firstPlayer Player:mary
secondPlayer Player:rick

rounds {⟨ moves: ..., comments: ..., ⟩
⟨ moves: ..., actions: ..., spell: ... ⟩ }

Figure 2.10: The ETF data representation.

levels. Indeed, NoSQL systems provide efficient, scalable, and consistent (i.e.,
atomic) operations on blocks and, in turn, this choice propagates such quali-
ties to operations on aggregates.
In general, an application dataset of aggregates can be represented in NoAM
database in several different ways. Each data representation for a dataset δ is
a NoAM database Dδ representing δ. Specifically, the various data represen-
tations for a dataset differ only in the choice of the entries used to represent
the complex value of each aggregate. We first discuss basic data representa-
tion strategies, which we illustrate with respect to the example described in
Figure 2.3. We then introduce additional and more flexible data representa-
tions.
A simple data representation strategy, called Entry per Aggregate Object (EAO),
represents each individual aggregate using a single entry. The entry key is
empty. The entry value is the whole complex value of the aggregate. The data
representation of the aggregates of Figure 2.3 according to the EAO strategy
is shown in Figure 2.9.
Another data representation strategy, called Entry per Top-level Field (ETF), rep-
resents each aggregate bymeans of multiple entries, using a distinct entry for
each top-level field of the complex value of the aggregate. For each top-level
field f of an aggregate o, it employs an entry having as value the value of the
field f in the complex value of o (with values that can be complex themselves),
and as key the field name f . Figure 2.10 shows the data representation of the
aggregates of Figure 2.3 according to the ETF strategy.
As a comparison, we can observe that the EAO data representation uses a
block with a single entry to represent the Player object having username
mary, while the ETF representation needs a block with four entries, corre-
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sponding to fields username, firstName, lastName, and games. Moreover, blocks
in EAO do not depend on the structure of aggregates, while blocks in ETF de-
pend on the top-level structure of aggregates (which can be “almost fixed”
within each class).
The general data representation strategies we just described can be suited in
some cases, but they are often too rigid and limiting. For example, none of
the above strategies leads to the data representation shown in Figure 2.8. The
main limitation of such general data representations is that they refer only
to the structure of aggregates, and do not take into account the data access
patterns of the application operations. Therefore, these strategies are not
usually able to support the performance of these operations. This motivates
the introduction of aggregate partitioning.
We first need to introduce a preliminary notion of access path, to specify a
“location” in the structure of a complex value. Intuitively, if v is a complex
value andw is a value (possibly complex aswell) occurring in v, then the access
path ap for w in v represents the sequence of “steps” that should be taken to
reach the component value w in v. More precisely, an access path ap is a
(possibly empty) sequence of access steps, ap = p1 p2 . . . pn, where each step
pi identifies a component value in a structured value. Furthermore, if v is a
complex value and ap is an access path, then ap(v) denotes the component
value identified by ap in v.
For example, consider the complex value vmary of the Player aggregate hav-ing username mary shown in Figure 2.3. Examples of access paths for this
complex value are firstName and games[0].opponent. If we apply these access
paths to vmary, we access values Mary and Player:rick, respectively.
A complex value v can be represented using a set of entries, whose keys are
access paths for v. Each entry is intended to represent a distinct portion of
the complex value v, characterized by a location in its structure (the access
path, used as entry key) and a value (the entry value). Specifically, in NoAMwe
represent each aggregate by means of a partition of its complex value v, that
is, a setE of entries that fully cover v, without redundancy. Consider again the
complex value vmary shown in Figure 2.3; a possible entry for vmary is the pair
⟨games[0].opponent, Player:rick⟩. We have already applied the above intuition
earlier in this section. For example, the ETF data representation (shown in
Figure 2.10) uses field names as entry keys (which are indeed a case of access
paths) and field values as entry values.
Aggregate partitioning can be based on the following guidelines (which are a
variant of guidelines proposed in [58] in the context of logical database de-
sign):

• If an aggregate is small in size, or all or most of its data are accessed or
modified together, then it should be represented by a single entry.

• Conversely, an aggregate should be partitioned inmultiple entries if it is
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Game

2345
ϵ

⟨ id:2345,
firstPlayer:Player:mary,
secondPlayer:Player:rick ⟩

rounds[0] ⟨ moves : . . . , comments : . . . ⟩
rounds[1] ⟨ moves : . . . , actions : . . . , spell : . . . ⟩

Figure 2.11: An alternative data representation for games (Rounds).
large in size and there are operations that frequently access or modify
only specific portions of the aggregate.

• Two or more data elements should belong to the same entry if they are
frequently accessed or modified together.

• Two or more data elements should belong to distinct entries if they are
usually accessed or modified separately.

The application of the above guidelines suggests a partitioning of aggregates,
which we will use to guide the representation in the target database.
For example, in our sample application, consider the operations involving
games and rounds. When a player selects to continue a game, data on the
selected game should be retrieved. When a player completes a round in a
game she is playing, then the aggregate for the game should be updated. To
support performance, it is desirable that this update is implemented in the
database just as an addition of a round to a game, rather than a complete
rewrite of the whole game. Thus, data for each individual round is always
read or written together. Moreover, data for the various rounds of a game are
read together, but each round is written separately. Therefore, each round is
a candidate to be represented by an autonomous entry. These observations
lead to a data representation for games shown in Figure 2.8. However, apart
from rounds, the remaining data for each game comprises just a few fields,
which can be therefore represented together in a single entry. This further
observation leads to an alternative data representation for games, shown in
Figure 2.11.

2.3.3 . Implementation
We now discuss how a NoAM data representation can be implemented in a
target NoSQL database. Given that NoAM generalizes the features of the var-
ious NoSQL systems, while keeping their major aspects, it is rather straight-
forward to perform this activity. We have implementations for various NoSQL
systems, including Cassandra, Couchbase, Amazon DynamoDB, HBase, Mon-
goDB, Oracle NoSQL, and Redis. For the sake of space, we discuss the imple-
mentation only with respect to a single representative system for each main
NoSQL category. Moreover, with reference to the same aggregate objects of
Figures 2.2 and 2.3 we will sometimes show only the data for one aggregate.
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Similar representations can be obtained for the other aggregates of the run-
ning example.
Key-value store: Oracle NoSQL

In the key-value store Oracle NoSQL [308] (Section 2.1.3), a data representa-
tion D for an application dataset can be implemented as follows. We use a
key-value pair for each entry ⟨ek, ev⟩ in D. The major key is composed of the
collection name C and the block key id, while the minor key is a proper cod-
ing of the entry key ek (recall that ek is an access path, which we represent
using a distinct key component for each of its steps). An example of key is
/Player/mary/-/firstName, where symbol / separates components, and symbol
- separates the major key from the minor key. The value associated with this
key is a representation of the entry value ev; for example,Mary. The value can
be either simple or a serialization of a complex value, e.g., in JSON.
The retrieval of a block can be implemented, in an efficient and atomic way,
using a singlemultiGet operation— this is possible because all the entries of a
block share the same major key. The storage of a block can be implemented
using various put operations. These multiple put operations can be executed
in an atomic way — since, again, all the entries of a block share the same
major key.
For example, Figure 2.4b shows the implementation in Oracle NoSQL of the
data representation of Figure 2.8. Moreover, Figure 2.4a shows the implemen-
tation in Oracle NoSQL of the EAO data representation of Figure 2.9.
An implementation canbe considered effective if aggregates are indeed turned
into units of data access and distribution. The effectiveness of our implemen-
tation is based on the use we make of Oracle NoSQL keys, where the major
key controls distribution (sharding is based on it) and consistency (an opera-
tion involving multiple key-value pairs can be executed atomically only if the
various pairs are over a same major key).
More precisely, a technical precaution is needed to guarantee atomic consis-
tency when the selected data representation uses more than one entry per
block. Consider two separate operations that need to update just a subset
of the entries of the block for an aggregate object. Since aggregates should
be units of atomicity and consistency, if these operations are requested con-
currently on the same aggregate object, then the application would require
that the NoSQL system identifies a concurrency collision, commits only one
of the operations, and aborts the other. However, if the operations update
two disjoint subsets of entries, then Oracle NoSQL is unable to identify the
collision, since it has no notion of block. We support this requirement, thus
providing atomicity and consistency over aggregates, by always including in
each update operation the access to the entry that includes the identifier of
the aggregate (or some other distinguished entry of the block).
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Extensible record store: DynamoDB

In the extensible record store Amazon DynamoDB ([18], Section 2.1.5), the im-
plementation of a NoAM database can be based on a distinct table for each
collection, and a single item for each block. The item contains a number of
attributes, which can be defined from the entries of the block for the item.
A NoAM data representation D can be represented in DynamoDB as follows.
Consider a block b in a collectionC having block key id. According toD, one or
multiple entries are used within each block. We use all the entries of a block b

to create a new item in a table for b. Specifically, we proceed as follows: (i) the
collection name C is used as a DynamoBD table name; (ii) the block key id is
used as aDynamoBDprimary key in that table; (iii) the set of entries (key-value
pairs) of a block b is used as the set of attribute name-value pairs in the item
for b (a serialization of the values is used, if needed). For example, Figure 2.7
shows the implementation of the NoAM database of Figure 2.8.
The retrieval of a block, given its collection C and block key id, can be imple-
mented by performing a single getItem operation, which retrieves the item
that contains all the entries of the block. The storage of a block can be im-
plemented using a putItem operation, to save all the entries of the block, in
an atomic way. It is worth noting that, using operation getItem, it is also pos-
sible to retrieve a subset of the entries of a block. Similarly, using operation
updateItem, it is also possible to update just a subset of the entries of a block,
in an atomic way.
This implementation is also effective, since DynamoDB controls distribution
and atomicity with reference to items.
Document store: MongoDB

In MongoDB ([100], Section 2.1.4), which is a document store, a natural imple-
mentation for a NoAM database can be based on a distinct MongoDB collec-
tion for each collection of blocks, and a single main document for each block.
The document for a block b can be defined as a suitable JSON/BSON serializa-
tion of the complex value of the entries in b, plus a special field to store the
block key id of b, as required by MongoDB, {_id:id}.
With reference to a NoAM data representation D, consider a block b in a col-
lection C having block key id. If b contains just an entry e, then the document
for b is just a serialization of e. Otherwise, if b containsmultiple entries, we use
all the entries in block b to create a new document. Specifically, we proceed
by building a document d for b as follows: (i) the collection name C is used
as the MongoDB collection name; (ii) the block key id is used for the special
top-level id field {_id:id} of d; (iii) then, each entry in the block b is used to fill a
(possibly nested) field of document d. See Figure 2.12.
The retrieval of a block, given its collection C and key id, can be implemented
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collection Player
id document

mary

{
_id:"mary",
username:"mary",
firstName:"Mary",
lastName:"Wilson",
games:
[ { game:"Game:2345", opponent:"Player:rick"},
{ game:"Game:2611", opponent:"Player:ann"} ]

}

Figure 2.12: Implementation in MongoDB.
collection Player
id document

mary

{
_id:"mary",
username:"mary",
firstName:"Mary",
lastName:"Wilson",
games[0]: { game:"Game:2345", opponent:"Player:rick" },
games[1]: { game:"Game:2611", opponent:"Player:ann" }
}

Figure 2.13: Alternative implementation in MongoDB.

by performing a find operation, to retrieve themain document that represents
all the block (with its entries). The storage of a block can be implemented
using an insert operation, which saves the whole block (with its entries), in an
atomic way. It is worth noting that, using other MongoDB operations, it is
also possible to access and update just a subset of the entries of a block, in
an atomic way.
An alternative implementation for MongoDB is as follows. Each block b is rep-
resented, again, as a main document for b, but using a distinct top-level field-
value pair for each entry in the NoAM data representation. In particular, for
each entry (ek, ev), the document for b contains a top-level field whose name
is a coding for the entry key (access path) ek, and whose value is either an
atomic value or an embedded document that serializes the entry value ev.
For example, according to this implementation, the data representation of
Figure 2.8 leads to the result shown in Figure 2.13.

2.3.4 . Experiments
We will now discuss a case study of NoSQL database design, with reference
to our running example. For the sake of simplicity, we just focus on the rep-
resentation and management of aggregates for games.
Data for each game include a few scalar fields and a collection of rounds.
The important operations over games are: (1) the retrieval of a game, which
should read all the data concerning the game; and (2) the addition of a round
to a game.
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Assume that, to manage games, we have chosen a key-value store as the tar-
get system. The candidate data representations are: (i) using a single entry for
each game (as shown in Figure 2.9, in the following called EAO); (ii) splitting the
data for each game in a group of entries, one for each round, and including all
the remaining scalar fields in a separate entry (as shown in Figure 2.11, called
Rounds).
We expect that the first operation (retrieval of a game) performs better in EAO,
since it needs to read just a key-value pair, while the second one (addition of
a round to a game) is favored by Rounds, which does not require to rewrite
the whole game.
We ran a number of experiments to compare the above data representations
in situations of different application workloads. Each game has, on average,
a dozen rounds, for a total of about 8KB per game. At each run, we simulated
the following workloads: (a) game retrievals only (in random order); (b) round
additions only (to random games); and (c) a mixed workload, with game re-
trieval and round addition operations, with a read/write ratio of 50/50. We
ran the experiments using different database sizes, and measured the run-
ning time required by the workloads. The target system was Oracle NoSQL,
deployed over Amazon AWS on a cluster of four EC2 servers.1
The results are shown in Figure 2.14. Database sizes are in gigabytes, tim-
ings are in milliseconds, and points denote the average running time of a
single operation. The experiments confirm the intuition that the retrieval of
games (Figure 2.14a) is always favored by the EAO data representation, for any
database size. On the other hand, the addition of a round to an existing game
(Figure 2.14b) is favored by the Rounds data representation. Finally, the exper-
iments over the mixed workload (Figure 2.14c) show a general advantage of
Rounds over EAO, which however decreases as the database size increases.
Overall, it turns out that the Rounds data representation is preferable.
We also performed other experiments on a data representation that does not
conform to the design guidelines proposed in this chapter. Specifically, a data
representation that divides the rounds of a game into independent key-value
pairs, rather than keeping them together in a same block, as suggested by our
approach. In this case, the performance of the various operations worsens by
at least an order of magnitude. Moreover, with this data representation it is
not possible to update a game in an atomic way.
Overall, these experiments show that: (i) the design ofNoSQLdatabases should
be done with care as it affects considerably the performance and consistency
of data access operations, and (ii) our methodology provides an effective tool
for choosing among different alternatives.

1This activity was supported by AWS in Education Grant award.
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Figure 2.14: Experimental results.

2.4 . Related work

Although several authors have observed that there is a need for data-model
approaches to the design andmanagement of NoSQL databases [48, 50, 278],
very fewworks have addressed this issue, especially fromageneral and system-
independent point of view. Indeed, most of them propose a solution to a
specific problem in a limited scenario.
For instance, Pasqualin et al. [313] have recently shown how a document-
oriented model can be efficiently implemented in a NoSQL document store.
Similarly, Olivera et al. [306] and de Lima and Mello [117] have proposed a
data-model basedmethodology for the design of NoSQL document database,
whereas Chevalier et al. [98] have addressed the specific problem of lever-
aging on a document-oriented model for implementing a multidimensional
database in aNoSQLdocument store and in a column-orientedNoSQLdatabase.
Most of the other contributions to data modeling for NoSQL systems come
from on-line papers, usually published in blogs of practitioners, that discuss
best practices and guidelines for modeling NoSQL databases, most of which
are suited only for specific systems. For instance, [224] lists some techniques
for implementing and managing data stored in different types of NoSQL sys-
tems, while [304] discusses design issues for the specific case of key-value
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datastores. Similarly, Mior et al. [277] have proposed an approach to the prob-
lem of schema design for the specific class of extensible record stores. On the
system-oriented side, [94, 229, 174] illustrate design principles for the specific
cases of HBase, MongoDB, and Cassandra, respectively. However, none of
them tackles the problem from a general perspective, as we advocate in this
chapter.
Recently, Ruiz et al. [344] have proposed a reverse engineering strategy aimed
at inferring the implicit schema of NoSQL databases. This approach supports
the idea that, even in this context, a model-based description of the organiza-
tion of data is very useful during the entire life-cycle of a data set.
To the best of our knowledge, this chapter presents the first general design
methodology for NoSQL systems with initial activities that are independent
of the specific target system. Our approach to data modeling is based on
data aggregates, a notion that is central in NoSQL databases where applica-
tion data are grouped in atomic units that are accessed and manipulated to-
gether [346]. The notion of aggregate also occurs in other contexts with a sim-
ilar meaning. For example, in Domain Driven Design [138], a widely followed
object-oriented software development approach, an aggregate is a group of
related application objects, used to govern transactions and distribution. Also
Helland [183] advocates the use of aggregates (there called entities) as units of
distribution and consistency. In this framework, Baker et al. [52] propose the
notion of entity groups, a set of entities that can be manipulated in an atomic
way. They also describe a specific mapping of entity groups to Bigtable [92],
which however makes the approach targeted only to a specific NoSQL sys-
tem. Our approach is based on a more abstract database model, NoAM, and
is system independent, as it is targeted to a wide class of NoSQL systems.
The issue of identifying data access units in database design shows some sim-
ilarities with problems studied in the past, such as: (i) the early works on
vertical partitioning and clustering [390], with the idea to put together the
attributes that are accessed together and to separate those that are visited
independently, and (ii) the more recent approaches to relational (or object-
relational) storage of XML documents [143], where various alternatives obvi-
ously exist, with tables that can be very small and handle individual edges, or
very wide and handle entire paths, and many alternatives in between.
A major observation from [48] is that the availability of a high-level repre-
sentation of the data remains a fundamental tool for developers and users,
since it makes understanding, managing, accessing, and integrating informa-
tion sources much easier, independently of the technologies used. We have
addressed this issue by proposing NoAM, an abstract data model that makes
it possible to devise an initial phase of the design process that is independent
of any specific system but suitable for each.
Along this line, SOS [47] is a tool that provides a common programming inter-
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face towards different NoSQL systems, to access them in a unified way. The
interface is based on a simple, high-level common data model which is in-
spired by those of non-relational systems and provides simple operations for
inserting, deleting, and retrieving database objects. However, the definition
of tools for data access is complementary to data models and design issues.
Finally, Jain et al. discusses the potential mismatch between the requirements
of scientific data analysis and themodels and languages of relational database
systems [212], whereas Alagiannis et al. [8] advocate a new database design
philosophy for emerging applications. This chapter tries to provide a contri-
bution to these problems.

2.5 . Conclusion

In this chapter we have discussed how data modeling can be useful in the
NoSQL arena. Specifically, we have proposed a comprehensive methodology
for the design of NoSQL databases. The methodology relies on an aggregate-
oriented view of application data, an intermediate system-independent data
model for NoSQL datastores, and finally an implementation activity that takes
into account the features of specific systems.
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3 - Graphs and LLM

Manually integrating data of diverse formats and languages is vital to many
artificial intelligence applications. However, the task itself remains challenging
and overly time-consuming.
This chapter highlights the potential of Large LanguageModels (LLMs) to strea-
mline data extraction and resolution processes. Our approach aims to ad-
dress the ongoing challenge of integrating heterogeneous data sources, en-
couraging advancements in the field of data engineering. Applied on the spe-
cific use case of learning disorders in higher education, our research demon-
strates LLMs’ capability to effectively extract data from unstructured sources.
It is then further highlighted that LLMs can enhance data integration by pro-
viding the ability to resolve entities originating from multiple data sources.
The chapter describes how we defined a GrAph Schema foR Dyslexic Disor-
ders (GARDD). and underscores the necessity of preliminary data modeling
decisions to ensure the success of such technological applications. By merg-
ing human expertise with LLM-driven automation, this study advocates for
the further exploration of semi-autonomous data engineering pipelines.
The chapter is adapted from the following papers:

• Adel Remadi, Karim El Hage, Yasmina Hobeika, Francesca Bugiotti: To
prompt or not to prompt: Navigating the use of Large Language Models for
integrating and modeling heterogeneous data, DKE 2024

• Antoine Harfouche, Bernard Quinio, Francesca Bugiotti: Human-Centric
AI to Mitigate AI Biases: The Advent of Augmented Intelligence, J. Glob. Inf.Manag. 2023

• Karim El Hage, Adel Remadi, Yasmina Hobeika, Ruining Ma, Victor Hong,Francesca Bugiotti: A multi-source graph database to showcase a recom-
mender system for dyslexic students, IEEE Big Data 2023
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3.B Sample Prompts for Data Integration . . . . 64

3.C Summary of Data Extracted from Expert In-
terviews Using LLM . . . . . . . . . . . . . . . 66

The remainder of the chapter is structured as follows. Section 3.5 introduces
the related work that supports the different approaches and strategies con-
sidered in our scientific methodology. Section 3.1.1 introduces the different
types of structured and unstructured sources that are used in our study. Sec-
tion 3.2 presents GARDD and details the datamodeling choices that served as
a foundation for the integration of the heterogeneous sources and the man-
ner in which an LLM can be used to automate the data integration process.
Section 3.4 assesses the quality of the proposed automated data integration
process and describes some key takeaways and implications. Finally, Section
3.6 summarizes our findings and proposes possible avenues for future re-
search.

3.1 . Background and context

Data Integration is a critical step of any pipeline when considering multiple
heterogeneous data sources [125]. In this chapter, we will see how to build
GARDDan interconnected graph schema,modeledonNeo4j, a databaseman-
agement system implementing using data sources of different structures and
languages and language model applications [249]. Despite considerable ad-
vancements in data integration automation, both through traditional seman-
tic techniques [56, 389] and recent language model applications [249], there
remains a critical dependency on extensive fine-tuning over large training
datasets. The necessity for extensive training stems from the requirement for
models to possess a deep comprehension of linguistic subtleties and domain-
specific knowledge relevant to the studied use-case [249].
Large LanguageModels (LLMs) have significantly enhanced the easewithwhich
we can retrieve and interpret data, showcasing the ability to handle a diverse
range of tasks. LLMs often require merely one or a few examples to perform
tasks, and in certain cases, have outperformed traditional supervised models
in terms of effectiveness and efficiency [248, 419]. Despite the potential ben-
efits, [169] points out that the effectiveness of LLMs in data integration, espe-
cially in completing complex tasks like entity matching or resolution, remains
uncertain. On the other hand, [140] argues that the unique ability of LLMs to
understand semantic ambiguities and integrate data from real-world scenar-
ios necessitates a fundamental rethinking of established data management
approaches. This perspective underscores the necessity to recognize the po-
tential benefits of incorporating these advanced tools into data management
strategies. Considering this, ourwork investigates the use of LLMs to aid in the

36



automation of data extraction and integration tasks. The work further inves-
tigates the collaborative role that human data modeling design could play to
enhance such an automated pipeline. This is done by designing a conceptual
schema for a unique and heterogeneous dataset from scratch, elaborating on
the importance of the design considerations. Consequently, we were able to
use the schema to both guide the prompts fed into the LLM and ensure that
the output of the LLM respects the proposed schema. As a result, this work
demonstrated that the use of LLMs, guided by prompts that consider human
data modeling considerations, is a very encouraging approach to automate
the integration of data originating from heterogeneous sources. Hence, the
contributions of this work are as follows:

1. Introducing a conceptual schema methodology designed to accommo-
date a selected dataset composed of multiple sources, each varying in
format and language.

2. Automating the extraction of entities from unstructured data sources
using a Large Language Model in the context of the defined conceptual
schema.

3. Automating the data integration of entities originating from multiple
data sources (structured/unstructured data) using a Large Language
Model in the context of the GARDD defined conceptual schema.

The introduction of data modeling and integration using LLMs into this work’s
methodology not only addresses the manual and time-consuming aspects of
traditional data integration processes but also addresses the advanced capa-
bilities of LLMs to understand and process language nuances. This approach
enables a more efficient and effective integration of diverse data sources,
widening the range of possibilities for data integration practices in various
fields.

3.1.1 . Dataset
The dataset used to demonstrate the data modeling and integration method-
ology comes from the Vrailexia project, an EU-funded project comprised of
a consortium of universities across Europe [417]. The three different data
sources made available as part of the project were questionnaires, interview
transcripts, and virtual reality (VR) simulations. The content of this data cen-
ters around learning disorders in higher education. Hence, the details in this
section shall be heavily specific to this topic. Each source will be described to
provide the context for the data modeling considerations in Section 3.2.

3.1.2 . Questionnaire
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TheVrailexia project has collected valuable data fromdyslexic andnon-dyslexic
students through questionnaires digitally distributed in high schools and uni-
versities in France and Spain.
Data Description The questionnaires capture the perception of students
with respect to how potential difficulties affect them in their studies and how
useful they would consider specific tools/strategies to cope with these chal-
lenges. Hence, the data collected from this source are purely personal, subjec-
tive opinions of the respondent. The questionnaires are provided in tabular
form, serving as the first structured data source available for use. Table 3.1
describes the data source’s structure and itsmain components. The question-
naire collects personal information related to the respondents, such as age,
gender, dyslexic members in the family, and educational background. Fur-
thermore, it aims to understand what are the respondents’ potential learn-
ing disorders, learning difficulties and their perceived usefulness of tools and
learning strategies.

Category Number of ColumnsPersonal Information 45Learning Disorders 6Severity of Learning Difficulties (Scale 1-5) 13Usefulness of Tools (Scale 1-5) 18Usefulness of Learning Strategies (Scale 1-5) 22
Table 3.1: Breakdown of Questionnaire Columns.

Some of the tools and learning strategies are filled with the answer “I don’t
know” to indicate that a student was not familiar with a specific solution (see
examples in Appendix table 3.6). There were a total of 2,106 respondents col-
lected from both France and Spain. Approximately 23% of the respondents
needed to be discarded as a result of leaving the majority of fields blank. 16%
of the respondents had Dyslexia, often combined with other learning disor-
ders. It proved difficult to collect data for a large percentage of dyslexic re-
spondents, given that Dyslexia affects 5-17.5% of the population [339, 360].
The average age of respondents is 21.5, and the majority are Female (69.5%).
The average rated severity across all problems by students with learning dis-
orders is 3.16, compared to 2.43 for students without any learning disorder.
DataPre-processing Thepre-processing of the French and Spanish ques-
tionnaires involved several steps to clean and transform the data. The trans-
formed columns were renamed to be more concise and descriptive. These
final names would eventually be used as the names of the nodes modeled
in the graph database. For example, questions such as “What is your age?
Do not enter your date of birth” and “Which university are you from?” are
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reformulated to “Age” and “University” respectively. Some columns, such as
the age, required some additional pre-processing as the answer formats were
not consistent or were invalid. Overall, these pre-processing steps helped to
clean and organize the questionnaire data, ensuring that it was in a suitable
format for graph creation in Neo4j.

3.1.3 . Virtual Reality Simulations
As part of the present project, data collection from Virtual Reality (VR) simu-
lations was performed with dyslexic students and non-dyslexic students. The
purpose of the VR test is to investigate whether providing Dyslexic students
with an interactive and immersive setting could enhance their learning ex-
perience, whilst also educating teachers on the considerations to make for
students in such a condition [416].
Data Description Today, data has been collected in French, Spanish, and
Italian universities. The participants are asked to perform two types of tests
in a VR environment: 1) A Silent Reading test to assess performance; 2) A Psy-
chometric Rosenberg [340] test for the assessment of anxiety, self-esteem
and self-efficacy. The silent reading portion of the VR is a text comprehension
exercise of which a respondent has to answer a series of elementary ques-
tions based on a text. The psychometric portion of the test (Rosenberg) seeks
to survey the respondent’s level of confidence by asking them to rank a series
of general questions on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree).
The data is exported in tabular format in three separate tables, each stor-
ing the information about the user, the silent reading test, and the Rosenberg
test, respectively. For example, the table storing the data regarding the silent-
reading contains two columns for each of the six questions: the first column,
a boolean representing whether the respondent answered the question cor-
rectly, and the second, the time that has elapsed (in seconds) since the begin-
ning of the test upon the respondents completing their answer. A sample of a
few columns from the three tables has been joined into one illustrative table
in Appendix 3.7.
Overall, the data from the VR provides a complementary secondary struc-
tured data source with information about the respondents that would need
to be integrated with data from the Questionnaire. At the time of conducting
this research, only 100 responses were collected using the VR technology (of
which 40%
Data Pre-processing As the first crucial pre-processing step, the names
of respondents were anonymized by dropping the information for analysis. In
the silent-reading test, response times were recorded in a cumulativemanner
each time a respondent answered a question. As the property of interest was
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the elapsed time for each individual question, the cumulative time records
were transformed accordingly. In this test, the respondents’ disorders were
all collected in one column, and so the answers needed to be parsed such that
each disorder was label-encoded. Finally, the age column required similar
pre-processing as that described in the questionnaire by correcting answers
provided in an invalid format.

3.1.4 . Interview Transcripts
The interviews’ data was made available as text files of text-to-speech tran-
scribed questions and answers with 10 French experts.

Data Description Various topics were covered related to students with
learning disorders. Broadly speaking, the content of the interviews could be
extracted and categorized into several themes: the learning disorders cited in
each interview, problems encountered by students with such disorders, and
finally, the tools/strategies that could be useful in coping with learning disor-
ders or a specific difficulty. There were roughly 25 questions per interview.
The interview transcripts serve as the unstructured data source in demon-
strating the methodology.

Data Pre-processing No pre-processing was conducted on these files.
However, the title of the page was removed, and the names of the experts
and interviewers were anonymized by replacing them with “Expert” and “In-
terviewer” respectively.

3.2 . Methodology: an integrated graph Conceptual Schema

This section describes the methodological steps undertaken to model and in-
tegrate data from themultiple sources of interest. In Section 3.2.1, the model-
ing approach is introduced and later demonstrated with a conceptual schema
of the structured and unstructured data sources. After that, Section 3.2.2 de-
tails the automation of data extraction. Section 3.2.3 addresses how the ex-
tracted entities were disambiguated. Finally, Section 3.2.4 describes the data
resolution of instances originating from the different data sources.
The methodological steps of our study, as detailed in Section 3.2, are struc-
tured to enable the adaptation of our modeling approach to a broad array
of use-cases. As mentioned previously in Section 3.1, and further justified in
3.5.1, Neo4j is the database system of choice to store information from the
various data sources. Hence, the conception of the schema is conducted in a
manner that follows the conventions of graph data modeling and Neo4j de-
sign. This means that schema representations are in property graph model
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form, whereas queries are demonstrated using Cypher: a query language op-
timized for property graphs [293].

3.2.1 . Modeling the Conceptual Schema
Conceptual models offer the ability to integrate heterogeneous sources, cre-
ating a base for uncovering insights and developing data-driven solutions.
However, designing such conceptual models that deal with multiple sources
can present multiple challenges. There are key differences in structure, for-
mat, and content between the sources as well as differences that may exist
within each source itself. The following subsections 3.2.1 and 3.2.1 both de-
scribe our data modeling steps and introduce the pillars that compose the fi-
nal schema of the integrated and interconnected graph database (Figure 3.6).
Structured Data Sources

As described in more details in Section 3.1.1, the questionnaire collects the
following information about the respondents:

• their personal information
• their learning disorders, if any
• their self-assessment about how problems associated with the disor-
ders affect them in their daily lives

• their perception of the usefulness of tools and learning strategies that
are known to be used by students with learning disorders.

Given the central role of the respondents, we decided tomodel themas nodes
containing their personal information as properties (e.g., anonymized iden-
tifier, age, and gender). Learning disorders (e.g., dyslexia, dysorthographia,
dyspraxia, etc.) could also be treated as characteristics of respondents but
were instead modeled as an independent node type, since there was an in-
terest in capturing their relations to other nodes. Each problem, tool, and
strategy was then categorized under their own respective node types as they
interact with the respondent rather than being inherent characteristics. Un-
der these modeling choices, each respondent was linked to the other four
defined node types. Hence, the corresponding schema was centered around
a dedicated node type called Respondent, as shown in Figure 3.1.
A Respondent node HAS a set of Disorder nodes and a set of Problem nodes.
The Respondent node is also HELPED_BY sets of Strategy and Tool nodes.
The relationships between the different nodes had to consider the answers
of the respondent, who rated each problem, tool, and strategy on a scale from
one to five, a measure of the respondent’s connection with a specific node.
These values were modeled as the Strength attribute of the relationship. As
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Figure 3.1: Conceptual schema of the relationship between the Respondentnode and the nodes derived from the questionnaire.

an example, to find the respondents who consider certain problems to be the
most severe, one could use a navigation scheme making use of the Strength
edge attribute. In Cypher syntax:
( : Respondent ) − [ : HAS { strength : 5} ] − >( : Problem )
The answers of each respondent are easily traced back thanks to this repre-
sentation. It was decided to relate every respondent to all the nodes of types
Problem, Tool, and Strategy, irrespective of the strength of their answer.
The one exception was in the case where the answer was left blank, as this
meant that the respondent had no prior experience or knowledge about the
concerned instance.
Storing the Strength attribute in the relationships instead of in the Problem,
Tool, and Strategy (PST) nodes ensures that no information is lost and pre-
vents node or attribute redundancies. This modeling choice further facilitates
the use of graph science algorithms to process the database as a weighted
graph. One limiting consequence, however, is that clustering algorithms, such
as k-means, are restricted to node attributes in Neo4j [291]. In our schema,
executing these functions would imply disaggregating edge properties (such
as Strength), defeating the purpose of their modeled intent.
The VR data source, which serves as the second source of structured data,
complements the questionnaire by providing further details about the char-
acteristics of the respondents. The VR test is modeled in a similar way by cre-
ating relationships between Respondent nodes and the two additional node
types (Test and Confidence), as illustrated in Figure 3.2. Answers from the
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silent reading test were modeled under Test nodes, while responses to the
Rosenberg test fell under Confidence nodes. The two consequent relation-
ships depict the cases where a respondent ANSWERED a test that measured
their reading performance and FEELS a specific confidence level, as indicated
through the Rosenberg questions. Similar to the Questionnaire, the test re-
sults and confidence level of the respondent are stored as an edge attribute.
For example, if the goal was to identify respondents who answered a ques-
tion correctly in less than ten seconds, the Cypher query for extracting the
information from the graph is:
( : Respondent ) −[ r : ANSWERED { correct −answer : True } ) − > ( : Test )WHERE r . time−taken < 10

Figure 3.2: Conceptual schema of the relationship between a Respondentnode with nodes derived from VR dataset.
The provided conceptual schema allows for a natural integration between the
Questionnaire and VR test through the Respondent and Disorder nodes. In
practice, it is important to consider that there are issues that require addi-
tional attention before achieving true integration. One such issue is the mul-
tilingual nature of the dataset (the questionnaire existed in both French and
Spanish). Node names were stored in French by default but also had comple-
mentary attributes with machine translations in English, Spanish, and Italian.
There is a long history of studies on the effectiveness of commercialized Neu-
ral Machine TranslationModels such as Google Translate to translate inmany
languages across several applications [219, 425]. Another issue is to deal with
cases where a respondent had contributed to both the questionnaire and VR
tests. Some controls were implemented to address such cases to prevent
any overwriting of personal information, thus ensuring proper and accurate
data reconciliation. An additional attribute named Source was created within
Respondent nodes to trace which data sources a respondent completed. Inte-
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grating these structured data sources was eventually rather straightforward
thanks to the properties that were introduced for reconciliation. In contrast,
the task was considerably more challenging for the unstructured data coming
from the interviews.
Unstructured Data Sources

Modeling unstructured data sources is significantly less intuitive than that
of their structured counterparts. Whereas structured data nodes and rela-
tionships can be intuitively interpreted, unstructured data sources require
more complex considerations. Moreover, relying solely on human assess-
ment could hinder any attempt to automate the data engineering pipeline. As
described in Section 3.1.1, the unstructured data of this study was collected in
the form of interview transcripts with experts to better understand the char-
acteristics of learning disorders, the problems they may cause in higher ed-
ucation, and the ways in which affected students could address these prob-
lems. Using this information, it is possible to enrich the existing schema by
modeling a new node type, Expert, that is critical for tracing the source of
stored interviewdata. Each expert ismodeled as a nodewith a unique anonymized
identifier, having the language of the interview and the name of the transcript
file stored as attributes of the node. Figure 3.3 highlights the schemamodeled
with this new node type.

Figure 3.3: Conceptual schema of the relationship between the Expert node,the nodes derived from the interview, and the resulting causal relationships.
The Expert node as such MENTIONS other nodes. This enables both to trace
the origin of any Disorder or PST nodes to their source expert. There are two
additional relationships that can be further inferred from the interview data,
namely that Problem nodes can be CAUSED_BY specific Disorder nodes and
that Problem nodes can be ADDRESSED_BY Tool and Strategy nodes. These
relationships are critical in that they create causal links between the different
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nodes, hence contributing to a more interconnected graph structure. Moving
forward, a Named-Entity Recognition task was designed and implemented to
efficiently extract data from the interview transcripts in an automated and
scalable fashion. Its aim was to automatically extract information from tran-
scripts according to the modeling decisions illustrated in Figure 3.3. The fol-
lowing subsection shall detail the methodology employed for this step of the
data engineering pipeline.

3.2.2 . Data Extraction
As the structured sources are available in tabular form, categorizing the columns
into their respective nodes is sufficient for loading data into the database.
Specific transformations are made to facilitate the loading of such data into
Neo4j, but these are not to be detailed as they are not the focus of this chap-
ter. In contrast, the data of interest from the unstructured sources are not
immediately accessible. In the example of the interviews, the data relating to
each entity is scattered throughout the transcripts. Therefore, a Named Entity
Recognition (NER) task is required before any database integration. An illus-
tration of the task to be performed is proposed in Figure 3.4. To ensure the
scalability of the data integration pipeline, it is imperative to rely on an auto-
mated method to conduct the extraction process. Our approach proposes to
do so using OpenAI’s “GPT-3.5-Turbo” Large Language Model (LLM). As previ-
ously discussed, this approach aims to demonstrate that with the correct data
modeling choices and prompting, there is a promising path to automating
data integration in a generalized manner without necessarily requiring heavy
machine learning model training and deployment. The NER task conducted
by the LLM needs to be able to perform node and relationship extraction like
the one illustrated in Figure 3.4.

Figure 3.4: NER-based integration of interview data.
As part of the process of extracting nodes and relationships, unstructured in-
terview transcripts underwent a series of processing steps. First, these sources
were segmented intomanageable chunks to accommodate the LLM’s context
window - its input token limit. Each chunk was composed of a sequence of
a question from the interviewer, followed by the corresponding expert’s an-
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swer. Chunks were all assignedmetadata containing their file name and exact
location in the raw transcripts. As stated in Section 3.2.1, such information is
later stored as node attributes to ensure the traceability of each piece of in-
formation.
Second, a prompt was constructed to employ the LLM to conduct the NER
task. The drafted prompt provides details on the information to be extracted
as well as formatting guidelines. Here, it was important to provide context
in a manner that respected the schema previously shown in Figure 3.3. The
prompt also incorporates a few-shot learning approach by feeding the LLM
with example chunks along with the respective nodes and relationships that
can be extracted from them. Constructing a strong prompt was particularly
challenging, as the LLM can be prone to hallucinating or deviating from its
specified task. There is no established comprehensive method yet to evalu-
ate prompt design [5]. Hence, our prompt engineering step required many
iterations and refinements to cope with the sensitivity of the LLM’s interpre-
tation of its provided instructions. The significant role of prompt optimization
to improve results was also demonstrated in other studies [276]. An excerpt
from our final prompt can be found in Appendix 3.8.
Third, a rigorous post-processing pipeline was implemented to ensure the
proper formatting of the extracted entities. The LLM outputs were formatted
strings of text, on which a series of controls were applied to ensure their con-
formity to the prompted instructions. Outputs were transformed into lists
of nodes and relationships that were consequently loaded into the graph
database. These entities were only introduced into the database if they re-
spected the modeled schema in Figure 3.3. All imported node names were
stored in their original language. Machine translations of these names were
added as node attributes in all the other official languages of the Vrailexia
project. This task was done as part of the NER process to ensure that the
translations account for the context used by the LLM during extraction. New
studies have already shown the competitiveness of LLMs at translation com-
pared to traditional approaches [184, 426]. Our NER method enabled dealing
with unstructured data in an automated way, the quality of which is further
addressed in Section 3.4. Prior to that, a complementary task to NER in charge
of handling extracted duplicates, called disambiguation, is described in the
next subsection.

3.2.3 . Node Disambiguation

Adisambiguation strategywas deployed as the final processing step of the un-
structured data extraction to enhance data representation and trimout “near”
duplicate node names from the NER task described in 3.2.2. The disambigua-
tion involves computing textual embeddings of the node names and their
pairwise cosine similarity values. The node names were first pre-processed
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to remove stop words and frequent words specific to each node type prior
to computing these embeddings. Nodes with a cosine similarity of 0.98 and
higher are flagged for merging. The duplicate candidates are consequently
merged together by selecting one node name to be kept. Ideally, the pre-
served node name is the one with the most pairs in the duplicate groups. In
cases where multiple nodes held the highest number of duplicates, the pre-
served name was randomly selected from among them. As this step aims to
identify duplicates, it was reasonable, through trial and error, to set such a
high threshold of cosine similarity.
Node disambiguation was not a focus of this work, but rather a sub-step be-
tween NER and entity resolution. The decision to further explore or optimize
disambiguation in the future shall be made depending on the outcomes of
these two steps. Nevertheless, disambiguation helped to ensure that the
database does not suffer from a large volume of redundancies, which is es-
sential to the data integration described in the next subsection.

3.2.4 . Data Integration and Resolution

The final step of the data engineering pipeline involves the integration of the
dataset in a manner that enables navigation across multiple data sources.
Specifically, data resolution (or entity matching/entity resolution) is achieved
by connecting similar Problem, Tool, and Strategy nodes coming from het-
erogeneous sources. The illustrative example in Figure 3.5 depicts two Problem
nodes coming from different sources conveying synonymousmeanings. Data
resolution aims to connect those two nodes. Such an operation was critical
in our previous work [133], which aimed at developing a recommender sys-
tem use-case based on a multi-source graph database. Data resolution was
required to recover the insights from the expert interviews on how to address
themost severe issues of Dyslexic students from the questionnaires. This task
had, however, been previously handled manually in [133], requiring a consid-
erable amount of time and representing an obstacle for automation.
Automating this approach faces a challenge: the inherent synonymy across
the data sources is not always as explicit as illustrated in Figure 3.5. Similar
nodes are often connected through analogous descriptions, contexts, or sit-
uations. Simply considering the cosine similarity of textual embeddings or
resorting to other traditional semantic approaches is insufficient to capture
such nuanced similarities [83] without introducing many false positives and
false negatives. Therefore, it was necessary to take on the difficult endeavor
of not only resolving nodes that had syntactic similarities as that shown in
figure 3.5, but also resolving nodes having a contextual or nuanced common
meaning, such as between “Reading Difficulties” and “Size of Text” (a relation-
ship thematic in nature). An LLM prompting approach was again employed to
systematically attempt the challenge of achieving data integration in an au-
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tonomous manner.

Figure 3.5: Example of two syntactically similar Problem node names originat-ing from the questionnaire and interview transcripts respectively.
Several attempts were made at engineering a prompt that provided the LLM
with sufficient context to label a pair of nodes. The final prompt defined that
nodes would be linked if they shared one of three types of similarities: syn-
tactic, thematic, or functional. Each similarity type was carefully defined in
the prompt. In addition, the model was asked to explain the reason behind
deeming a pair similar or not before providing a label. Research has shown
that such chain-of-thought prompting could improve the ability of LLMs to
conduct complex tasks [421]. The excerpt from our final prompt can be found
in Appendix 3.9. An IS_SIMILAR relationship is introduced into the schema in
cases where node names within the same node type are deemed similar and
happen to originate fromdifferent data sources. The final conceptual schema,
therefore, ensures interconnectedness, enabling comprehensive data analy-
ses. Figure 3.6 shows the final schema, including the data resolution provided
by this latest step.

Figure 3.6: Final graph representation of the modeled schema of GRADD.

3.2.5 . Data for AI: The recommendation System
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The unique structure of the GRADD schema offers opportunities for explo-
ration. A recommendation system that can propose tools and strategies to
dyslexic students based on their problems is a relevant use case that can
demonstrate this. As part of this implementation, it was decided to focus
only on the data originating from the interviews and questionnaires since no
expert opinions relating to the VR test insights had yet been collected. The
proposed recommendation system consists of two primary components, re-
spectively in charge of:

1. Filtering candidate suggestions basedon graphnavigationbyusing causal
links provided by experts.

2. Ranking suggestions by solving an ordinal classification task with a neu-
ral network.

The first building block in charge of filtering suggestions by graph navigation
can be thought of as solving a link prediction problem. The link prediction
task relies on the graph representation to extract valuable insights. By lever-
aging inputs from respondents and causal links provided by experts, subsets
of relevant strategies and tools can be identified for specific problems. This
process takes advantage of the inter-connectedness of the data in the graph
structure, allowing for the extraction of meaningful relationships between
various entities. This component of the recommendation system focuses on
Problem nodes that a respondent has stated to be very severe (Strength edge
attribute ≥ 4) to ensure the offering of targeted suggestions. Figure 3.7 illus-
trates an example of a respondent that has severe “Reading Difficulties” and
for whom an expert recommendation is to propose, via a similarity link, “Au-
dio recording of lessons” as a means to address this severe problem.

Figure 3.7: Graph navigation to retrieve causality link between problems andtools.
Using this approach makes it possible to filter lists of tailored suggestions for
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any respondent in the database, while capitalizing on the insights and con-
nections made by experts in the field of dyslexia. This component also has
the advantage of being extremely fast to execute, as it consists of a series of
Cypher queries that can be run from a pipeline in Python or any other appli-
cation with access to the database.
The second building block, the ranking algorithm, employs a neural network
model to predict the usefulness that any respondent would assign to differ-
ent strategies and tools on a scale of 1 to 5. The core objective of the neural
network is, therefore, to solve an ordinal classification task. As inputs, the
model uses various features extracted from the graph database. Once the
ordinal classification task is performed, the predictions rank the sets of tools
and strategies according to their inferred usefulness. Applying this ranking
on the filtered suggestions provided by the first building block produces the
final output of the proposed recommendation system - a tailored list of rec-
ommendations.
Both the model selection and the final set of input variables to be extracted
from the graph database were determined based on performance on the test
set. While more than 30 features were considered, it was finally concluded
that only the respondents’ disorders and problems would be selected, repre-
senting 17 input features. Considering the substantial number of target vari-
ables (about 40 tools and strategies), a neural network was employed for its
ability to handle non-linear multi-output problems.
In terms of modeling, several architectures and loss functions were consid-
ered and compared. Themodel architecture was tuned to start from a 1-Layer
network (with no activation function) up to a 4-Layer setup (with ReLU acti-
vations). It was decided to test and compare several appropriate loss func-
tions as fully described in [133]. The Ordinal Log Loss (OLL) [323] [86], the
self-guided EMD² loss (EMD²) [194], the CO2 loss [10] and the Soft-labels loss
(SOFT) [66] have been implemented to address the problem of ordinality. The
Mean Squared Error (MSE) and the Cross-Entropy (CE) were also employed for
comparison, addressing the problem as regression and classification tasks,
respectively. The model’s predictive performance was evaluated using the
ACC1 (Accuracy within 1) [149], MAE, RMSE, and MMAE [109] metrics.

3.3 . Results and Discussion

In terms of evaluation, there was no quantitative way to benchmark the per-
formance of the hybrid recommendations (graph navigation filtering + rank-
ing algorithm) since they relied on the opinions of experts and would require
feedback from dyslexic respondents. However, it was still possible to demon-
strate that our data modeling has led to the successful ability to leverage the
recommendations from experts using the graph navigation filtering. Further-
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more, it is possible to quantitatively evaluate the ordinal classification algo-
rithm used to rank these recommendations.

3.3.1 . Evaluation of the Ordinal Classification Algorithm
The final ordinal classification model was determined after comparing the
performance of various architectures and losses. As part of the model selec-
tion process, hyperparameters such as the size of hidden layers, the learning
rate of the Adam optimizer, and the number of epochs were tuned. The im-
plemented losses also involved hyperparameters that were considered while
tuning the models. Table 3.2 summarizes the best performance obtained per
implemented loss function.
A critical detail is that the only evaluated outputs were those for which the
usefulness was filled by a respondent since a blank answer would indicate
they had not previously used the concerned tool or strategy. This minimizes
the possibility of bias in the evaluation. During training, blank values of use-
fulness were replaced by the training set’s sample means. This led to better
performance results than when replacing blanks with zero, median, or mode.

Loss Best Architecture ACC1 MAE RMSE MMAEEMD² 3-Layer NN 74.46 % 1.04 1.34 1.81OLL 3-Layer NN 74.13 % 1.04 1.33 1.80MSE 2-Layer NN 72.69 % 1.07 1.37 1.83CO2 2-Layer NN 68.90 % 1.14 1.54 2.70SOFT 4-Layer NN 66.01 % 1.19 1.61 1.75CE 3-Layer NN 65.53 % 1.18 1.58 1.76
Table 3.2: Best model per implemented loss function.

Among the various exploredmodels, theOLL and the self-guided EMD2 reached
the highest ACC1 of 74.13% and 74.46%, both with 3-Layer Neural Networks.
As commented by the authors of [86], a value of 1.5 proved to be a good trade-
off for the OLL’s hyperparameter α. The hyperparameters selected for the
self-guided EMD² loss were λ = 109, ω = 1.5 and µ = 0.
Interestingly, setting λ = 109 amounts to discard the Cross-Entropy term. In
[194], the EMD² termwas introduced only as a regularizer to the Cross-Entropy
loss because it faced convergence issues. These issueswere also encountered
experimentally by [86]. This observation was, however not met in our study,
possibly due to the different nature of the data and the lower complexity in
model architectures.
Both the self-guided EMD² and OLL losses showed significantly better perfor-
mance than the other implemented losses on all metrics except MMAE. The
best models on that metric were the Cross-Entropy (CE) and the Soft-labels
(SOFT) losses. However, these models obtained significantly worse perfor-
mances on all othermetrics. While Cross-Entropy is known not to be themost
appropriate choice for ordinal classification [10], the soft-labels relying on a
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label embedding designed explicitly for ordinal prediction tasks only had a
slightly better performance. In light of these results, it was eventually decided
to select the model using the self-guided EMD² loss as the ranking algorithm
of the recommendation system.

3.3.2 . Demonstration of the Recommendation System Use case
In this section, a randomly selected dyslexic student is taken as an example
to illustrate the results and corresponding discussion of using the hybrid rec-
ommendation system.

Most Severe Problems Recommended tools

Reading Difficulties

1. Use a special font for easy reading
2. Use Audio Books
3. Numerical tutor (e.g., Siri) to which it is pos-sible to query verbal explanations on chal-lenging concepts
4. Words written in different colors

Difficulties to focus dur-ing online courses 1. A clearer presentation of the study material

Difficulties to understandcomplex or rare words

1. Register courses
2. Underline text with different colors
3. Conceptual sketches made by oneself
4. Repeat the studied contents
5. Summaries prepared by oneself

Table 3.3: Example of recommendations.
The first step would be to identify the respondent’s most significant problems
and utilize the graph navigation component of the recommendation system
to use the experts’ opinions and filter a list of relevant strategies and tools. In
parallel, the trained ordinal classification model would take the respondent’s
declared disorders and problem strengths as inputs to infer the usefulness
of all the strategies and tools. Combining both components by ranking the
filtered suggestions in decreasing order of usefulness provides a tailored list
of recommendations. Table 3.3 illustrates, as an example, the random re-
spondent’s three most severe problems and the corresponding top 5 tools to
address each of them.
The results show that by navigating the graph, it is possible to use the knowl-
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edge of experts to recommend tools and strategies to address the most se-
vere difficulties of dyslexic students who have answered the questionnaire.
The technique is limited by the amount of expert interview data that exists.
For example, the second problem displayed in Table 3.3 only has one recom-
mendation because the current experts’ opinions stored in the database only
refer to this one tool as a method to address it. Hence, scaling the database
to include more data will make such recommendations more refined.

3.4 . Discussion and Results

This section evaluates the performance of the proposed data extraction and
integration pipeline. The feasibility of integrating suchmethods into the over-
all data engineering pipeline is assessed through the computation of common
evaluation metrics. The section concludes with key takeaways and implica-
tions from this work.

3.4.1 . Named Entity Recognition
The NER conducted by the LLM loads a total of 1,011 PST and Disorder nodes,
with the Strategy nodes forming the largest group of 360 distinct names (see
full breakdown in Appendix 3.8). From these nodes, 345 relationships were
imported into the database (see full breakdown in Appendix 3.9). Evaluat-
ing nodes and relationships generated by the LLM is challenging since the
data sources are unstructured. The paragraph containing the exact location
of entities is recorded to assess their actual relevance and validity. A common
approach to evaluate a model’s NER is to compute precision, recall, and the
consequent F1-score [16, 76, 85, 248, 322].
A quality evaluation dataset was designed by sampling 10% of the raw chunks
from the interview transcripts along with their respective generated nodes
and relationships. We concede that such an approach can be prone to sam-
pling bias. In fact, studies have considered this to be a demonstrative ap-
proach but have also noted the possibility of having a high variance in the re-
sults after sampling repetitions [256, 285]. Nevertheless, this demonstration
could provide an understanding of whether further investigation into using
such tools is worthwhile. The sample was stratified such that it represented
content from all the experts. Three reviewers were then tasked to collectively
read the sampled chunks and perform a manual NER to establish a ground
truth of nodes and relationships. Their results were then compared to the
ones’ extracted from themodel by recording the true positives (correctly iden-
tified node/relationship), false positives (falsely identified node/relationship),
and false negatives (unidentified node/relationship). Table 3.4 below summa-
rizes the results of the evaluation.
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Entity Recall Precision F1-scoreAll 75.41 69.84 72.49Nodes 89.84 75.11 81.80Relationships 52.87 58.64 55.34
Table 3.4: Sample quality evaluation of GPT-3.5-Turbo on NER Task (in%).

In terms of node extraction, an F1-score of 81.8% is high considering that the
LLM has not been fine-tuned on this project’s defined node types and rather
simply given definitions with two corresponding examples. The reviewers
noted that some of the sentences in the chunks were difficult to understand
as a result of missing words or incorrect transcribing of speech-to-text. Data
quality is surely a limitation that is difficult to improve without introducing
extra steps that may limit the scalability of the pipeline. Looking further into
the defects, an analysis of the false positives in the sample found that there
are a few relevant examples that were assigned to the wrong node type. The
Disorder nodes were the ones most affected by this issue. However, these
nodes may hold a low impact on the overall database, as theoretically their
weak semantic similarity to any of the nodes originating from the structured
sources would lead them to have a very low graph degree. Other false posi-
tives were found to be due to node names composed of one word only, bear-
ing no real meaning as a standalone. One such example of that was “Stub-
bornness”, which was extracted by the LLM to be a Problem node. Such nam-
ing causes interpretation issues. One could wonder, for instance, if the prob-
lem refers to “dyslexics being stubborn”, which would be completely wrong
andmisleading. After tracing back the chunk, “Stubbornness” was actually re-
ferring to the “stubbornness of teachers that sometimes refuse to accommo-
date the learning needs of Dyslexic students”. As a consequence, a descrip-
tion attribute was later introduced as a takeaway from this issue: effectively
backing up each node name with a contextual and detailed sentence. This
description attribute was generated after completing the NER step by feeding
the chunks again to the LLM, but this time with the extracted node names as
context. In fact, this description attribute was integrated as a way to improve
the quality of the Data Resolution task described in Section 3.4.2.
Since the relationships are extracted directly from the resulting nodes, the F1-
score of 55.34% is unsurprisingly lower. An incorrect node classification auto-
matically flags its relationships as false. Other research seems to find similar
patterns in performance between nodes and relationships [85]. Therefore,
the evaluation of extracted relationships should not be scrutinized with the
same breadth. Interestingly, precision fared higher than recall. This lower
recall was amplified by missing nodes from the node extraction task. The
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phenomenon was found to be especially true when the LLM failed to find
Disorder nodes, which in turn caused the model to miss relationships with
several distinct Problem nodes.
Overall, the results are very promising. The automatic pipeline was able to
process all the interview transcripts and load the extracted information in
about 1 hour, which could be made significantly shorter if task parallelization
was introduced. In comparison, the human evaluation, comprising of three
reviewers, working together to identify all the nodes and relationships for only
a 10% sample, took 2.5 hours. Based on this, a naive estimate for a fully man-
ual NER could be assumed to be about 25 hours. This is excluding the fatigue
that could ensue over time and the breaks (in days) that could be required.
Thus, the entity extraction by humans could easily take a few days for only
10 interview transcripts. The proposed automatic pipeline, therefore, surely
offers strong potential gains in terms of time consumption.
While the current approach already offers encouraging results, there are sev-
eral avenues that can be explored to improve the NER task’s F1-score. An
LLM could be fine-tuned to learn the nodes and relationships in a domain-
specific way. This would require creating a ground truth and also accept that
the model would be specialized on a certain corpus of nodes and relation-
ships [53]. Another potential solution is retrieval augmented generation
(RAG) [53], a method that enriches the context provided to the LLM using a
knowledge base. In fact, RAG can be further enhanced by following a frame-
work [385]. Finally, the prompt generation can be delegated to a secondary
LLM that has been fine-tuned to generate instructions specific to NER [275,
420]. The benefits of such potential improvements can apply to a wide array
of tasks, including the one covered in Section 3.4.2.

3.4.2 . Data Resolution

The data resolution task can be thought of as a binary classification task.
Hence, the same metrics of Section 3.4.1 shall be used. There were 17,981
potential similar pair of nodes extracted from the questionnaires and inter-
views. In a real-world setting, it would not be practical to evaluate the total
set and so 2% of the pairs were evaluated. Two reviewers were tasked to
determine whether a pair of nodes was similar by simply labeling 1 when sim-
ilar, or 0 otherwise. The reviewers were provided the same instructions as
the LLM to define the context of when to classify a pair of phrases as similar.
They were also provided node descriptions to help understand the context of
nodes extracted from the interviews, as described in Section 3.4.1. Finally, the
reviewers were privy to the node type of each assessed pair. This information
was not provided to the LLM to prevent entity matching biases, potentially
induced by the pair sharing the same node type.
The sampling strategy was meticulously designed to ensure an equal distri-
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bution between positive and negative instances to diligently evaluate the data
resolution task. As the dataset was significantly unbalanced (thought to have
less than 10% of the positive examples), a special method was adopted to
streamline the sample creation. The 17,981 pairs were sorted in descending
order of pairwise cosine similarity to increase the likelihood of sampling pos-
itive examples. The group of reviewers consequently determined whether
a pair was similar until 1% of the total number of pairs was filled with posi-
tive examples. Evidently, as a result of the previously mentioned imbalance
in the dataset, an equal number of negative examples were also identified
through this iterative procedure. The fact that all these negative examples
were sourced from the pool of high cosine similarity indicates that it is more
challenging for the LLM to avoid false positives compared to resorting to ran-
dom sampling.
Table 3.5 outlines the results of the LLM on the data resolution task for the
selected sample onGRADD. The results of the LLMwere benchmarked against
a baseline model that clustered the node names’ textual embeddings using
OpenAI’s “ada-002” model. This baseline approach aims at grouping similar
nodes together. It effectively identifies synonymous entities originating from
different data sources, categorizing them under common cluster identifiers.
The clustering was conducted using k-means, assigning the optimal value of
k based on the highest average silhouette score.
Model Node Type Precision Recall F1-score

Baseline: Clustered Embeddings
Problem 91.67 29.72 44.40Tool 36.00 24.32 23.03Strategy 85.71 16.22 27.27Total 59.09 23.42 33.54

GPT-3.5-Turbo
Problem 63.83 81.08 71.42Tool 63.33 51.35 56.72Strategy 80.77 56.76 66.67Total 67.96 63.06 65.42

Table 3.5: Results of the Data Resolution Task (in %).
The LLM outperformed the baseline on all metrics when looking simply at
the “Total” values, achieving a final F1-score of 65.42%. The Baseline outper-
formed only on the precision metric of the Problem and Strategy nodes. Re-
lying on textual embeddings, the Baseline model reached high precision by
simply finding most of the syntactic similarities, such as “Reading Difficulties”
and “Difficulty to Read”. However, as illustrated by its poor recall, this model
is unable to satisfy the requirements for contextual and thematic similarities,
such as between “Reading Difficulties” and “Size of Text” or between “Text with
every other line highlighted” and “use colors to underline text”. This is inter-
esting considering that we expected that the LLM would be at a disadvantage
as a result of our sampling strategy biasing toward higher cosine similarity,
hypothesized to benefit the clustering of textual embeddings. The higher pre-
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cision for Problem and Strategy nodes is therefore explained by the model
only classifying a pair as similar in a very small portion of instances, limit-
ing the chances of causing false positives. It is somewhat surprising that the
precision of the Baseline on Tool was very low. Upon investigation of the
examples, it was found that many of the unrelated pairs of Tool names con-
tained the word “Dyslexic” or “Dyslexia”, increasing their cosine similarity and
misleading the baseline model to generate false positives. Considering this,
it is impressive that the LLM was able to cope with such pitfalls and classify
correctly such nuanced examples as those provided above. It is worth noting
however that in a considerable number of false positive examples, the model
was providing too broad justifications for thematic similarity. For example, a
pair of Problem nodes were labeled as similar because they were both “de-
scribing a difficulty in an educational setting” - the definition of the Problem
node type. Ironically, a prompt optimization that attempted to correct this by
giving the model context about the pair’s node type yielded a slightly lower
precision.
In addition to the potential improvements proposed in Section 3.4.1, one can
simply use amore advancedmodel like GPT-4, which has been shown to yield
higher F1-scores at entity resolution [316]. Moreover, one can change the
prompt to only focus on syntactic similarities if one faces a use-case that does
not require such implicit definition of similarity for data integration. How-
ever, it could be more interesting to change the conception of the data mod-
eling to accommodate for the fact that language is in reality nuanced and
that not all relationships are simply syntactic in nature. For example, the
prompt can bemodified to also provide a confidence score if a pair is deemed
similar [247]. Even though some studies observed that such method yielded
case-dependent results [365], this probability could be stored as an edge at-
tribute of the similarity link, allowing for a more in-depth analysis within the
graph database. Alternatively, the modeling of the relationship, IS_SIMILAR,
can be modified to allow for three different possible relationships between
two nodes from different data sources. For example, the relationships could
be IS_SYNTACTIC_SIMILAR, IS_THEMATIC_SIMILAR, and IS_FUNCTION_SIMILAR: the
three possible contextual similarities defined to the LLM, asmentioned in Sec-
tion 3.2.4. This further exemplifies the importance of conceptual data mod-
eling. In fact, [287] has constructed a semantic framework to help human ex-
perts define a more comprehensive strategy to dealing with similarities when
attempting to integrate heterogeneous data sources. Combining such frame-
works with our exploredmethodologymay enhance the semantic capabilities
of LLMs.

3.4.3 . Key Takeaways and Implications
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To summarize, this research did not aim to find the perfect automatic tool
for data integration, but to explore the potential of Large Language Models
(LLMs) in enhancing this process. The findings reveal that LLMs hold great
promise. Minor adjustments to prompts significantly impacted F1-score (in-
creased by a factor of 1.76 in the case of entity resolution), highlighting the
sensitivity of these models. Data modeling proved invaluable for crafting ef-
fective prompts and contextualizing the instructions, reinforcing the idea that
while technology aids, it cannot replace the foundational task of data mod-
eling. Post-processing the LLM’s output emerged as a critical step, address-
ing issues like formatting errors, token limits, and incorrect node or relation-
ship generation. This underscores the importance of a robust data integration
pipeline to manage such challenges, indicating areas for further refinement
and exploration in the realm of data privacy and processing efficiency.
Acknowledging the limitations of our work is equally important for a com-
prehensive understanding. The work has shown that the data engineering
pipeline can be automated in a manner that aids humans. However, it is still
unclear how such approach can be scaled to big data applications. The com-
putational complexity of the tasks, especially that of entity resolution, could
pose a problem in cases of high volumes. Regardless, such methodology can
prove to be vital to practitioners not operating in such cases. Another limi-
tation stems from the inherent bias associated with using a sample evalua-
tion. This does not diminish the conclusions themselves, however, it is impor-
tant to work and establish a comprehensive sampling framework to evaluate
such large datasets, considering that a full evaluation is probably unrealistic in
most use-cases. Finally, the data privacy concerns relating to using LLMs can-
not be ignored. If such concerns arise, one could rely on open-sourcemodels,
such as Mixtral [214], Mistral [213] or Llama2 [393], if the right resources are
available.

3.5 . Related Work

Our approach lies in creating a graph representation of data coming from dif-
ferent sources to enable the execution of predictive Artificial Intelligence algo-
rithms [133]. Achieving this objective requires appropriate data engineering
considerations, including the definition of a conceptual model to help design,
develop and run these artificial intelligence solutions [260, 263, 395]. New re-
search fields are opening strong opportunities for the definition of conceptual
models [45, 97]. Simultaneously, research has also been devoted to address-
ing data integration with novel approaches [44, 168, 285]. As a result, it is
imperative to investigate advancements in both fields: modeling and integra-
tion. Prior to that, since the implementation is performed in Neo4j, a portion
of this section is dedicated to further understanding the benefits of using such
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a tool.
3.5.1 . Data Modeling using Neo4j Graphs

One of the key challenges of our study has been to integrate various sources
of information of different structures and languages. For example, [366] al-
ready considered that integrating diverse and complex information such as
structureddatabases, unstructured text, andmultimedia content represented
a significant challenge in Big Data applications. NoSQL databases have been
discussed as an appropriate solution for such endeavors due to their ability to
adapt to different sources anddata formats, aswell as their high-performance
capabilities and enhanced flexibility [348].
Graph data structures, which belong to the NoSQL family, are applied in areas
where information about data inter-connectivity or topology is of great im-
portance [25]. Modeling data as graphs allows querying relationships in the
same manner as querying the data itself. Instead of calculating and query-
ing the connection steps as in relational databases, graph databases read the
relationship from storage directly [25]. Neo4j employs the so-called Property
GraphModel [26]. Like any other graph databasemodel, it relies on two types
of entities: nodes and edges. However, Property Graphs contrast with other
graph data models in the way that they allow the storing of properties di-
rectly on nodes and edges [26], which is not the case for other graph data
models such as RDF [354]. Recent literature [289] commented on how graph
databases are easily scalable, fast, efficient, and flexible. This was confirmed
by [88], which explores time-evolving social network modeling achieved
through utilizing Neo4j. The objective was to capture human activities and
interactions sourced from mobile devices and wearable sensors. Notably,
the study showcases the effectiveness and scalability of real-world queries,
highlighting the efficiency of the approach [88]. Our study capitalizes on the
capabilities of Neo4j to establish a directed graph, facilitating the visualization
of pertinent insights. The choice of Neo4j was particularly interesting, as it of-
fered us the abilities to take advantage of the interconnectedness of a graph
structure, while handling different data sources in a flexible and integrated
manner.

3.5.2 . Conceptual Modeling and Artificial Intelligence
Datasets are nowadays analyzed by algorithms and systems with growing
complexity. Conceptual modeling has always been instrumental in under-
standing data and complex systems. For decades, the research community
has dedicated large attention to modeling and dug in topics that include data
modeling, processmodeling, metamodeling, andmodel quality [46, 187, 382].
One of the main questions during the last few years has been: “how concep-
tualmodeling canhelp structuremachine learning andpractitioners’ projects?”
[115, 263, 432]. The conclusion has been that machine learning and data mod-
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eling can complement and help each other [147] even to the point of defining
systems that can auto-configure and optimize themselves [253]. The attention
around this topic is increasing to the point that a new research area identified
with the CMAI acronym (Conceptual Model and Artificial Intelligence) recently
started to be developed [73]. In a similar vein, our conceptual modeling work
has been oriented to complement value adding AI applications, such as the
recommender system proposed in our previous study [133]. Our approach
adopts a reciprocal approach by taking advantage of Large Language Models
to enhance data engineering tasks.

3.5.3 . Advances in Data Modeling and Integration

Defining a good conceptual model is still an open challenge in many research
areas. Even recent literature shows how a big research community is still
working on defining and validating conceptual models for use-cases such as
smart homes [424], European laws [345] or even manufacturing business an-
alytics [297]. Similarly, studies have shown that defining a conceptual model
that integrates many heterogeneous data sources is an even more complex
and open challenge [14, 382]. Many open questions persist, particularly in the
context of new tools and approaches like LLMs [168, 285] or the synergy be-
tween knowledge graphs and natural language [222].
The last several years have seen significant efforts to explore the use of Natu-
ral Language Processing (NLP) techniques and applications of language mod-
els in the context of databases systems and conceptual modeling [160, 331,
396]. These applications also include data discovery and integration [226, 285,
403]. For example, very encouraging results have emerged in using GPT-3.5
for the task of entity extraction from unstructured documents [43, 85]. Other
works such as [45] and [97] propose LLM-based tools that extract document
values from data lakes. Recent research has also focused on considering GPT-
3 in support of model construction and definition [397] or data transforma-
tion [358]. Some studies even attempted to substitute databases and data
models with Generative AI Machines [218].
The problem of data integration has been widely studied in literature [44, 64].
Classical solutions traditionally define a unified framework based on general
meta-structures and a set of rules tomap the sources into a targetmodel [154,
170]. In a similar fashion, our work maps all the available data into a target
schema made of entities coming from different data sources. According to
our research, a conceptual model is indeed essential to succeed in integrat-
ing data fromheterogeneous sources. That is why, our present study explores
how LLMs can be used to support the automation and enrichment of a graph
data model. This research field is only starting to be explored, but some ap-
proaches have already shown good results [43, 45, 97, 397].
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3.6 . Conclusion

This study demonstrates the effectiveness of a novel application of Large Lan-
guageModels (LLMs) for integrating heterogeneous data sources into a graph
database. Through a comprehensive methodology that includes data model-
ing, extraction, and integration, supported by technologies such as Neo4j and
GPT-3.5-Turbo, complex data processing tasks can potentially be streamlined.
Although the data modeling choices have been centered around one specific
dataset, several steps such as those relating to the modeling of entities as
well as the decision of where to store attributes can be expanded to other
use-cases, especially in the context of an educational environment. The eval-
uation of both Named Entity Recognition and Data Resolution tasks illustrates
the effectiveness and efficiency of LLMs in handling diverse data types. The
project highlights the synergy between human expertise in data curation and
AI’s capabilities: opening avenues for more nuanced and scalable research
databases.
Our future work aims to develop a more robust framework for data model-
ing that can better capture the complexities of educational data. The devel-
opment of such a framework could also include an exploration to enhance
an LLM’s understanding of nodes and relationships by leveraging techniques
such as retrieval augmented generation (RAG) and further prompt engi-
neering. Furthermore, data modeling can be improved by accounting for the
nuanced nature of language, potentially employing probabilistic approaches
to similarity and exploring the inclusion of syntactic, thematic, and functional
relationships into the conceptual schema. Moreover, since model fine-tuning
is difficult due the lack of available ground truth, it is worthwhile investigating
generating a synthetic dataset using LLMs that are specifically tailored to the
use-case [388]. It has also been established that different results could be ob-
tained from repeated executions of LLMs [63]. To assess the robustness of the
proposed approach, it could be interesting to perform a statistical analysis on
multiple runs of the data extraction and integration processes. This quantita-
tive evaluation could also provide the opportunity to compare the robustness
of different language models on this specific task. Finally, the optimization of
the disambiguation process presents a rich avenue for further research that
is not covered here, as this study primarily focused on data extraction and
resolution.
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3.A . Nature of Data Used

Variable Respondents

id 155 34

How old are you? (do not enter your date of birth) 22 229

Gender F Prefer Not To Say

Dyslexics in Family Mother, Brother

What university are you from? Nanterre Univ. CentraleSupélec

Are you dyslexic? Yes No

Have you been diagnosed with dyslexia? Yes

*IF YOU ANSWER YES TO THE PREVIOUS QUESTION* - What other difficulty(s)
do you have besides dyslexia? [Calculation difficulty - dyscalculia] Yes

*IF YOU ANSWER YES TO THE PREVIOUS QUESTION* - What other difficulty(s)
do you have besides dyslexia? [Other]

Reading Difficulties 5 2

Presentation Attention 4 4

Audiobook Quality I don’t know 2

Images for Words 4 2

Oral Exams 3 1

Table 3.6: Example Data from Select Columns of the Questionnaire.
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Variable Respondents

id 361 362

created_at 2022-12-12 10:56 2022-12-12 18:00

age 22 32

sex female male

dyslexia_type Dysorthography Dyscalculia

language 4 4

“Press quickly and twice in a row the yellow button” Time 81.0019 44.9134

“Press quickly and twice in a row the yellow button” Correct TRUE TRUE

“Try to say the word kiss/bisous/beso/bacio” Time 0 64.3253

“Try to say the word kiss/bisous/beso/bacio” Correct FALSE TRUE

“I feel that I am a person of worth, at least on an equal plane with others” 1 2

“I feel that I have a number of good qualities” 1 2

Table 3.7: Example Data from Select Columns of the VR Set.
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3.B . Sample Prompts for Data Integration

Figure 3.8: Excerpt from prompt used for NER task (text formatted as TEXTare user inputs).
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Figure 3.9: Excerpt from prompt used for Entity Resolution task (text format-ted as TEXT are user inputs).
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3.C . Summary of Data Extracted from Expert Interviews Using
LLM

Entity Number of Nodes

Disorder 61
Problem 314
Tool 276
Strategy 360

Table 3.8: Extracted Nodes.
Entity Pair Number of Relationships

(Problem, Disorder) 83
(Problem, Tool) 125
(Problem, Strategy) 137

Table 3.9: Extracted Relationships.
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4 - Data integration in smart cities and energy
conversion

Cities serve as vital hubs of economic activity and knowledge generation and
dissemination. As such, cities bear a significant responsibility to uphold envi-
ronmental protection measures while promoting the welfare and living com-
fort of their residents. There are diverse views on the development of smart
cities, from integrating Information and Communication Technologies into ur-
ban environments for better operational decisions to supporting sustainabil-
ity, wealth, and comfort of people. However, for all these cases, data is the
key ingredient and enabler for the vision and realization of smart cities.
One key enabler of cities and smart cities is energy. During the last years’ en-
ergy transformation, often referred to as energy conversion, green hydrogen
technologies and efficiencies are critical components of the plan to achieve
net-zero CO2 emissions. Thus, the use of artificial intelligence (AI) and ma-
chine learning (ML) tools in these fields could pose opportunities to acceler-
ate and optimize the performance and efficiencies of energy conversion tasks.
For this task, we conduct a study about the use and acquisition of real exper-
imental data, over simulated data, and overall standardized explicit analysis
of the data size, accuracy, or error rates achieved, and comparison of the per-
formance of algorithms with a benchmark.
The chapter is adapted from the following papers:

• Ekaterina Gilman, Francesca Bugiotti, & all Addressing Data Challenges to
Drive the Transformation of Smart Cities. ACM Trans. Intell. Syst. Technol.2024

• Konstantinos Mira, Francesca Bugiotti, Tatiana Morosuk Artificial Intelli-
gence and Machine Learning in Energy Conversion and Management, Ener-gies 2023

4.1 Background and context . . . . . . . . . . . . 68
4.2 Data challenges in the context of smart cities 84
4.3 Related work . . . . . . . . . . . . . . . . . . . 108
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . 111

This chapter explores the challenges associated with smart city data from a
data integration point of view. We start with gaining an understanding of the
concept of a smart city, how to measure whether the city is a smart one, and

67

http://www.bugiotti.it/downloads/publications/smart24.pdf
http://www.bugiotti.it/downloads/publications/smart24.pdf
http://www.bugiotti.it/downloads/publications/energy23.pdf
http://www.bugiotti.it/downloads/publications/energy23.pdf


what architectures and platforms exist to develop one. Afterwards, we re-
search the challenges associated with the data of the cities, focusing on avail-
ability, heterogeneity, management, and analysis. Lastly, we analyze how ef-
fective data analysis can improve the energy conversion field as it is a key
enabler for smart cities.

4.1 . Background and context

Cities play a crucial role as the engines of the economy and centres of connec-
tivity, knowledge, and services [402]. Based on the estimation from theUnited
Nations, 66% of the world’s population will live in urban areas by 2050 [288].
Being the centres of growth and innovation, cities need to address signifi-
cant challenges for environmental protection and citizens’ prosperity and liv-
ing comfort. These challenges become pronounced in large and rapidly grow-
ing cities, which concurrently struggle to establish robust infrastructure to en-
sure clean air and water, energy supply, food, transportation, efficient waste
management, and provisioning of public spaces - vital components for human
well-being [241].
Cities are increasingly equipped with Information and Communication Tech-
nology (ICT) technologies to improve their resourcing and the quality of life
of their inhabitants, ultimately becoming smart cities. The term “smart sus-
tainable city” is used to denote a city that is supported by the widespread
adoption and extensive use of advanced ICT, which, coupled with various ur-
ban systems and domains and strategic coordination of their intricate inter-
relations, empowers the city to manage available resources sustainably and
efficiently for improved economic and societal outcomes [70]. Cities are be-
coming smart and sustainable in ways that enable us tomonitor, understand,
analyse and plan the city to improve the efficiency, equity, and quality of life
for citizens in real time [59].
Smart cities are technologically modern urban areas leveraging networked
systems to collect data and data analytics platforms to analyze data. The de-
velopment of smart cities requires the integration of various subsystems to
work together to achieve a common goal, which is a system of systems ap-
proach. A system of systems is a collection of independent but interrelated
systems that are developed and operated to meet a common set of objec-
tives. In the context of smart cities, a system of systems integrates multiple
subsystems, such as transportation, energy, water, waste management, and
public safety, into a single system. Such integration is crucial to achieve the
common goal of improving the quality of life for citizens. In order to integrate
these subsystems, smart cities rely on data [89].
Data is the key ingredient and enabler for the vision and realization of smart
cities. A huge volume of data represents a large amount of information gen-
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erated via and about people, objects, and interactions among them in smart
cities. Such data produced in different sectors within a city can contribute in
generating useful information for various stakeholders for decision making,
such as policy makers, citizens, domestic governance bodies, and industrial
communities [148]. By analyzing data in smart cities, we can potentially un-
derstand the activities and interactions and enhance the quality of the ser-
vices offered to the citizens, as well as provide benefits for city management,
like contributing to lowering operational expenses. For example, in Seoul, the
government has been collecting data related to healthcare, transportation,
and residency to make it available to citizens and scientists [252]. From these
data, various smart services can be developed leveraging ICT and big data
solutions [7, 69, 96, 179, 273, 350]. However, there are many challenges that
need to be tackled on the way from the “raw” data to the smart service, from
data and system perspectives.
Smart city data integration and analytics platform is responsible for integrat-
ing data from various sources into a single system and performing analytics.
The platformuses data integration tools and techniques to extract, transform,
and load data from various sources, such as databases, sensing systems, and
other monitoring devices. Once the data is integrated, it can be analyzed to
provide insights into various aspects of city life. For example, data from traffic
sensors can be used to optimize traffic flow, reduce congestion, and improve
public transportation. Similarly, data fromenergy consumptionmeters canbe
used to optimize energy usage, reduce costs, and improve energy efficiency.
In order to manage all of this data, smart cities rely on a variety of data man-
agement systems, which are responsible for analyzing the integrated data to
provide insights into various aspects of city life. The systems typically use a
variety of data analytics techniques, such as machine learning and artificial
intelligence, to analyze the data and identify patterns and trends. These in-
sights can be used to optimize various aspects of city life, such as traffic flow,
energy consumption, and waste management.
This survey provides a holistic view covering data-related challenges of smart
cities, see Figure 4.1. We start by defining andmeasuring smart cities and sur-
vey recent works of smart city architectures and platforms. Having this under-
standing, we then dive into exploring challenges and solutions for handling
data. Given the diversity of smart city data, we also review challenges related
to data heterogeneity and integration. Then, we dive into data management
issues, including data acquisition, storage, processing, and governance. After
that, we explore challenges related to data analysis, ethics, data privacy, and
security.
This chapter contributes to a careful investigation of challenges associated
with the data in smart cities. In a nutshell, our contributions are twofold:

1. Providing a comprehensive reviewof the latest development of the smart
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Figure 4.1: Topics covered in the manuscript.

city concept. We also review existing solutions allowing for measuring
smart cities as well as architectures and platforms for developing smart
cities.

2. Exploring challenges associated with the data of the smart cities, cov-
ering data availability and quality, heterogeneity, management, anal-
ysis, privacy, security, and ethical aspects, and a research agenda for
addressing these challenges.

This work aims to serve as a “one-stop shop” covering data-related issues of
smart cities with references for diving deeper into particular topics of inter-
est. The remainder of this chapter is organised as follows. As first, we discuss
several significant research challenges, such as data availability, quality, het-
erogeneity, management, analysis in Section 4.2.
Section 4.3 summarises related work. We finally conclude by presenting a
detailed discussion in Section 4.4.

4.1.1 . Defining smart city
The smart city concept is flexible and open, which is probably a central factor
behind its popularity and global success. At the same time, it is also noto-
riously challenging to define [290]. The reasons are two-fold. On one hand,
scholars have mapped and categorized smart city development in different
ways, depending on their background [231, 280]. On the other hand, different
cities around the world have applied the agenda in their own terms, due to
their specific economic, political, legal, social, and cultural arrangements [9].
Figure 4.2 presents a high-level evolution of smart city concept development.
In general, the smart city refers to optimizing city processeswith ICT and, thus,
creating better cities for all. The definitions of the early 2000’s emphasized the
streamlining of city operations and optimizing infrastructure through digital
services. In addition, the idea of utilising data in decision-making was already
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Figure 4.2: Development of smart city concept.

present in these early definitions [172]. The smart city was at first promoted
especially by the private sector, which saw urban ICT systems as an economic
opportunity and as a way to work with the public sector [180, 368]. For exam-
ple, IBM defined the agenda as follows: “Smarter Cities are urban areas that
exploit operational data, such as that arising from traffic congestion, power
consumption statistics, and public safety events, to optimize the operation of
city services. The foundational concepts are instrumented, interconnected,
and intelligent.” [177].
As the popularity of the agenda increased, also a complete body of work
presenting critique towards smart cities’ techno-centric approach was born.
Many articles suggested smart city agenda can strengthen societal inequali-
ties and lead to unjust cities [84, 191, 272, 341, 410]. Williamson summarized
aptly [422], “urban research from geographical and sociological perspectives
has sought to critique it [smart city development] in terms of being market-
based, technocratic, surveillant, solutionist, militaristic and reproductive of
power asymmetries.”, see also, e.g. [24, 114, 267]. In other words, the critics ar-
gued that smart city development is often realized top-down, without paying
attention to city inhabitants’ specific needs, perspectives, and local life-words;
it follows neoliberal logic; and it undermines ethical questions related to, e.g.,
free, open public space and privacy. Furthermore, the lack of environmental
attributes was repeatedly criticized [280]; or, as Cugurullo puts it, smart city
“includes environmental ones as long as they can be monetized” [110].
Due to the increasing critical perspectives, the 2010’s definition shows a shift
in focus, i.e., the policy and community aspects started to becomemore com-
mon in smart city development and related discussions. According to [129],
the redefinition of the term was arguably conducted to distance the concept
from the technological determinism surrounding smart cities. One of the cen-
tral definitions offering a multidimensional perspective on smart cities has
been formulated by Nam and Pardo [284]. Nam and Pardo have categorized
key conceptual components of smart city into three aspects, including tech-
nology (software and hardware infrastructure), human (creativity, diversity,
and education), and institutional (governance and policy) [284]. Here, the
technology component emphasizes the necessity of well-functioning infras-
tructure and applications. Without this basis, and therefore, without engage-
ment and cooperation between public institutions, private and educational
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sectors, and citizens, there is no smart city [284]. The human factors cate-
gory highlights the value of creativity, learning, and education for the city to
become smart. That is, “a smart city is a humane city that has multiple op-
portunities to exploit its human potential and lead a creative life” [9]. Finally,
the institutional dimension emphasizes the fundamental role of a support-
ive administrative environment (initiatives, structure, and engagement) and
governance for the design and implementation of smart city [284]. There-
fore, the connection of these factors implies that “a city is smart when invest-
ments in human/social capital and IT infrastructure fuel sustainable growth
and enhance a quality of life, through participatory governance” [284]. Sev-
eral researchers have utilized and applied this multidimensional perspective
on smart cities. For example, Yigitcanlar et al. [429, 430], have argued that
by building on the drivers described by Nam and Pardo [284], i.e. focusing on
technology, policy, community, limitations of earlier smart city model(s) could
be tackled.
The current smart city literature increasingly addresses aspects relating to
privacy, security, socio-digital inequality, and digital citizenship [180, 188, 431].
Further, there exists a strand of research that looks beyond human cen-
teredness and traces the possibility of a smart city model that takes into ac-
count non-human beings, i.e., animals and nature, in profoundways [261, 392,
430]. Nevertheless, there seems to be a constant tension between techno-
centric visions and more holistic visions, and some authors fear that issues
that have haunted smart city development already for decades are just car-
ried over to novel data and AI-focused urban visions [110]. Thus, social and
environmental themes should always be carefully considered, and plans on
digitalization should always be embedded within broader urban policies to
avoid one-sided, solutionist, and fragmented approaches [110, 180].
Another view on smart cities is offered by standardization bodies, such as the
International Telecommunication Union (ITU) [377] and the International In-
ternational Organization for Standardization (ISO) [207]. To understand the
key components, ITU conducted an analysis of smart cities and sustainable
cities definitions [373]. In this analysis, 50 keywords were extracted from
116 definitions found from various sources. Examples of most occurring key-
words include quality of life, technology, people, systems, governance and
administration, and economy. Therefore, common themes and dimensions
were formed from these keywords resembling the six characteristics from
Giffinger et al. [153], including Quality of life and lifestyle; Infrastructure and
services; ICT, communication, intelligence, information; People, citizens, so-
ciety; Environment and sustainability; Governance, management and admin-
istration; Economy and Finance; and Mobility [373]. This survey helped ITU
in identifying key essential terms for the definition of Smart Sustainable City,
defined by ITU as “an innovative city that uses information and communica-
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tion technologies (ICTs) and other means to improve quality of life, efficiency
of urban operation and services and competitiveness, while ensuring that it
meets the needs of present and future generations with respect to economic,
social, environmental, as well as cultural aspects.” [373]. ISO 37122[210] pro-
vides another view from the perspective of standardization, underlining the
role of sustainability: According to ISO, smart city is a city that provides social,
economic and environmental sustainability outcomes at increasing pace, and
responds to challenges such as climate change, rapid population growth, and
political and economic instability. This is achieved by fundamentally improv-
ing how the city engages society, by applying collaborative leadership meth-
ods, working across disciplines and city systems, and using data information
andmodern technologies to deliver better services and quality of life to those
in the city (residents, businesses, visitors), now and for the foreseeable future,
without unfair disadvantage of others or degradation of the natural environ-
ment [210].
In theory, these standardization efforts could help in creating a universal un-
derstanding of smart city agenda. However, they should be used with cau-
tion because standards do not necessarily help in addressing local conditions
properly, such as differences in population, economic structures, city man-
agement, or social and cultural aspects that can affect smart city development
drastically, as mentioned earlier.

4.1.2 . Measuring smart cities

Given the diversity of interpretations, measuring the performance of smart
city is challenging [9]. Moreover, cities are very different in their history, cul-
ture, economy, anddevelopment goals. Therefore, tomake the task approach-
able, quantifiedmeasures are suggested that can be tracked over time to give
information about stasis and change of a particular phenomenon, i.e. indica-
tors [232]. Kitchin et al.[232] distinguishes between single (measuring single
phenomenon) and composite (combining several measures) indicators. Also,
indicators differ by their role, e.g., descriptive or contextual indicators pro-
vide key insights into the phenomenon; diagnostic, performance, and target
indicators serve as the means to diagnose a particular issue or assess per-
formance; while predictive and conditional indicators are used to predict and
simulate future situations and performances [232]. Here, we first briefly intro-
duce some existing efforts towardsmeasuring smart cities; and then highlight
some data-related challenges for such indicators and indices.
A number of standardization and research efforts exist to suggest cities an ap-
proach tomonitor, analyse, and communicate the performance and progress
towards achieving set goals [198, 243], see Table 4.1. For example, the ITU has
developed a number of ITU-T Recommendations on assessing different as-
pects of smart sustainable cities, e.g. [376, 377, 378, 380]. For instance, ITU-T

73



Y.4903/L.1603 [375, 380] proposes a set of KPIs for assessing cities in achiev-
ing smart sustainable goals. This recommendation formed the basis for the
development of KPIs for smart sustainable cities by Smart Sustainable Cities
(U4SSC). initiative [102]. These KPIs establish criteria to evaluate ICT’s contri-
butions in making cities smart and sustainable and provide cities the means
to assess the achievements of sustainable development goals. U4SSC indi-
cators form part of a holistic view of a city’s performance in economic, envi-
ronmental, social, and cultural dimensions. Over 100 cities worldwide already
implement these KPIs, like Dubai, Valencia, and Moscow [372]. The Interna-
tional Organization for Standardization also puts effort into monitoring and
developing sustainable and smart cities. For instance, a number of indica-
tors for sustainable cities and communities were suggested with ISO 37120
[209], which was further complemented with indicators for smart cities with
ISO 37122 [210]. There, indicators are broken down by sectors, like economy,
education, energy, environment, and climate change. Also, indicators are
complementedwithmetainformation about data sources, interpretation, and
calculation methodology. The World Council on City Data is involved in ISO
indicators development and provides city certifications based on ISO 37120
indicators implemented [108].
CITYkeys EU Horizon 2020 project focused on the development and valida-
tion of key performance indicators and data collection procedures for mon-
itoring and comparison of smart city solutions across European cities [325].
CITYkeys indicators are based on an inventory of 43 existing indicator frame-
works and categorised by people, planet, prosperity, governance, and propa-
gation themes [75]. Themes are further broken down into subthemes where
99 project (to assess single projects) and 76 city (to monitor evolution of the
city) indicators have been selected and explained in the detail with the men-
tion of expected data sources [75]. What makes CITYkeys project indicators
different is that they are impact-oriented. They were also used by the Euro-
pean Telecommunications Standards Institute (ETSI). in their technical specifi-
cation “Key Performance Indicators for SustainableDigitalMultiservice Cities” [201].
Table 4.2 presents some examples of indicators related to open data and their
interpretation within different assessment suggestions.
Having such assessment solutions also allows the creation of indices to enable
comparison andmonitoring of the city development progress. Indexes can be
considered as “quantitative aggregation of many indicators and can provide
a simplified, coherent, multidimensional view of a system” [270]. So, these
are composite indicators, combining several indicators through weighting or
statistics to create a new derived measure [232]. For instance, U4SSC KPIs
form the basis for the U4SSC Smart Sustainable City Index that facilitates a
comparative ranking of the cities.
Although being useful, the creation and usage of indicators must be done
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Activity Scope
CITYkeys H2020 EUproject indicators [75] Proposes indicators for assessing smart city projects and thecorresponding city-level indicators. Indicators are categorisedinto people, planet, prosperity, governance, and propagationthemes, which are further split into subthemes. Altogether, 99project and 76 city indicators have been presented.ETSI, Key Performance In-dicators for SustainableDigital Multiservice Cities,ETSI TS 103 463 V 1.1.1(2017-07) [201]

Proposes indicators based on CITYkeys project [75]. Here, top-ics include people, planet, prosperity, and governance.

ITU, Overview of key per-formance indicators insmart sustainable cities,Recommendation ITU-TY.4900/L.1600 [377]

Gives a general guidance to cities and suggests key perfor-mance indicators towards smart sustainable cities, categorisedinto Information and communication technology, environmen-tal sustainability, productivity, quality of life, equity and socialinclusion, physical infrastructure.ITU, Key performanceindicators related to theuse of information andcommunication technol-ogy in smart sustainablecities, RecommendationITU-T Y.4901/L.1601 [376]

Focuses particularly on KPIs related to the use of ICT in smartsustainable cities. Categorised into Information and Communi-cation Technology, environmental sustainability, productivity,quality of life, equity and social inclusion, physical infrastruc-ture.

ITU, RecommendationITU-T Y.4903/L.1603 [375]and its update Recom-mendation ITU-T Y.4903[380]

Proposes KPIs to allow cities to monitor and assess the effortsin achieving sustainable development goals, becoming smarterand more sustainable cities. Indicators are categorised into:economy, environment, society, and culture groups.
ITU, Smart sustainablecities maturity model,Recommendation ITU-TY.4904 [379]

Proposes maturity model for sustainable smart cities, as wellas methods to assess and plan future development strategies.Here, the focus is particularly on assessing the achievement ofsustainable development goals towards ICT development of thecities. The proposed model has 5 layers and three dimensions:economic, environmental, and social. KPIs are recommendedto be used for assessing maturity levels as well, like publishedin ITU-T Y.4901 [376], ITU-T Y.4902 [378], and ITU-T Y.4903 [380].ISO, Sustainable citiesand communities — In-dicators for city servicesand quality of life, ISO37120:2018 [209]

Proposes indicators to assess the performance of city servicesand quality of life. Indicators are grouped under economy,education, energy, environment and climate change, finance,governance, health, housing, population and social conditions,recreation, safety, solid waste, sport and culture, telecommu-nication, transportation, urban/local agriculture and food secu-rity, urban planning, wastewater, and water.ISO, Sustainable citiesand communities — In-dicators for smart cities,ISO 37122:2019 [210]

Proposes indicators to assist cities in assessing the perfor-mance of city services and quality of life. Indicators are groupedunder the same categories as in ISO 37120:2018 [209].

Table 4.1: Some standardization and research efforts towards measur-ing smart cities.
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Indicatorname Assessmentsolution Measurement mecha-nism Description
Increasein onlinegovernmentservices

CITYkeysprojectindicator[75]
Likert scale Indicator analyses the im-provement in providingonline government ser-vices, including open dataplatforms.Quality ofopen data CITYkeysproject [75] Likert scale Indicator assesses theease of use of datasetsproduced by the projectand whether they arekept up-todate.Accessibilityof open datasets

CITYkeysproject[75],ETSI[201]
Average stars across alldatasets according tothe 5 star deploymentscheme for Open Datadefined by Tim BernersLee (5stardata.info)

Indicator evaluates easeof use and the opennessof city data

Opendatasets CITYkeysproject [75] The number of opengovernment datasets per100.000 inhabitants
Measures the numberof open governmentdatasetsOpen Data ETSI[201] Number of open govern-ment datasets per 100 000inhabitants
Measures the numberof open governmentdatasetsOpen data ITU-T Y.4903[380] Total number of opendata sets published di-vided by total number ofdata sets multiplied by100

Percentage and numberof published inventoriedopen datasets

Percentageof servicecontractsprovidingcity serviceswhich con-tain an opendata policy

ISO37122:2019[210] Total number of servicecontracts providing cityservices which contain anopen data policy dividedby the total number ofservice contracts in thecity, multiplied by 100.

The percentage of ser-vice contracts providingcity services that have anopen data policy

Annual num-ber of onlinevisits to themunicipalopen dataportal per100 000 pop-ulation

ISO37122:2019[210] Total number of munici-pal open data portal visitsdivided by 1/100 000 of thecity’s total population

Annual number of onlinevisits to the municipalopen data portal per 100000 population

Table 4.2: Examples of open data related KPIs.
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with care, since their validity is inbuilt in the process they are created. For in-
stance, indicators themselves describe the characteristics of the system state
based on observed or estimated data [270]. This means that the diversity of
data sources and measured quality challenges are inbuilt by definition, often
making direct comparison unfeasible. Moreover, Kitchin et al.[232] empha-
sise also that data do not exist independently from the ideas, interests, tech-
nologies, practices, and systems involved. Therefore, they should be used
and interpreted with caution. All these imply that assessment frameworks
should provide a clear description, rationale, interpretation, benchmarking,
andmethodology for indicator calculation, as well as potential sources of pos-
sible data to use and links to other normative documents [102]. So that the
one using the framework is equipped with all the information regarding data.
Also, indicators can show that a problemexists, but they do not show its cause
or tell what to do [232]. Therefore, they could be useful if monitored contin-
uously, to see the progress if certain measures are taken. This also raises
the question of whether a city index to rank the cities is needed [74]. Given
the fact that cities are very different from each other and have diverse histo-
ries, economics, and development goals, their ranking can be misleading and
provide weak support for cities themselves in their development. Moreover,
“indicators and measurements should not become a goal in themselves but
support the fulfillment of individual cities’ needs” [198]. From this perspective,
indicators supporting continuous monitoring of important phenomena in the
city could be valuedmore. Also, indicator visualization is important, since this
may affect perception and interpretation [232, 286].
Indexes should also be used with caution. For instance, indices usually have
a certain focus, which determines which indicators are included in it [74]. It is
recommended to develop a solid theoretical framework to serve as the basis
for the selection and combination of indicators into a meaningful composite
indicator [286]. Therefore, developers of the index should understand and
communicate the purpose and limitations of the index, as well as how differ-
ent indicators relate, so that index interpretation is solid [270].
In addition, indexes also rely on a number of data processing techniques,
like aggregation, normalization, and weighting [364, 286]. Proper theoreti-
cal grounds should be followed, otherwise “ ’incompatible’ or ’naive’ choices
(i.e., without knowing the actual consequences) in the steps of weighting and
aggregation may result in a ’meaningless’ synthetic measure ” [156]. More-
over, it is recommended to test the aggregate measures for their robustness
as a whole, to test how sensitive is the index to changes in the steps followed
to construct it, traditional techniques include uncertainty and sensitivity anal-
ysis [156, 286]. These imply that data, overall methodology, predetermined
boundaries of the system, and comparability of results across the systems
should be transparent and clearly communicated so that one is able to as-
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sess the performance and suitability of index for particular task [270]. Finally,
aggregate indices may hide some information, e.g., it could be challenging to
identify if few indicators have extreme values when the index aggregates hun-
dreds of these into one number [270]. In such situation, it could be better to
provide the indicators as frameworks and use, maybe, visual tools to present
these.
Indexes require careful governance as well, as with the time, data behind
indicators can change, therefore direct comparison with previous versions
becomes unfeasible. The ability to compare various indicators and assess-
ment frameworks provides means to ensure that the proper one is selected.
Huovila et al.[198] provide a comparative analysis of standardized indicators
for smart sustainable cities, where seven sets of city indicators published by
international standardization bodies are inspected in terms of their concep-
tual urban focus, city sectors, and types of indicators.
Acknowledging the limitations and challenges, indicators are still useful and
provide the means to track the progress of certain phenomenon [105, 335].
The keymessage here is to enable as transparent and documented process as
possible, ensuring that users of the indicators have a proper understanding
and are able to make an informed judgment if the indicator is suitable for the
task at hand.

4.1.3 . Smart city architectures and platforms

Smart cities are very complex structures involving various stakeholders, tech-
nologies, and physical constraints; therefore, it is difficult to provide a unified
reference architecture and aplatform, since the development could be guided
by its own requirements [252, 350]. In this section, we’ll cover some existing
efforts towards smart city architectures and platforms and summarize them
into a general architecture from the smart city data point of view.
ITU defines architecture in general as “a definition of the structure, relation-
ships, views, assumptions, and rationale of a system” [374]. There are many
smart city architectures and their implementations presented by the research
community, varying in their goals and details. Generally, smart city refer-
ence architectures should be technology-neutral and provide a clear set of
capabilities and stages to be implemented in order to provide smart city ser-
vices [145]. Moreover, such architectures aim to fulfill a certain set of require-
ments of the domain. Table 4.3 summarizes requirements for smart city ar-
chitectures and platforms found in related work. As can be seen, in general,
such requirements cover data and systemmanagement functionality, as well
as non-functional requirements related to privacy, security, and system life-
cycle management.
A number of architectural proposals exist with varying levels of detail. Some
researchers provide quite a general perspective. For instance, Zygiaris [443]
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Functional requirements Non-functional requirements
Summary from [350, 374, 163, 264, 69, 252, 142, 203, 398, 317]

• Handling Big Data character-istics, namely Volume, Ve-locity, Variety, Veracity, andValue
• Definition of a City Model,data models, and APIs
• Data management
• Data storage management
• Data Processing & Analysis
• External Data Access
• Applications Runtime man-agement
• Wireless Sensor NetworkManagement
• Service Management, SLA
• Software Engineering Tools,APIs
• IoT device/resource discov-ery and management
• IoT Data Marketplace
• License management
• Incorporation of Feedbackand Monitoring

• Interoperability
• Decoupled & distributedcomponents
• Openness
• Legacy Compatibility & het-erogeneous landscape
• Resilience to failure & Ro-bustness
• Performance
• Scalability
• Security
• Privacy
• Context Awareness
• Adaptation
• Extensibility
• Configurability

Table 4.3: Summary of requirements for smart city architecture andplatform from related work.
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suggests seven layers, going from the layer covering essentials of the city (dis-
tricts, inbuilt infrastructure, etc), to level aiming and promoting green and sus-
tainable actions (like green transport practices, and planning), to technology
and application covering layers (interconnection, instrumentation, open inte-
gration, application layers), and, finally, to innovation layer, focusing on inno-
vation ecosystem vital for the prosperity of the cities and their inhabitants.
Zheng et al. [437, 438] summarize the urban computing system framework,
which is comprised of four general layers: urban sensing and data acquisi-
tion, urban data management, urban data analytics, and service providing. In
contrast to other proposals, Zheng et al.[437] are more interested in method-
ological aspects, like processing geo-spatial data at each layer (e.g., trajectory
compression and map-matching in the urban data management layer).
Others focusmore on the systemdevelopment angle. For instance, Habibzadeh
et al. [163] abstracts smart city architecture as five generic planes: application
plane, sensing plane, communication plane, data plane, and security plane.
There, each plane comprises a number of technologies, methods, and chal-
lenges. Santana et al.[350] provide their reference architecture for the devel-
opment of software platforms for smart cities based on analysis of 23 related
projects. Compared to others, their architecture is more technology-driven
and is based on the cloud and networking layer, with Internet of Things (IoT)
and Service middleware, user management, and social network gateway on
top of that. The Big Data management component is responsible for all data
aspects. In addition, the need for the toolkit, security support are presented
in the architecture. The authors also emphasize that all components of the
platformmust support scalability, security, privacy, and interoperability. San-
tos et al. [351] focus on sensing platform for smart cities. Their approach is to
follow the data flow: sensing, data collection, and data storage, processing,
sharing, and hosting urban services. They integrate sensor data from mo-
bile crowdsensing, environmental, and public transport vehicle sensing for
analysis, data sharing, and smart city applications development. There, the
importance of a unified spatio-temporal data model and the use of standard
IoT data access methods are emphasized. Villanueva and al.[411] propose Civ-
itas platform to be seen as the core of smart city IT infrastructure able to or-
chestrate different entities (like citizens, public institutions) connected to it via
Civitas plugs. Middleware also relies on core nodes that are servers hosting
a variety of services. Authors emphasize the integration of intelligence, like
common sense reasoning. When compared to others, this proposal is more
broker-like. Bibri [69] provides an analytical framework for data-centric IoT
applications for smart sustainable cities. Their proposal provides a pipeline
focused on IoT, Big Data, Cloud, and Fog programming paradigms. Its main
components includeUrban systems and domains that should function and be
managed by IoT and its underlying big data analytics; Urban big data sources,
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storage facilities, and data categories component is responsible for data col-
lection, storage, and management; Cloud computing or fog/edge computing
and Hadoop MapReduce architecture infrastructure for big data processing
and management to for knowledge discovery/data mining; Big data applica-
tions covers smart applications for diverse urban domains [69]. CUTLER EU
project proposes a data hub conceptual architecture to support data man-
agement and analysis for decision making in municipalities [398]. In compar-
ison to other proposals, they provide quite a general data-centric conceptual
solution, which is then illustrated with concrete implementation for five pi-
lot cases. Their main blocks in architecture are: data collection, represent-
ing data acquisition functionality (like data sources, data crawlers, data pre-
processing); data integration platform supporting data ingestion, data stor-
age, and access APIs to other components that will further manage and/or
process the data; data analytics to support business logic of the smart city ser-
vices; data governance tomanage the data and data lifecycle; businessmodel
DevOps to bridge the gap between the big data technology and the business
model of policy developments; and services & visualization responsible for
smart city services and data visualization [398]. Similarly, Pereira et al. [317]
suggest a platform for integrating heterogeneous data and aiding the devel-
opment of smart city applications. In comparison to other proposals, their
solution emphasizes a semantic-based data model. For example, in their pro-
posal, information is grouped into layers that represent geographic or some
particular domain information, like School or Public safety. The information
fromdifferent layers could be linked together to retrieve new information, e.g.
information about safety close to schools. Architecture-wise, it is a distributed
system consisting of SGeol middleware andmiddleware infrastructure, which
includes components for managing users and data access security policies;
managing data, its messaging, integration, and context; discovery of physical
devices and their integration to the platform; real-time and batch analysis.
The solution also provides RESTful APIs for external data access and SGeoL
Dashboard service offering edit, query, and visualization capabilities.
SynchroniCity EU project (that included also partners with leading roles in
standardization bodies) aimed to establish a reference architecture for the
IoT-enabled city marketplace, ensuring interoperability and developing inter-
faces anddatamodels for different verticals [264]. To achieve that, SynchroniC-
ity project analyzed available models and approaches for smart cities and
summarised them with an architecture framework collecting the most com-
mon capabilities and technologies [264]. Their reference architecture consists
of different logical modules, including Context Data Management to man-
age the context information coming from various data sources; IoT Manage-
mentmodule responsible for interactionwith the devices using different stan-
dards or protocols to make them compatible with the framework; Data Stor-
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age Management responsible for data storage and access; IoT Data Market-
place facilitates business interactions between data suppliers and consumers
by enabling digital data exchange; Security, Privacy and Governance mod-
ule handles security aspects related to data, IoT infrastructure and the plat-
form services; Monitoring and Platformmanagement servicesmodule guards
platform configurationmanagement and service activities monitoring; South-
bound interfaces to connect the architecture to various data sources and IoT
devices; Northbound interfaces provide platform functionalities to be used
by the final smart city end-user applications [264].
Standardization bodies are also interested in providing architectural solutions
enabling smart cities and they have close views, as the SynchroniCity project.
For instance, ITU provides different angles on smart sustainable city reference
architecture. Their ICT architecture from a communication view, emphasizing
the physical perspective, relies on the top of the city’s physical infrastructure.
This architecture consists of sensing, network, data and support, application,
and operation, administration, maintenance and provisioning, and security
layers. Architecture also demonstrates communication and exchange of in-
formation between the layers [374]. ETSI puts context management and in-
teroperability at the core of their platform [203]. They suggest a smart city
platform that is based on the NGSI-LD ecosystem [202, 204]. The main log-
ical functions of their framework are as follows. Data ingestion & integra-
tion to collect data from different systems; NGSI-LD Context Broker applying
NGSI-LD API [204] for data interoperability; Semantics for construction and
use of semantic data and technologies; Analytics & Artificial Intelligence to
support analysis/prediction services for smart cities; Monitoring & manage-
ment responsible for system operation monitoring and management; Secu-
rity & Access Control is responsible for authentication for smart city platform
users and applications, access control policymanagement, and access control
token management functions [203]. Their architecture also considers data
spaces, through Data space connector smart cities can connect to other data
spaces and share data across other relevant systems[203]. Similarly, with a
focus on context management, FIWARE suggests reference architecture for
smart cities. Their architecture is technology-oriented, where Orion Context
Broker is its core component. FIWARE provides data models, interfaces, and
ready-made components for e.g., IoT, processing, analysis, and visualization
of data [142]. For instance, the FIWARE platformwas used to provide themain
components for underlying middleware infrastructure for SGeol middleware
[317].
In Figure 4.3 we summarise the essential functional blocks required for a
smart city data platform. Logically, wedivide the architecture into data sources,
platform, and applications. Data sources represent possible data that can be
used for the development of smart services. The platform incorporates a tra-
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Figure 4.3: Smart city data system architecture, the summary from relatedwork.

ditional data management pipeline. The important aspect here is interoper-
ability and data models, as pointed out by some related work [142, 264]. Tra-
ditional blocks also include data storage and analysis. The data governance
functional block ensures the overall usability of data assets in the platform.
Data security and privacy are the backbone of the platform. Finally, man-
agement and development tools are needed to ensure that the platform is
operational. On top of that, the development of application programming
interfaces would facilitate accessing data/analysis results or performing cer-
tain actions. The services block represents numerous services that could be
developed on top, like smart transportation services.
Concrete implementations of such functional blocks could vary greatly, from
more centralized cloud-based solutions to more distributed ones, like edge-
based [228, 319]. Therefore, methods and toolswould be selected accordingly.
For example, architectures and platforms are proposed to support the de-
velopment, deployment, and management of IoT systems across a number
of devices with varying resources, e.g., Osmotic Computing Platform [412].
An in-depth review of methods and technologies for concrete implementa-
tions of smart city data architectures, aswell as deployment andmanagement
frameworks, is out of the scope of this research. For such studies, refer to
[163, 319, 350]. Instead, we focus on data challenges from a more conceptual
standpoint, leaving their concrete implementation and selection of methods
and tools to the developers.

4.2 . Data challenges in the context of smart cities
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The development of IoT and communication technologies opened up numer-
ous opportunities to assess a variety of phenomena in cities, like traffic, pol-
lution, and economic wealth. City data is diverse in nature and has a variety
of formats, availability, volume, spatiotemporal dependencies, and sensitiv-
ity concerns, to name a few. All this data should be processed and analyzed
to derive comprehensive insights. Therefore, solutions are needed to work
with such diverse data in a robust, efficient, secure, and ethical manner. This
section reviews the main issues and approaches developed in smart cities
context in (i) data availability and quality, (ii) data heterogeneity and integra-
tion, (iii) data management (iv) data analysis, (v) ethics, (vi) data privacy, and
(vii) data security.

4.2.1 . Data availability and quality

Different taxonomies were applied to classify urban data. For instance, Zheng
et al.[438] suggest a division of urban data by the nature of phenomena they
present, like geographical, traffic, mobile phone signals, commuting, environ-
ment monitoring, social network, economy, energy, and health care data. An-
other suggested taxonomy is based on data structures (point- and network-
based types of data) and spatiotemporal properties (spatiotemporal static,
spatial static but temporal dynamic, and spatiotemporal dynamic) [437]. Also,
available urban data can be divided into five pools, including firewall (within
the legacy systems of public agencies ), open data, social, sensors/IoT, and
commercial data [144]. Finally, urban datawas also divided based on including
personal information, like non-personal data, aggregate data, de-identified
data, and personal information [242]. In this subsection, we will highlight the
urban data availability aspect, categorizing our exploration into open data,
citizen-contributed data, and commercial data solutions. Also, we will discuss
corresponding data quality considerations.
Open data. Data is the key enabler for the vision and realization of smart
cities. According to a European strategy for data, Big Data is considered as
one of the key enablers to maximise the growth potential for the European
digital economy and society [103]. Therefore, a significant effort is made to
promote data suppliers and owners, even municipalities and governments
to open their data for both research and business. To gain the benefits, an
adaptation of municipal vision and governance strategies could be required
to coordinate, enable, and support various forms of data-sharing initiatives
[233]. Open data is the data that anyone can access, use, and share; it is avail-
able in machine-readable format, as well as licensed to permit data use in
any way [104]. Actually, governments and municipalities play crucial role in
the management of cities’ data assets to be able to use the data-driven tools
to address the city challenges [57]. Therefore, there is also a strong recent
trend to release much of public agencies data as open data [144], so-called
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Open Government Data, defined as information collected, produced, or paid
for by the public bodies and licensed for free re-use for any purpose [104].
A number of open-source and commercial data portal platforms exist, pro-
viding abilities to publish data, enabling data access and visualizations like
CKAN1, DKAN2, Socrata3, Opendatasoft4, PublishMyData5. Their availability,
as well as the strong demand to share urban data, has resulted in a num-
ber of urban data platforms, containing both open and restricted in-use data.
Barns [57] classifies these into data repositories - open data portals with the
main goal to provide data sharing capabilities; data showcases that aim to vi-
sualize data, but the data itself is not always available or machine-readable;
city scores - visualization of city performance in regard to a certain set of in-
dicators; and data marketplaces enabling data access and reuse with perfor-
mance monitoring. Examples of data repositories include, e.g., New York City
open data portal [113], which enables data access within a number of cate-
gories. Among the full information about the dataset, it is also possible to see
the data snapshots and visualize the data in external services. Another exam-
ple of data repositories isMoscowCity Government open data portal6, provid-
ing access to the data classified into thematic topics, like healthcare, educa-
tion, and culture. Datasets are equipped with basic information, like, among
others, dates, formats, links to the source, and contact information of persons
responsible. Well-known city dashboards include Dublin Dashboard7, which
provides rich visualization opportunities as well as possibilities to get the data
available. London Datastore [258] also provides reach opportunities to visu-
ally explore the data, as well as get access to it. However, when compared
to other city dashboards, the London Datastore provides data-driven analyt-
ics based on their alignment to strategic planning and governance challenges
for City Hall [57]. Table 4.4 gives brief summary of selected available datasets.
For deeper insights, an interested reader could refer to Ma et al. [262], who
survey available city datasets.
There are a number of initiatives in EU advancing data sharing. For instance,
open data portal8 provides access to data published by EU institutions and
bodies. In addition, portal provides opportunities for data visualizations and
work with linked data. Also, European Data Portal harvests the metadata of
public sector information available on public data portals across European

1https://ckan.org/2https://getdkan.org/3https://www.tylertech.com/products/socrata4https://www.opendatasoft.com/5http://www.swirrl.com/6https://data.mos.ru/7https://www.dublindashboard.ie/pages/index8https://data.europa.eu/euodp/en/home
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Dataset Summary
City Pulse AarhusCity [11] Dataset provides information related to traffic observations, weathersituations, pollution, and cultural events from the city of Aarhus, Den-mark. The dataset has been used, e.g., to forecast traffic situations,study privacy concerns, measure air pollution, and develop transferlearning algorithms [356, 19, 192].Amsterdam [20] The dataset measures traffic, accidents, crime statistics, economic ac-tivity, and pollution. It has been used, e.g., to estimate the effect ofparking prices, forecast traffic flows, fast charging planning for vehicles,and contextualisation for sustainable development [309, 62, 182, 215].Chicago Datasets[99] Datasets include traffic congestion estimates, traffic counts, accidentand emergency dispatches, energy usage, air and water pollution, anddata related to economic activity. The dataset has been used for, e.g.,forecasting daily crime, traffic prediction, studying residential energyefficiency, and crime analysis surveys [439, 2, 352].London [258] Greater London Authority provides a wide range of data related to traf-fic counts, street crime, energy usage, data related to borough pro-files, topsoil chemical data, wealth gap, and birth trends [257, 262]. Thedataset has been used to, e.g., analyse crime patterns, forecast energyusage, and borough-level COVID-19 forecasting [307, 332, 126].New York [113] The portal provides data related to vehicle collisions, crime data, energyandwater data, air quality, water quality complaints, school districts, en-rollment statistics, and others [113]. The data has been used in differentstudies to asses the needs after Hurricane Sandy, electricity estimation,crime prevention, study air pollution trends, and predicting burglaries[137, 440, 221, 369].AirNow [4] AirNowplatformprovides air quality data about local areas in theUnitedStates, Canada, and Mexico frommore than 500 locations [4]. The datahas been used to study and forecast wildfire pollution, bias correctionin air quality forecasting models, ozone forecasting, and the effect ofozone on children’s health [342, 265, 173, 13].Tokyo Open Data[391] Tokyo Metropolitan Government has developed an open data portal toprovide insights to different city segments. The platform provides casestudies, data related to bus stations, disaster preventionmaps, anddatarelated to the environment (e.g., air pollution, landfill, sewerage, etc.).The data portal has been used, e.g., to organize a hackathon to addressadministrative issues, analyze social trends related to COVID-19, inves-tigate the crime harm index, and study issues related to the lack of ed-ucational data [400, 387, 189, 303].

Table 4.4: Summary of selected datasets.
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countries9. Other data sharing activities include INSPIRE Geoportal10 that col-
lects data provided by EU Member States and several EFTA countries under
the PROCLAI, which focuses on creating an infrastructure for sharing envi-
ronmental spatial information. Yet another known initiative is Copernicus,
the Earth observation programme coordinated and managed by the Euro-
pean Commission and is implemented with theMember States, the European
Space Agency, the European Organisation for the Exploitation of Meteorolog-
ical Satellites, the European Centre for Medium-Range Weather Forecasts, EU
Agencies and Mercator Océan11. Copernicus provides a number of services
categorised under atmosphere, marine, land, climate change, security, and
emergency themes, as well as access to satellites and in situ sensor data.
Acknowledging the power of such dashboards and portals, they require con-
siderable effort to remain useful and provide utility for communities, munici-
palities/governments, and businesses. First, their purpose and interpretation
should be as clear as possible, since the data itself, as well as data processing
and analysis steps are known to be technology and methodology dependent,
limited in time and location, and could be biased in interpretation [231, 232].
Second, such data platforms require active maintenance and support to en-
sure that they contain up-to-date information of the required quality. Sup-
port is also needed for both data providers and data consumers. For in-
stance, proper effort is required to share the data. Data providermust ensure
the content quality (completeness, cleanness, accuracy), timeliness and con-
sistency support, data representation model (use of standardised solutions,
proper formats, linked data), supply of proper metadata, as well as, address-
ing the legal aspects, i.e. to provide a license to use the data [104]. After data
is published, it should be properly maintained, i.e. checking data access and
assessing and updating data itself and itsmetadata, as data lineage andmeta-
data allow users to assess the trustworthiness and data quality [232].
Legal issues regarding publishing and use of the data require careful treat-
ment. For example, data ownership, legal grounds, and terms of use are of-
ten unclear for particular data sources within data repositories. Many data
repositories have statements and references to legal documents in terms and
conditions on what kind of data is stored and how to use it, e.g. Moscow City
Government open data portal. However, e.g. including licence information
in data source description itself provides better transparency and eliminates
confusion, check the London Datastore for example.
Citizen-contributed data. The premise of citizen-contributed data is to fa-
cilitate and collect input for decision-making at large. Different approaches
exist to harness citizens’ data [239], including

9https://www.europeandataportal.eu/10https://inspire-geoportal.ec.europa.eu/11https://www.copernicus.eu/en
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• crowd markets: to enable aggregation of online individuals as collabo-
rative input;

• social media mining: to retrieve publicly expressed opinions and con-
tent;

• urban and in-situ sensing platforms: to unobtrusively collect data from
citizens’ daily dwellings.

Crowd Markets. Amazon’s Mechanical Turk [17] and Figure-Eight [132] (previ-
ously Crowdflower) are today’s largest platforms for aggregating online in-
dividuals’ time to complete tasks that are computationally intensive but rel-
atively trivial to a human. These platforms are purposefully generic, and a
variety of tasks can be created. These tasks range from answering to sur-
veys, writing reviews, annotating images, transcribing audio, and others, i.e.,
tasks that are challenging to use computers for automation due to a high risk
of error. The main challenge of crowd markets is to sustain the crowd size
and quality. Literature shows that higher-paid tasks can attract workers at a
higher rate. Emphasis on the importance of the work has a statistically signifi-
cant and consistent positive effect on the quality of the work [338]. A practical
example of leveraging crowd markets is Zensors [433], which enables sens-
ing from any visual observable property. Zensors streams images where the
crowd processes and labels according to awell-defined set of instructions, en-
abling near-instant counting and another high-level sensing. Once sufficient
human-based input is available, machine learning is applied to fully automate
the process once the accuracy of the algorithms is high (>90%). This approach
is also used by Google Crowdsource initiative [155], where gamification and
recognition as badges are used to sustain and train machine-learning classi-
fication algorithms.
Social Media Mining. Online social media mining on a large scale allows us
to consider users’ posting of opinions and content in online social media to
gain insight into unfolding events [338]. The widespread availability of smart-
phones and high-speed internet has enabled a range of systems that collect
a variety of different types of user contributions. For example, it is now possi-
ble to collect videos and photos on the field, e.g., YouTube, Instagram, Twitter,
and Facebook. These platforms allow user-driven tagging with relevant key-
words. The primary use of this media is for the platform, but researchers
have found such user-generated content as sensor data, originating from
end-users. Providing a system that allows users to easily contextualize and
tag high-level data results in a valuable repository of knowledge. For exam-
ple, Wheelmap12 allows users to tag, search for wheelchair accessible places
using one’s smartphone and browser. Others share where they are [407] or

12https://www.wheelmap.org
88



whether that place is recommended [238], or reported the destruction after-
math of an earthquake [413]. Researchers keep exploring ways to use devices’
sensors usage, as Citizen Science [314]. Citizen Science can be interpreted
as individuals becoming active participants and stakeholders of data. Large-
scale efforts, such asWikipedia, OpenStreetMaps, allow users to publicly aug-
ment and annotate online information as text or geo-fenced markers. This
wealth of everyday information about and around us creates numerous pos-
sibilities for new applications and research in general. Social media-enabled
applications are primarily driven by smartphones for in-situ context and are
often deployed on application stores for ease of installation and updating the
platform.
Urban and in-situ sensing platforms. Urban and in-situ systems pervasively
collect data from citizens without the need to set up or install an app on
someone’s smartphone. These platforms often deploy sensors throughout
a city. These can be invisible to the citizens, e.g., underground traffic sensors,
weather monitoring stations on top of a building, or can be an integral part
of the city, e.g., interactive public displays. A number of studies have inves-
tigated the use of public interactive displays for the purpose of data collec-
tion [21, 77, 193]. Opinionizer [77] is designed and placed in social gatherings
(parties) to encourage socialization and interaction. Participants would add
comments to a publicly visible and shared display. Due to fear of “social em-
barrassment,” the authors suggest public interactions to be purposeful.
The environment, both on and around the display, also affects the use and
data collected. The environment produces strong physical and social affor-
dances, which for facilitating the public, they need to expose their purpose
towards the social activity rapidly and to be able to encourage seamlessly and
comfortably a citizen from being an onlooker becoming a participant. Text-
Tales [21] explored providing story authorship and civic discourse by installing
a large, city-scale, interactive public installation that would show a grid of text.
A discussion on a certain photograph would start with SMSs sent by the citi-
zens, displayed on a stream of comments.
Beyond a public display, citizens can also be involved in larger efforts to af-
fect society at large. Projects such as vTaiwan13, an online-offline consultation
process that brings together government ministries, elected representatives,
scholars, experts, business leaders, civil society organizations, and citizens.
The platform allows lawmakers to implement decisions with a greater degree
of legitimacy. It combines a website, meetings, hackathons, and consultation
processes. For example, vTaiwan was crucial in the debate of Uber opera-
tions in Taiwan14. In a similar approach, Decidim15 is a digital platform for cit-

13https://info.vtaiwan.tw/14https://vtaiwan.tw/topic/uberx15https://www.decidim.org
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izen participation, helping citizens, organizations, and public institutions self-
organize democratically at scale. It provides a political network, citizen-driven
initiatives and consultations and raises participatory budgets, thus allowing a
democratic and flexible system where everyone can voice their opinion.
Overall, citizen-contributed data is a very valuable source of information, and
in some cases, it is the only way to understand the phenomenon of interest.
However, such data collection initiatives and subsequent data analysis should
be planned well and performed with care. For instance, if citizens are asked
to do a measurement, they should be instructed on how to do it to get re-
liable value [78]. Some measurements may also require a calibration of the
device [321]. In addition, one should have a strategy to deal with data gaps
due to behavioral patterns of people doing measurements [333]. As in each
study, one should ensure that a sample of users, contributing the data to the
system, represents the population as fully as possible, and no bias is intro-
duced into the data collection strategy. Finally, privacy issues from such data
collection initiatives should be discovered and treated appropriately.
Commercial data and private-public partnership. A number of commer-
cial organizations deploy infrastructures and utilize available urban data to
provide and improve their services. Sharing these data with municipalities
has been a question of debate for a long time [401]. However, challenges with
data enabled various forms of commercial involvement, like datamarkets and
hubs. Such organizations facilitate connections between data providers and
data consumers, especially if the data cannot be openly shared. One example
of such a solution is Platform of Trust16, Finland, that enables data movement
between systems and organizations, taking care of trustworthiness and data
harmonization issues. They also involve the community so that interested
people can participate in creating harmonization models that are then pub-
lished as open-source code.
Also, possibilities are explored for public and private organizations data ex-
change, e.g., City Data Exchange (CDE) project created a marketplace for pub-
lic and private organisations data exchange [299]. This project was a collab-
orative effort of the Municipality of Copenhagen, the Capital Region of Den-
mark, andHitachi. CDE service provided collaboration between different part-
ners on supply and demand of data and a platform for selling and purchasing
the data for both public and private organizations. Based on the project, a
number of challenges were identified, e.g., immature market as even though
some companies buy the data for their services, generally many are not yet
ready to include data sharing into their core business or strategy; lack of use
cases seems to affect the reluctance to invest resources in selling/buying the
data; fragmented landscape; reluctance to share data on an open data por-
tal, e.g. due to ethics or competitors’ advantage reasons; lack of skills and

16https://www.platformoftrust.net/
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competences to work with data [299].
Development of such joint efforts requires trustworthy data stewardship. That
is, “trustworthiness is the virtue of reliably meeting one’s commitments, while
trust is the belief of another that the trustee is trustworthy” [302]. Several
models are suggested to collaborate in data use and share [205]. For exam-
ple, data collaboratives17 represent a form of partnership where a number
of parties, like governments, companies, and others, collaborate to exchange
and integrate the data to help to solve societal problems or create a public
value [235]. Therefore, through such cross-sector and public-private collab-
oration initiatives it is possible to achieve much wider goals that are difficult
to perform by the parties by themselves only. One noteworthy example of
data collaboratives in smart city context is ’9292’18 that is public-private col-
laborative, gathering and sharing public transportation data in Netherlands.
Obviously, data collaboratives possess all the challenges that data integration
initiatives have, since the data comes from diverse providers, in different for-
mat and structures. However, as Klievink et al. [235] emphasize, data collabo-
ratives are collaboration and innovation phenomenon rather than data phe-
nomenon. Therefore, organisational, incentivisation, and governance chal-
lenges should be considered as well. From this perspective, a number of
additional challenges arise regarding vulnerabilities in opening the data, its
possible misuse, and overall trust within partnership. Coordination prob-
lems also include matching potential data providers and data users, main-
taining data control and its unforeseen uses when shared, matching a prob-
lem with the data attributes, ensuring the shared data is useful and usable
by the user, aligning incentives of providers to share proprietary data with
the goals of the users [386]. Moreover, data collaboratives are not isolated
constructs, therefore partners’ incentives, goals and collaboration overall de-
pend on context, like institutional and governance frameworks, government
interests, transparency/inclusiveness culture, and means by which collabora-
tion is legitimised [235]. Therefore, to have a successful collaborative, it could
be helpful to organise the overall collaboration process and context in such a
way that perceived vulnerabilities are dealt with [235].
Another initiative is data trust. The interest in data trusts was coined in 2017
where this model was proposed as a “set of relationships underpinned by a
repeatable framework, compliant with parties’ obligations, to share data in a
fair, safe and equitable way” [171]. Open Data Institute defines data trust as “a
legal structure that provides independent stewardship of data” [176]. There
are a number of interpretations of data trusts, e.g. it is assumed that data
trust could be simply an arrangement of governance or a legal agreement or
such practices could be aggregated into architecture [302]. Hardinges places

17http://datacollaboratives.org18https://9292.nl/en
91



different interpretations and uses of data trust term into the following cat-
egories, including repeatable framework of terms and mechanisms; a mu-
tual organisation formed to manage data on behalf of its members; a legal
structure; a store of data with restricted access; and public oversight of data
access [175]. For instance, Sidewalk Labs proposes the establishment of an
Urban Data Trust (that could evolve into a public-sector agency over time)
serving as an independent digital governing entity for their Sidewalk Toronto
project, ensuring that responsible data handling is in place for digital innova-
tion activities (Responsible Data Use) [242]. In addition to privacy laws, Side-
walk Labs suggests that all innovations aiming to collect/use urban data must
go through Responsible Data Usage Assessment conducted by Urban Data
Trust. This way, Sidewalk Labs aims to achieve the proper privacy and security
practices, provide and use consistent and transparent guidelines for respon-
sible use of data, and make urban data a public asset [242]. These goals align
with O’Hara’s emphasis on the purpose of data trust, which is “to define trust-
worthy and ethical data stewardship, and disseminate best practice” [302].
Generally, successful engagement in any form of data-sharing partnership
could require adaptation of urban governance visions and strategies [233],
as well as transformation of parties’ institutional cultures and processes [121].
Though, a certain level of data quality could be expected from commercial or
private-public partnership data, since such data often is an asset for the com-
mercial success of organizations. However, the technological and method-
ological biases should not be excluded, since the data could be generated for
a particular purpose, but shared for potential other ones [231, 232]. Moreover,
partnerships could suggest proper formalization of the responsibilities in data
sharing (e.g., data representation models and metadata availability), usage
(e.g., who, how, for what purpose), and maintenance processes between col-
laborating parties, making sharing and usage of the data smoother.

4.2.2 . Data heterogeneity and integration

During the last few years, a large amount of heterogeneous data has been
available from various applications and tools. This is also true in the smart
cities context, where rapid adoption of intelligent applications has created
new, different, and numerous data collections. These new sources have given
new opportunities but also emerging challenges. An effective data analysis in
the smart cities context has to consider the increasing amount of data com-
ing from connected devices, multiple software (developed by public and/or
private institutions), and historical archives. However, since the systems pro-
ducing and collecting data are heterogeneous, they provide data in multiple
formats thatmust be integrated to be combined for running an effective anal-
ysis. The siloed and often incompatible nature of these sources has alsomade
the interpretation and use of datamore challenging [328]. Wewill explore the
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different strategies that, according to the literature, can be applied for inte-
grating data focusing on smart cities, summarized in Table 4.5:

• Model data integration
• Semantic data integration
• Structural data integration
• Software-delegating data integration

Model data integration. This approach for data integration has been devel-
oped in the previous decades starting from proposals focused on the integra-
tion of classical datamodels (such as Relational, XML, andObject-Oriented) [167,
271], and continuing with suggestions more focused on recent data formats
(such as streams, NoSQL databases) [47, 245]. According to this methodol-
ogy, all data, coming from different sources is collected in a central reposi-
tory where an abstract model, grouping all the characteristics of the diverse
sources, supports all the operations [65]. Amajor benefit of this methodology
is the fact that data collected and integrated (in theory) contains no redun-
dancy, can be accessed uniformly, and can be trusted thanks to its integrity.
Unfortunately, the definition of such a model is difficult since integrating con-
cepts coming from different data models is not always easy. For example,
it could be quite challenging to integrate into the same model two dissimi-
lar concepts, such as a link from a graph data model and a column from a
columnar data model. Moreover, the characteristics of Big Data make the
maintenance of such a unified model tricky since the data model must be up-
dated each time a new data source with a different data model is defined and
needs to be integrated.
In the context of smart cities, the work of Ballari et al. [54] presents one of
the first approaches in this direction. The authors focus on integrating sen-
sor data and highlight the difficulties in finding a global scalable solution.
Even though they introduce a global model (providing dynamic interoperabil-
ity and considering the concepts of proximity, adjacency, and containment in
different dynamic contexts), they still cannot manage to introduce a global
schema that can be used to store data in a scalable manner. The CitySDK
project [318] goes in the same direction, defining a global data model for in-
tegrating data concerning tourist information. Their global model designs
structures for points of interest, events, itineraries, and categories/tags. The
approach bases the data collection on a set of adapters that transfer the infor-
mation from the heterogeneous sources (mainly CVS, JSON, and XML files) to
the global data model (implemented in document format and stored in Mon-
goDB) using a REST API. This approach tries to solve the problem of the flex-
ibility of the central data model by requiring the definition of a new adapter
each time a specific data source is added to the system.
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Model Semantic Structural Software-delegatingData Integration Data Integration Data Integration Data Integration
All data belongsto a unifiedschema in a tar-get meta-model

A general do-main ontologyrepresents all theconcepts

Data integrationoccurs at thephysical storagelevel

Off-the-shelf soft-ware is used forintegration

+ Unified vision ofdata + Modularity andscalability + Transparentto the high-levelanalysis
+ Ready-made so-lutions

+ Allows to iden-tify and possiblyeliminate data re-dundancy

+ Easy andtransparent in-tegration of newdata sources

+ Unified and effi-cient data accesspatterns
+ Modular solu-tions: new de-velopments eas-ily extend models+ Algorithms de-fined in a generalway on the globalschema

+ Reasoning onobjects and theirrelationships
+ Operations atdata-fragmentlevel that canscale-up easily

+ New analysiscan be includedwith new compo-nents
- Usersmust havea high capacity ofabstraction

- Domain expertknowledge is re-quired
- Security and pri-vacy are fully del-egated

- Data accessdepends on theplatform and itscapabilities- Usually, stan-dard querylanguages arenot available

- Already-available on-tologies do notalways fit thetarget scenario

- Access fromexternal softwareand platforms isnot easy

- Updates fromvendors can af-fect the globaldesign
- A new datasource can im-pact the generalmodel

- Poor support forstream analysis - Data must showa uniform storageformat and gran-ularity

- Strong de-pendency onplatform capabili-ties
Examples: Examples: Examples: Examples:[54, 79, 236, 271] [353, 68, 71, 106,112, 150, 157, 327] [107, 126, 320,328, 329, 334,337]

[118, 336, 362,328]

Table 4.5: Data Integration strategies in smart cities, with their benefits(+) and challenges (-).
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More recent approaches have managed to establish architectures based on
the meta models provided by new technologies. This is the case of the data
hub-like architecture, proposed by Koh et al. [236]. This approach integrates
the technologies of streamprocessing, like Apache Kafka [35]with the support
of Apache Spark [39] (also used for batch processing); the knowledge graph-
structured base of Virtuoso for semantics, and the storage of Apache HBase
[34] for quick real-time retrieval. Finally, they use Vert.x [409] a Java frame-
work to provide scalability through its natively asynchronous task processing
and abstraction of microservices. The design is still quite new andwould have
to be tested to evaluate its performance.
Cacho et al.[79] proposed viewing a smart city as a system-of-systems (SoS) in
order to help develop a framework uponwhich governments can benefit from
the integration of public and private systems for planning, administrative, and
operative purposes. They also identify a few challenges to the development
of a smart city, namely: the escalation and complexity of the SoS to be devel-
oped, the multitude of stakeholders, the variety of domains, and emergent
behaviors of the systems within. In this context, they described the challenge
of the unification of the information to handle the heterogeneity and the in-
teroperability of the system under analysis using a global meta-layer.
Semantic data integration. One popular strategy for data integration is to
use knowledge representation and ontologies. In computer science, an “on-
tology is an explicit specification of conceptualization. The term is borrowed
from philosophy, where Ontology is a systematic account of Existence” [158].
To define an ontology on the top of a domain, in computer science, a rep-
resentation of the knowledge by a set of concepts within a domain and the
relationships between those concepts must be provided. This approach has
been implemented and described in multiple cases, like [55, 71, 326, 383]. The
benefits of semantic data integration are the modularity, scalability, fast and
easy integration of different formats of data while removing the need to have
a centralized system to store all the data together. Bansal et al. [55] define a
general ETL framework, involving the creation of the semantic data model as
a basis to integrate the data coming from multiple sources. This is followed
by the development of a distributed data collection that can be queried us-
ing SPARQL query language. Psyllidis et al. [327] focus on smart cities domain
and present a similar approach. The data coming from multiple heteroge-
neous urban sources are integrated into a global ontology. On top of that,
the authors define various interactive Web components (e.g. Web ontology
browser and interactive knowledge graph) to access the integrated ontology
graph. Bianchi et al.[68] try to combine the definition of a semantic layer with
a tool that provides to domain experts the possibility to perform in auton-
omy the integration of multiple and heterogeneous smart city data sources.
Gaur et al.[150] propose a multi-level Smart City Architecture integrating data
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coming from wireless sensors about pressure, temperature, electricity, and
others. Their architecture is composed of four layers and each layer has one
responsibility. Layer 1 receives data in many different formats. Layer 2 is in
charge of processing all the data into a single format as Resource Description
Framework (RDF). Layer 3 contains the inference engine for data integration
and reasoning using semantic web technologies. Finally, Layer 4 is respon-
sible for querying data. A different approach based on RDF-format data in-
tegration is presented by Consoli et al. [106]. There, the authors describe a
platform implementing an ontology-integration approach that leverages on
the help of domain experts. For each data source, an ontology is created.
The common conceptual layer allows to convert all data in a target RDF data
model. A similar solution for RDF-format data integration from sensors is pre-
sented in [384].
Bischof et al. [71] share the consensus on the effectiveness of a semanticmod-
eling strategy for smart cities and on the conceptual data model. The ap-
proach considers the data stream annotation with descriptions for data pri-
vacy and security, and data contextualization using hierarchies to categorize
smart city data. In detail, the solution is based on the definition of a semantic
description for smart city data, which is heterogeneous in nature, to facilitate
discovery, indexing, querying, etc. for future services. They consider data het-
erogeneity not just from the format point of view but also explore the nature
of data considering, for example, the different units of measurement that are
provided. They propose to start collecting metadata and semantic descrip-
tions and try to find a compromise with respect to the volume that this meta-
data might represent. The approach ends with the definition of a Semantic
Sensor Network (SSN) ontology developed by a W3C incubator group which
focuses on organizing and describing sensor capabilities and data processing.
The HyperCat [112] project developed a standard knowledge representation
using knowledge graphs to provide a uniform and machine-readable way to
discover and query data distributed amongmany data hubs, where each data
hub can provide inputs from different IoT components and networks. In this
approach, applications can identify and use the data they need independently
on the specific data hub they belong to. Finally, we can also cite the CityGML
open data model based on XML format that is a standard for the storage and
exchange of virtual 3D city models [157].
A semantic data integration approach is of interest of the organization bodies
as well. For example, it’s been proposed by the AIOTI working group. Special
attention must be devoted to the SAREF extension for smart cities [353] that
provides a detailed model for some interesting use cases. The International
Organization for Standardization [207] also works on smart city ontologies,
for example, the foundation level concepts [211], the indicators [208] (popu-
lations, etc.), and the city-level concepts [211]. These ontologies constitute a
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very interesting and rich source for developing standardized access tools and
models and have been considered in multiple approaches that follow a se-
mantic modeling strategy.
Structural data integration. Many efforts recently consider data integration
from a less abstract point of view and explore the new possibilities offered by
cloud platforms or data distribution tools. This kind of data integration looks
at data as small pieces thatmust be integrated from a structural point of view.
No generic data model is provided, and no abstraction is defined at the appli-
cation level. Structural data integration differs from model data integration
because it does not strictly need a generic and abstract schema in a target
model, unifying the global vision on data. This kind of data integration also
differs from the software data integration that we will see below because it
operates at the physical layer. The integration step is done in the storage layer
of the platforms and frameworks. It is immediate to see that the data integra-
tion step is purely handled from a technological and structural point of view.
Petrolo et al. [320] tackle the challenge of creating a smart city from the sensor
standpoint. That is, they approach the problem from a bottom-up approach,
and focus on the layers of data generation and consolidation. Authors pro-
pose a VITAL Platform combining the IoT and the Cloud of Things (CoT). to help
alleviate the heterogeneity of data generated fromdifferent systems on a pay-
as-you-go scheme. This platform combines several protocols and communi-
cation technologies, including ontologies, semantic annotations, linked data,
and semanticweb services to promote system interoperability. However, they
mention that the challenges that still remain to be tackled are big data, pri-
vacy, and security issues. Both of these challenges have been approached by
Rodrigues et al. [337] with their SMAFramework. Their framework promises
to reduce the trouble of dealing with multiple heterogeneous sources (both
historical and real-time generated) while allowing formultiple layers of access
and security that can satisfy arising privacy and security norms. Furthermore,
SMAFramework can add additional data sources in a plug-and-play fashion.
Their framework is based on a Multi Aspect Graph (MAG), which they have
tested on geospatial and temporal data fromNewYork City, combining tweets
with trips performed by yellow taxis. Puiu et al.[328] propose a distributed
framework called CityPulse to perform knowledge discovery and reasoning
over real-time IoT data streams in cities. Their architecture includes a layer
called “Sensor Connection”, which is responsible for collecting the read data
from the different sensors. Later, the data gathered is passed to another layer
that parses it to extract relevant information. After the parsing, there is amod-
ule that performs semantic annotations by using an ontology created within
the CityPulse framework. After the messages are annotated, the data is pub-
lished in a message bus. Since data in the bus is already annotated with the
URIs from the framework ontologies, an RDF Stream Processing (RSP) module
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is able to query the data over the streams. Moreover, the framework is able
to discover certain events based on the analysis of the incoming annotated
streams. Finally, they use a Service Oriented Architecture (SOA) in order to
allow consumers to query relevant streams of the different sources or events
that were discovered in the message bus.
Machine learning has also become a powerful methodology nowadays. Ac-
cording to research studies [126, 349], there is a synergy between machine
learning and data integration and it becomes stronger over time. ModernMa-
chine learning models help to solve the schema-matching phase that can be
considered one of the hardest problem in data integration [61]. For example,
Deep learning allows the comparison of long text values by their embedding
representations and starts to show promising results when matching texts
and dirty data. Recently, SLiMFast [334] has been proposed as a framework
that expresses data fusion as a statistical learning problem over discrimina-
tory probabilistic models and that can be adapted to explore the smart city
data integration scenario. In the same context, Costa et al. [107] define a
framework having a unified data warehouse that collects and stores all the
available data in raw format. Their approach uses an internal model that ex-
ploits the characteristics of the Hadoop framework [33]. Unfortunately, their
meta-model is not accessible from the outside and notmany details about the
conceptual data integration task are provided. Finally, Raghavan et al. [329]
propose a prototype application based on a cloud-based API and architecture.
Their solution defines specific layers providing (and restricting) simple but
useful standard operations that hide the heterogeneity of the components. In
these approaches, the tuning and optimization phases are critical steps that
strictly depend on the characteristics of the input dataset. The challenges be-
hind the generalization and optimization of these methodologies are just at
the first exploring phase, and much interest is rising in the database research
community [146, 394].
Software-delegating data integration. During the last few years, a new
category of data integration approaches has been developed leveraging the
power and the flexibility of the data access software layers available on cloud-
computing platforms and architectures. We classify these approaches un-
der the name of software-delegating data integration. Specifically, this kind
of data integration is performed by using the various services that are pro-
vided by the cloud platforms [127]. For example, Ribeiro et al. [336] propose
an architecture based on microservices developed on the top of the Hadoop
framework. Their proposal is implementing and improving the approach pre-
sented in InterSCity [118] with a more scalable objective. An approach also
based on distributed architecture is described in [362]. In the proposed ap-
proach, data are collected from heterogeneous sources, converted internally
in a targetmodel according to a common protocol, andmade available for the
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target analysis. This approach can be used in any context and can be exploited
also by smart city applications. A similar scenario is also present [111] where a
data integrator component is in charge of dispatch requests to data sources.
Software-delegating data integration is very flexible and allows quick access
and integration of data according to standard operations and patterns. On
the other hand, the integration possibilities and the global maintenance be-
come fully dependent on tools and operations offered by specific platforms
and offered APIs. Any change and evolution in the APIs can change the result
and impact the data access.

4.2.3 . Data management

In recent years, the data has established significant propulsion with the evo-
lution of smart cities; therefore, datamanagement at such a scale brings chal-
lenges [49, 273]. Big data tools and technologies now support data acquisi-
tion, storage, analysis, and governance [49]. However, given the volume, het-
erogeneity, and distributed environment nature of smart cities, it is still diffi-
cult to integrate and manage smart city data [310]. This section will explore
the challenges and state-of-the-art solutions for data acquisition, integration,
storage, analysis, and governance.
Data Acquisition. Data collection or acquisition means retrieval of the data
from the data sources and feeding this data into the analytics platform for
storage and further processing [399]. Data in smart cities is generated by
diverse sources such as IoT, economic platforms, government offices, trans-
portation, and social media [7, 262]. These data vary greatly in their nature
(text/images/video/numeric), velocities, and formats. Some data sources are
quite static, that is, they do not change often, like geospatial map data. Some
data sources provide data at regular long-enough intervals, like daily ormonthly.
Often, such static data sources have defined Application Programming Inter-
faces (APIs) to get the data, or data could be downloaded from other storage
solutions. Since such data does not need to be processed and analysed imme-
diately, it can be loaded to the data analysis platform, integrated with other
data sources, and made available for deeper offline analysis (so-called batch
processing) [234, 399].
Many data sources generate data continuously and at a high frequency, like
sensor readings. Often, such data needs to be processed as it becomes avail-
able, to react quickly or detect certain pattern or anomaly. Such incremen-
tally available data are referred to as a stream, the data record as an event,
and the near-real-time processing of data as stream processing [399, 234].
In data stream terminology, we have producers (generate event) and con-
sumers (process event) [234]. Collecting and processing streaming data re-
quires dealing with the delayed, missing, or out-of-order data; managing sit-
uations where producers send messages at a faster rate than consumers
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can process; ensuring fault tolerance [234, 381, 399]. This also means that
streaming data requires loosely coupled communication schemes. Common
approaches here include messaging systems [234] that implement different
communication patterns. For example, in a request-reply pattern, the client
expects a reply from the server. In a publish-subscribe pattern, clients sub-
scribe to certainmessages published by the server that they are interested in.
In a pipeline pattern, producers push the results, assuming that consumers
are pulling for these [405, 399]. Message-queuing systems facilitate communi-
cation between producers and consumers via inserting and reading the mes-
sages in the queues [405, 399]. Such an approach provides loose coupling
in time, solving a number of challenges of streaming systems, like lag in the
capabilities to process events. Another issue is to handle the heterogeneity
of producers and consumers. Message-queuing systems treat this by mes-
sage brokers, namely application-level gateways that convert incoming mes-
sages to the ones that recipients can understand [405, 399]. For example, in
a publish-subscribe pattern, the brokers match the topics subscribed by the
consumers to the topics published by producers [234, 436, 399]. Examples of
such systems are Apache ActiveMQ [28] and Apache Kafka [35].
The recent developments in big data and smart cities have given birth to
a number of reliable, fault-tolerant and flexible data acquisition and inges-
tion solutions, like Apache Flume [31], Apache Spark [39], Apache Kafka [35],
Apache Flink [30], Apache NiFi [36]. Each of these frameworks is being widely
used in academia and industry depending upon the requirements. In some
cases, only one framework can suffice the requirements, whereas the com-
bination of these frameworks has also been observed [273, 310]. Therefore,
while choosing any of such frameworks, one needs to be heedful of the final
requirements. For example, if the data is being collected at its origin, it may
require initial transformation and cleaning. In addition, as the data sources
can have diverse acquisition frequencies and can require frameworks with
capabilities of handling low-latency and batch-oriented data alongside data
cleaning and data transformation functionalities.
Data Storage. The amount of connected IoT devices worldwide is expected
to reach 50 billion [347]. Since data is a key ingredient for smart city services,
solutions and tools for efficient data storage and access are needed [81, 122].
Generally, smart city applications canbe considered to bedata-intensive ones.
In addition to application-specific requirements, such applications should en-
sure that data is stored reliably and available for later use, search, and pro-
cessing, results of expensive operations should be saved for speedy retrieval [234].
In recent years, a number of advanced SQL, document, graph, NoSQL,NewSQL,
and Big Data data storage systems have been proposed and adopted by re-
searchers and engineers. It is clear that some of them work better for certain
tasks, provide certain guarantees, and the choice is always made based on
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the data model and system requirements [81, 178, 234]. Examples are Mon-
goDB [279] which is awidely used document database, Apache Cassandra [29]
as a representative of wide-column data storage solutions, or VoltDB [415]
as a representative of NewSQL databases. Modern storage solutions enable
distributed storage and processing by utilizing replication and sharding; they
provide data querying capabilities and interfaces for most commonly used
programming languages and third-party systems; and cluster management
functionality. Distributed implementation enables scalability, fault tolerance,
and latency reduction. However, as CAP theoremsays, “in a distributeddatabase
system, you can have at most only two of Consistency, Availability, and Parti-
tion tolerance” [178]. Here, Consistency refers to the property to deliver every
user of the database an identical data view at any given instant; Availability
promises an operational state in the event of failure; and Partition tolerance
ensures the ability to maintain operations in the case of the network’s failing
between segments of the distributed system [178]. Therefore, in distributed
implementations, usually, there is a tradeoff between consistency guarantees
and other features.
Off-the-shelf big data management and processing platforms are available,
like ApacheHadoop [33] and theHigh-PerformanceComputing Cluster (HPCC).
Systems platform [196]. Such platforms and the software ecosystem of appli-
cations developed around them provide complete solutions from data acqui-
sition to data storage, analysis, and results delivery to the end user. Apache
Hadoop is an open-source Java-based framework developed for data storage
and processing in a distributed environment on commodity hardware. The
main components of Apache Hadoop are: Hadoop Distributed File System
(HDFS): A distributed file system facilitating storage and high-throughput ac-
cess to massive-scale data; Hadoop YARN: a cluster resource management
framework; Hadoop MapReduce: a system for parallel processing of data;
and Hadoop Common: common utilities supporting other modules [33]. In
addition, a number of tools were developed for different purposes, e.g. to ef-
ficiently load the data to HDFS (like Apache Flume [31]), facilitate data storage
and access (like Apache HBase [34]) process and analyze the data (like Apache
Flink [30], Apache Spark [39]), maintain configuration (Apache Zookeeper [42]).
HPCC System platform is an open-source data lake platform supporting dif-
ferent data workflow capabilities [347]. Its main components are: Enterprise
Control Language (ECL) - a data-oriented declarative programming language;
Thor - a bulk data processing cluster that cleans, standardizes, and indexes
inbound data; Roxie - a real-time API/Query cluster for querying data after re-
finement by Thor [197]. It also uses a distributed file system (DFS) for storing
data in the cluster following a record-oriented approach [274]. The indexed
data available in Thor clusters can be used for low-latency querying by copying
in Roxie clusters, which has been specifically designed for getting much faster
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results, unlike Thor Cluster with batch orientation [274, 347]. In addition, as in
Apache Hadoop, data is collected using different data acquisition frameworks
like Apache Flume [31]. Whereas in HPCC Thor, simply a web service can be
used for uploading data to Thor clusters [315].
Also, a number of big data storage solutions are proposed based on the ex-
perience and improving the challenges of big data platforms. For instance,
Apache Ozone [37] is a scalable, robust, distributed object store for big data
applications. It is designed to handle large amounts of data consistently, pro-
viding HTTP interfaces for integration with third-party applications. Ozone is
built on top of the existing Hadoop components, such as YARN, HDFS, and
KMS, and leverages their capabilities and integrations [312]. Ozone is also
compatible with the existing Hadoop ecosystem, such as MapReduce, Spark,
Hive, and Impala, and can be deployed alongside HDFS or as a standalone
storage system. ApacheOzone in comparisonwith HDFS has several benefits.
For example, Hadoop Distributed File System (HDFS) has a single namespace
that can become a major challenge for metadata operations. It does not sup-
port object-based protocols, such as S3 [418], commonly used in cloud-native
applications these days. Moreover, the fixed block size in HDFS can lead to
inefficient storage space utilization and network overhead when it comes to
small files. Apache Ozone supports multiple protocols, such as S3, HCFS, and
OFS, that cater to different application needs and preferences. Ozone also
provides a rich set of features, such as security, replication, fault tolerance,
andmonitoring [418]. The fault-tolerance of Ozone is ensured through its self-
healing properties that allow it to recover from sudden node failures, making
the data highly available. In addition, it is capable of supporting hierarchical
namespace, enabling the maintenance of data in multiple buckets and direc-
tories [37].
Smart city services often need to analyze patterns of moving entities chang-
ing their location in time (like vehicles or mobile phone users) or extent as
well (like the spread of epidemic disease) [162]. Such time-dependent geome-
tries are called moving objects [162], therefore, storage solutions should be
equippedwith the opportunities to represent and query the dynamics of such
kind of data. Ilarri et al. [200] categorize state-of-the-art support for mov-
ing objects into two categories: Moving Object Databases and data streams.
However, they do emphasize that the boundary between these two groups is
not always clear. Moving Object Databases enhance the database technolo-
gies with representation andmanagement ofmoving objects [162, 200]. When
compared to early spatio-temporal databases, Moving Object Databases also
allow for tracking continuous change [162]. In particular, lots of research to-
wards models to track moving objects and corresponding query languages,
handling uncertainty, indexing ensuring a low update overhead and efficient
retrieval of the objects is conducted, please refer to [200] for details. Promi-
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nent examples of MODs that are in active development are MobilityDB [442],
extending PostgreSQL and PostGIS with the moving object support, and SEC-
ONDO [295], an extensible databasemanagement system supporting various
data models. The development of big data technologies facilitated the stor-
age and processing of traces of a large number of moving objects. A number
of efforts exist nowadays to work with spatial and spatiotemporal big data
[406]. Starting from equipping Apache Hadoop with support for spatial data,
like data formats, spatial index structures, spatial operations (SpatialHadoop
[165]), and spatio-temporal capabilities (ST-Hadoop [166]). To more recent
proposals enriching Apache Spark [39] and distributed storage products with
spatial or spatiotemporal capabilities. For instance, Apache Sedona [38], ex-
tending Apache Spark [39] and Apache Flink [30] with a set of tools for working
with spatial large-scale data in cluster computing environments. Beast [134] is
a Spark-based solution for exploratory data analysis on spatio-temporal data
supporting a variety of data formats. GeoMesa [151] provides a set of tools for
large geospatial data analytics. For instance, it adds spatio-temporal indexing
on top of Accumulo, HBase[34], and Cassandra[29] databases to store spatial
data types like point, line, and polygon. Stream processing is enabled there
by having spatial semantics on top of Apache Kafka [35].
Graph databases enable efficient storage and processing of the graph data
models, which is oftenmet in the smart city domain, e.g. road network. Graph
data model handles well varying granularity and hierarchical differences in
data; enables evolvability, meaning that graph can be extended to reflect the
changes in the application domain [178]. Examples of solutions available to
help store and work with graph data models in a largely distributed environ-
ment are Neo4j Graph Data Platform [292] and Apache Giraph [32] processing
system. Such solutions enable deploying graph datamodels on large clusters,
if needed, and enable distributed graph processing by partitioning the data
and processes between the nodes.
Data Processing. Most of the smart city applications rely on processing a
large amount of data [404]. Depending on the application’s requirements,
this processing can be roughly divided into two groups: batch processing and
stream processing.
Batch processing, often also called offline processing, takes a large amount of
input data, runs a job to process it, and produces the output [234]. It is clear
that jobs in batch processing could take a while. Therefore, they are often
scheduled to run periodically, like once a day. If we go to the big data land-
scapeofmethods and technologies, thenMapReduceprogrammingmodel [120],
allowing processing of a large amount of data in a distributed manner, was
the most popular approach, implemented also in Apache Hadoop Frame-
work [33]. MapReduce job consists of Map and Reduce tasks. First, the input
data is split into portions that are processed by map tasks in a parallel man-
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ner. Then, the results of Map tasks are used by the Reduce tasks to compute
the final output. It is also common for MapReduce jobs to be chained to-
gether into workflows so that the output of one job becomes the input to the
next job [234]. However, the Hadoop MapReduce framework, e.g., does not
have direct support for workflows, so the chaining occurs explicitly via stor-
ing intermediate results in the file system. This has certain downsides, like a
waste of storage space when intermediate results get replicated, redundancy
of some programming code in map tasks, and the inability to start for the
subsequent tasks before the previous ones were completed [234]. Dataflow
engines have been developed that aim to solve these issues. They handle an
entire workflow as one job rather than breaking it up into independent sub-
jobs. Examples include Apache Flink [30], Apache Spark [39], Apache Tez [41].
Streamprocessing, also often called near-real-timeprocessing, processes events
shortly after they happen. Therefore, stream processing has lower delays.
There are a number of cases, when streamprocessing is required, like anomaly
detection, finding patterns, or simply streaming analytics. Basic terminology
and technologies required to get stream data to processing engines were al-
ready presented in theprevious subsection 4.2.3. Here, we’ll cover approaches
for stream processing. Generally, there are two ways to process stream data:
one-at-a-time and micro-batching [234]. For example, Apache Spark allows
the use of a micro-batching approach [39]. In this approach, the processing
engine splits the input data into small micro-batches, processes them, and
produces the micro-batches of the results. The one-at-a-time approach is im-
plemented by Apache Storm [40], for example.
Smart city applications are complex constructs fueled by diverse kinds of data.
Therefore, hybrid approaches, combining both batch and stream processing,
are often required. A number of architectural solutions to combine batch
and stream processing were suggested [116]. For instance, Lambda architec-
ture incorporates layers for batch processing, speed layer for computation
on recent data (realtime views), serving layer which is specialized distributed
database allowing doing queries for batch analysis results (batch views). The
query result is composed of both batch and realtime views [269]. Another ap-
proach is Kappa architecture [240], which simplifies Lambda architecture by
removing the batch layer. This architecture relies on the use of a log-based
system (e.g. Apache Kafka) able to retain all the data that may be repro-
cessed if needed. Then, we need to deal only with one type of system and
making changes equals just to running the new instance of the job on the
whole data, writing results into a new table and redirecting the application to
read the results from this new table. The old job and old results table could be
stopped and removed. Liquid architecture [141] allows incorporating an incre-
mental processing, therefore, no recomputation from the scratch is needed.
Davoudian and Liu [116] discuss these and some other data system architec-
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tures (incorporating, e.g. Semantic Web technologies).
4.2.4 . Energy Conversion

Energy is an important component in any Smart City context, and I also con-
ducted a study to investigate data sources in Energy Conversion algorithms.
The study did not only compare the approaches from a data point of view but
also wanted to analyse the Artificial Intelligence algorithms already explored
in order to better understand how data and AI can be aligned in the field.
Next, the most utilized AI and machine learning algorithms in energy conver-
sion are explored. As Figure 4.4 shows, and as it has been shown in previous
sections, the standard artificial neural network is themost popular algorithm,
followed by the adaptive network-based fuzzy inference system (ANFIS) algo-
rithm, genetic algorithm, long short-term memory (LSTM), recurrent neural
network (RNN), Q-learning, and convolutional neural network (CNN). These
top algorithms are for the most part deep learning algorithms, for the excep-
tion of genetic algorithms and Q-learning, which are optimization and rein-
forcement learning algorithms, respectively. Their popularity is not surprising
as they offer a remarkably high accuracy and low error rates, as well as vast
overall improvement to traditional methods.

Figure 4.4: Most popular algorithms from 1994-2022.
Shown in Figure 4.5 are the most applied algorithms in recent years. The
emergence of LSTM and CNN algorithms is evident. Moreover, more complex
forms of reinforcement learning, such as deep deterministic policy gradient
(DDPG) algorithms, are being applied. Interestingly, machine learning algo-
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Figure 4.5: Most popular algorithms from 2020-2022.

rithms such as support vector machine (SVM), random forest, and Gaussian
process regression are being explored. Machine learning offers great compu-
tation speed and little memory requirement with similar accuracy to its deep
learning counterparts.

4.2.5 . Publications with Simulated vs. Real Data
Of the 224 paperswith simulated data, only 97 reported data size, 115 reported
a benchmarked performance measure, and 57 reported both.Table 4.6: Comparison of Data Size as Number of Samples betweenSimulated Data and Real Data.

Data Size (Number of samples)StatisticMeasure SimulatedData Real Data
Median 1,000 1,280Mean 16,0198 18,461Std. 3,547 3,518Maximum 10,000,001 629,873Minimum 15 14

Moreover, the distribution of data sizes in publicationswith simulated data (as
shown in Fig. 4.6 and detailed in Table 4.6 ) has high outliers in comparison
to publications with real data, especially when noting the maximum data size
for simulated works was 10 million samples. Both sets seem to have similar
medians, means, and deviations, surprisingly, with the real data set having on
average 2,000 more samples.
Interestingly, the distribution of benchmarked performancemeasures in pub-
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Figure 4.6: Comparison of data size distribution between simulated data(green) and real data (blue).

lications with real data (as shown in Fig. 4.7 and detailed in Table 4.7 ) has
higher outliers than publications with simulated data, especially when noting
themaximum for improvement provided by a publication using real data was
92 times the status quo. Overall, it seems that studies with real data manage
to provide a greater percentage improvement than simulated data studies.

Benchmarked Performance Measure (% improvement)StatisticMeasure SimulatedData Real Data
Median 20.0 23.8Mean 108.6 556.4Std. 63.8 54.5Maximum 7,580 92,000Minimum 0.06 0.2745

Table 4.7: Comparison of Benchmarked Performance Measure as Per-centage Improvement between Simulated Data and Real Data.

4.3 . Related work
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Figure 4.7: Comparison of benchmarked performance measure distributionbetween simulated data (pink) and real data (purple).

Urbanization and development of cities provide vibrant opportunities for
academia and industry, which inspire a number of significant related research.
For instance, Kitchin [231] provides a constructive view on the overall types of
big data and smart urbanism. He also stresses the very relevant challenge
of the corporatization of city governance and a technological lock-in when
all the smart city-associated methods and technologies are available to large
software and hardware companies, seeing this as a potential market for their
products.
A number of research articles address the technological challenges for smart
cities. Santana et al. [350] analyze requirements and software platforms for
smart cities based on 23 projects. Authors placed these into four categories,
including Cyber-Physical Systems, Internet of Things (IoT), Big Data, and Cloud
Computing. Functional and non-functional requirements for smart city soft-
ware platforms have been carefully investigated. Habibzadeh et al. [164] ex-
plores challenges, requirements, and solutions for sensing, communication,
and security planes of smart cities. Similarly, Chamoso et al. [91] review tech-
nologies used for smart city developments, as well as propose their own so-
lution for global architecture for service management in smart cities. Edge
and fog computing paradigms offer promising solutions for smart cities. For
instance, Perera et al. [319] explore the opportunities of fog computing for
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sustainable smart cities. Khan et al. [228] reviews edge computing applica-
tions in smart cities. Authors propose an edge computing taxonomy for edge
computing-enabled smart cities, where themain blocks include security, edge
analytics, edge intelligence, resources, caching, resource management, char-
acteristics, and sustainability. Perera da Silva et al. [111] explores fog comput-
ing platforms published by the research community between 2015 and Febru-
ary 2021. They analyse requirements for such systems, their architectural as-
pects, and how they support services provided to the users.
Particularly, technological issues of big data in smart cities are also covered
in a few related works. Al Nuaimi et al. [7] review applications of big data in
smart cities with the focus on opportunities and challenges for utilizing big
data in smart cities. Hasehem et al.[179] talk about the role of big data for
sustainability and improvement of living standards in cities with the focus on
state-of-the-art technologies. Bibri and Krogstie [70] review the core enabling
technologies of big data analytics and context-aware computing as ecosys-
tems in relation to smart sustainable cities. Lim et al. [252] discuss diverse
aspects of smart cities, reference models, and corresponding challenges.
A number of recent surveys address different emerging aspects of the data
in smart cities. For instance, Gharaibeh et al. [152] provide an overview of
data management issues, as well as discuss privacy and security challenges.
Usman et al. [404] explore the collection and analysis of multimedia data pro-
duced by smart cities. The authors focus on transportation, healthcare, and
surveillance use cases and discuss various machine learning algorithms that
could be utilized for such an analysis. Similarly, Habibzadeh et al.[163] focus
on application and data planes for smart city system design. The authors
highlight cloud- and edge-based architectures to store and process the data,
as well as describe various data analysis algorithms. Ma et al.[262] review
the data sets being collected across 14 smart cities and the state-of-the-art
in decision-making methodologies. This chapter further highlights both data
and decision-making issues. Moustaka et al. [281] conduct a systematic re-
view on the way how urban data is produced, collected, stored, mined, and
visualized in smart cities, covering the period 1996 - 2017. Based on this re-
view, a set of taxonomies is proposed covering the smart city data entities
and methods. Some works focus more on data analysis and applications in
smart cities. For instance, Chen et al.[95] explore the latest research on deep
learning in smart cities. Authors study the problem from two perspectives, i.e.
the technique-oriented perspective reviews deep learning models, while the
application-oriented perspective studies representative application domains
in smart cities. Finally, Deng et al.[123] are interested in how urban informa-
tion can be visualized. The authors review urban visual analytics studies and
specify 22 visualization types within spatial, temporal, and other property vi-
sualization categories.
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Work Focus Architecture/Platform Data availabil-ity Data hetero-geneity Data manage-ment Data analysis Privacy Security Ethics

[350] requirementsand soft-ware plat-forms

✓(ET, plat-forms, refer-ence architec-ture)

◦ ◦ ◦ ◦ ◦ ◦ ×

[91] technologiesfor SC devel-opment
✓(architecture,ET) ◦ × ◦ (storage) ◦ (big data) × ◦ ×

[319] fog comput-ing solutionsfor SC
✓(device man-agement, com-mun. protocols)

✓(sensor datain fog comput-ing)
◦ (context, se-mantic annota-tion)

◦ (general) ◦ (fog comput-ing) ◦ ✓(fogcomput-ing)
×

[228] edge com-putingapplications
✓(high-leveledge-enabledSC, require-ments, openchallenges)

× ◦ (context-awareness) ◦ ◦ (edge analyt-ics and intelli-gence)
◦ (edgecomput-ing)

✓(edgecomput-ing)
×

[7] big data × ◦ (datasources, qual-ity, sharing)
× ◦ (big data) ◦ (big dataprocessingplatforms, algo-rithms)

◦ ◦ ◦

[70] big data,context-aware com-puting

× ✓(sensing) × ◦ (big data) ✓(big data, ur-ban context) ◦ ◦ ×

[179] big data ✓(big data) × × ◦ (big data) ◦ ◦ × ×
[252] referencemodels ✓(big data) ◦ (mainsources ofbig data)

◦ ◦ × ◦ × ×

[164] sensing,communi-cation, andsecurity

✓ ✓(sensing,communica-tion)
× ◦ ◦ × ✓(crypto-,system-level)

×

[111] fog com-putingplatforms
✓(requirements,architecture,services)

◦ ◦ ◦ (ingestion,processing,storage, query)
◦ × ◦ ×

[152] data man-agement,security, ET
× × × ✓(acquisition,coord. & man-agement, qual-ity & integrity,cloud vs fog,dissemination,ET)

✓(ML, DL, real-time analytics) ◦ ✓ ×

[404] big multime-dia data inSC
× × × ✓(multimediadata collectionplatforms)

✓(representationlearning algo-rithms, DL, dataanalytics)

× × ×

[163] data, ap-plicationsplanes of SC
✓ × × ✓(requirements,architecture(cloud, edge),storage & pro-cessing)

✓(data ana-lytics, ML, DL,visualization)
× ◦ ×

[95] DL in SC ✓ × ✓(sensor,image/video,text)
× ✓(DL, applca-tions, chal-lenges)

◦ × ×

[262] data sets,decisionmaking
× ✓ ◦ ◦ ✓(modeling,decision-making)

◦ ◦ ×

[281] data analyt-ics, SLR ◦ (SC as a dataengine) ✓(urban datataxonomy) × × × ✓(dataana-lyticstaxon-omy)

× ×

Thiswork data chal-lenges ✓(architecturesand platforms) ✓(open,citizen-contributed,commercial,private-publicpartnership )

✓(model,semantic,structural,software-delegating)

✓(acquisition,storage, pro-cessing, gover-nance)

✓(trustworthiness,technological,methodological,ethics)

✓ ✓security(in-transit,at-rest,in-proc.)

✓

SC - smart city, SLR - systematic literature review, DL- deep learning, ML - machine learning, ET- enabling technologies
✓- comprehensive coverage, ◦ - some discussion, × - not discussed or very light mention

Table 4.8: Existing surveys about smart city and their coverage of topicspresented in this chapter.

110



Recently, more aspects related to data privacy and security are covered. For
example, Eckhoff and Wagner [130] provide a taxonomy of the application
areas, enabling technologies, privacy types, attackers, and data sources for
the attacks in smart cities. Based on that, state-of-the-art privacy-enhancing
technologies are reviewed and future research directions are discussed. Simi-
larly, Sookhak et al. [370] look for the taxonomy of security and privacy issues
of smart cities, highlight the security requirements for smart cities, explore
state-of-the-art of security and privacy solutions, and present open research
issues.
Finally, emerging concepts of digital twins, metaverse, and metacities attract
research interests from academia. For instance, Mylonas et al. [282] explore
the digital twins landscape in the context of smart cities. In addition to study-
ing the domains where digital twins are presented, the authors also empha-
size some challenges related to data from digital twins perspective. Similarly,
Bibri et al.[135] explore the emerging trends enabling data-driven smart cities
for the digital and computing processes framework underlying theMetaverse
as a virtual form of data-driven smart cities.
When compared to existing surveys, this review chapter is basedon twoworks
that focus on the data integration aspects of smart cities and energy conver-
sion. We provide up-to-date state-of-the-art understanding of what the smart
city is, how “smartness” can bemeasured, how energy conversion can be sup-
ported by data, and what the data challenges are in these domains.

4.4 . Conclusion

This chapter coveredmultiple aspects related to data, smart cities, and energy
conversion, focusing on the ones related to data management, showing how
data integration and data for artificial intelligence is still an open research
challenge. Further research is needed to understand how to measure the
smartness of the city since it is not so simple. Indicators, if any, should be
considered carefully, namely what kind of, how to measure and assess the
quality of measurement, and how to interpret it. Moreover, cities should be
evaluated individually, considering their own cultural and historical circum-
stances, development goals, and progress.
However, the key challenge is still in data. How the data can be used securely,
how the data can be shared, how it can be ensured that the data is used ac-
cording to the claimed specifications, how to ensure the data quality, how
to ensure proper data representations, and there are many more questions.
These issues are easy to address when dealing with a single individual sys-
tem. However, it is challenging to achieve this kind of proper data pipeline in
a large-scale ecosystem comprising a number of data providers, data proces-
sors, and services.
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The smart city domain is quite unique in the variety of data used for the ser-
vices provided. Therefore, addressing data heterogeneity issues is of utmost
importance. We have inspected related research, which we have categorized
into model, semantic, structural, and software-delegating data integration.
Each approach has its own advantages and drawbacks, discussed in the cor-
responding subsection 4.2.2.
We have also seen how the application of AI techniques in energy conversion
shows exponential growth and opportunities for the future. Overall, research
in this field that uses real data in comparison to simulated data is published
in a 3:2 ratio, respectively. As expected, publications that use real data, as
opposed to simulated, tend to show overall greater performance by their al-
gorithms in comparison to the benchmarks; they also tend to have a larger
number of data samples. The authors recommend that papers adopt stan-
dard and explicit practices of data size, accuracy, or error rate, andbenchmark
performance reporting - by doing so, other researchers can understand the
implications of the findings and adopt and implement favorable algorithms
accordingly.
All these analyses cannot be performed without data, then data integration is
still a key enabler for smart city services and energy conversion.
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5 - Time series for AI

Integrating data from heterogeneous sources has always been a topic of in-
terest for the data research community. Over the last years, the challenge has
been oriented to the objective of integrating data for feeding the Artificial In-
telligence Algorithms and also optimizing their execution. In this chapter, we
first propose PROCLAIM (PROfile-based Cluster-Labeling for AttrIbute Match-
ing), ametamodel that performs an automatic, unsupervised clustering-based
approach to match attributes of a large number of heterogeneous sources.
Then we introduce GeoTS, a Python library to apply cutting-edge time series
classificationmodels to performwell in correlation in a completely automated
setting, on top of our data. As input, we take the drilling trajectory depth and
gamma-ray well logs, which measure the natural radioactivity across the well
depth trajectory. The top depths of the formations are predicted as an output.
The chapter is adapted from the following papers:

• MoloodArman, SylvainWlodarczyk, NacéraBennacer Seghouani, FrancescaBugiotti - PROCLAIM: AnUnsupervised Approach to Discover Domain-Specific
Attribute Matchings from Heterogeneous Sources. CAiSE Forum 2020

• René Gómez Londoño, Sylvain Wlodarczyk, Molood Arman, FrancescaBugiotti, NacéraBennacer Seghouani-Weakly SupervisedNamed Entity Recog-
nition for Carbon Storage Using Deep Neural Networks, DS 2022

• Shwetha Salimath, Sylvain Wlodarczyk et Francesca Bugiotti, GeoX: Ex-
plainable neural network for time series classification, a geoscience case study,KDD 2025

The chapter is organized as follows: Section 5.12 reviews the related stud-
ies on schema matching and the available tools. Section 5.1 presents a brief
overview of PROCLAIM. Sections 5.4, 5.5 and 5.6 detail each building block of
PROCLAIM. Section 5.7 illustrates the results of our experiments in two dif-
ferent domains for the production of PROCLAIM metamode. Moving to the
AI models used in the domain to Section 5.8, describes the dataset used for
evaluating GeoTS and defines evaluation metrics, Section 5.9 illustrates the
clustering algorithms and the data cleaning process. Section 5.10 explains the
methodology and compares ourmodelswith the baselinemodel. Section 5.12,
presents the state of the art in the domain of time series analysis. We discuss
the results of the experiments conducted and themodel explainability in Sec-
tion 5.11 and we conclude the chapter in Section 5.13.
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5.1 . Introduction

During the last years, the availability of multiple and heterogeneous data
sources has given new perspectives to the schema matching problem which
is a fundamental step for data integration. A large number of research works
exist in the literature, the main task in these approaches is to identify the cor-
relation between the attributes using dataset values, semantic and syntactic
rules to detect the correspondence between attributes during the schema
matching process [15]. Most of the works on schema integration assumed a
global (mediated) schema and then tried to find a solution for better match-
ing on mostly a pairwise matching between the source schema and the me-
diated schema. In this context it is very difficult to define a global schema
that matches all the attributes of a given domain [216]. Moreover, real-world
data is always noisy, and for most of the integrationmethods, data cleaning is
needed. However, in terms of big data, data cleaning is expensive and time-
consuming. In this chapter we develop a heuristic method that can deal with
real-world and massive data.
In this chapter, we present PROCLAIM (PROfile-based Cluster-Labeling for At-
trIbute Matching), an unsupervised method for matching attributes coming
from a large number and heterogeneous sources in a specific domain. Our
results show that PROCLAIM is an effective fully automaticmethod to discover
a set of meaningful vocabularies which are the backbone of the definition of a
specific domain. PROCLAIM defines the concept of attribute profile by taking
into account the data type using: (i) the statistical distribution and the dimen-
sion of the attribute’s values, and (ii) the name and textual descriptions of the
attribute. These properties give a unified representation to each attribute.
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The cluster-labeling function takes as input these properties to automatically
assign a set of labels to a high number of attributes.
One of the domains in which we can prepare data also using this technique
is the study the lithography of the Earth’s subsurface. The domain studies
the characterization of different stratified layers called geological formations.
This study performs a well correlation task to model and characterize reser-
voirs. This operation links the beginning of specific geological formations
called tops using measurements from drilled wells.
Although data are abundant, the traditional algorithms used for well correla-
tion are semi-automated, requiring significant time and high computational
cost. This work introduces GeoTS, a Python library to apply cutting-edge time
series classification models to perform well correlation in a completely au-
tomated setting. As input, take the drilling trajectory depth and gamma-ray
well logs, which measure the natural radioactivity across the well depth tra-
jectory. The top depths of the formations are predicted as an output. The
gamma-ray signatures are extracted around the top depths assigned by geol-
ogists. Preprocessing is performed to clean and cluster these signatures using
the Dynamic Time Wrapping (DTW) distance and and the density-based algo-
rithmHDBSCAN Implementation of existing deep learning architectures (FCN,
InceptionTime, XceptionTime, XCM, LSTM-FCN) and new architecture (LSTM-
2dCNN, LSTM-XCM) are performed. Our experiments demonstrate faster com-
putation with an increase in accuracy. Grad-CAM is used as visualization tech-
nique for model explainability. Experiments were performed using Colorado
oil fields and deployed on Wyoming oil fields. The deployment has provided
us with critical insights regarding the improvements needed.

5.2 . Time Series and AI

Problem The main problem is that most of the information related to geo-
logical formation is currently estimated by geologists using mud logs and the
rocks extracted during borehole drilling to study their characteristics. This
process is tedious and time-consuming [357]. A marker top refers to the be-
ginning of the intersection between the well and the formation. According to
domain experts, a pattern is observed at the change of the formations, known
asmarker signature. Themarker signatures are expected to be similar across
the wells, at least within a region [268]. Machine learning (ML) and dynamic
time warping (DTW) algorithms [283] have been used to semi-automate the
process of identifying these formations using wireline logs [139, 254]. Wire-
line logs are records of formation properties across the well depth measured
using a variety of sensors. The nearest neighboringwells are selected through
clustering. Observing these well logs, experts select the marker signature
manually. DTW is used to search for the best match in the new wells. How-
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ever, this method still has a high time complexity and is subject to human bias
[6]. Using deep learning to extract information from wireline logs efficiently
would save time and resources.
Proposed Solution To completely automate the process, we first cluster the
wells according to their geological location. We then extract a sequence of
formation that follows an order of occurrence. The marker signatures are
clustered using the DTW distance to be able to group and identify a distinct
marker pattern in the region. We approach the problem as pattern identifica-
tion using time series classification (TSC) [330, 371].
The chapter documents a comprehensive framework encompassing every-
thing from cleaning well log data to estimating the marker depth for geolog-
ical formations. GeoTS allows for the comparison of state-of-the-art time se-
ries classification models such as FCN [259], LSTM [190], Inception Time [206],
LSTM-FCN [223], and newmodels for well-correlation tasks. We have used the
DTW-based algorithmas our baseline. We have implementedGrad-CAM [355]
for time series, which allows us to understand the feature importance and se-
lection for the classification task. Our framework has achieved a higher score
than the industrial baseline process.
The contributions of this chapter are summarized as follows:

• Provides a new streamlined framework called GeoTS for reservoir mod-
eling, allowing its utilization by geologists to understand the lithography
of the earth’s subsurface.

• Introduces new hybrid TSC algorithms and provides model explainabil-
ity with Grad-CAM implementation for time series.

• Deployment on real-world dataset to compare the results ofGeoTS frame-
work.

5.3 . PROCLAIM Overview

Schemamatching aims at discovering semantic correspondences of attributes
of schemas across heterogeneous sources. Our goal is to get a global attribute
schema for all the independently developed schemas of the same domain,
which can be formalized as follows.
We consider a set of schemas S={S1, S2, ..., Sn} and the set A={A1, A2, ..., An},
where Ai is the set of attributes of the schema Si. Schema matching selectssets of similar attributes creating m different groups (Gj ), as illustrated in Ex-ample 1.
A labeling function fL(G) associates then to each groupGj a label representingthe semantics of the group.
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Example 1 Consider three schemas about rental car descriptions:
S1= {Fuel_Type, Location, Mileage, Name, Price, Year, Transmissio}
S2= {Country, Disp., HP, Mileage, Price, Type}
S3= {fuel_type, maker, manufacture_year, mileage, model, price_eur, transmission}
The attributes will be matched in the following four groups:
G1 = {Fuel_Type, fuel_type, fuel, fuelType }
G2 = { Location, Country, city, county_name, state_name }
G3 ={Name, maker, brand}
G4 ={Transmissio, transmission}
Notice that the attributes are grouped despite different spellings and semantics. Then
the labels {Location, Brand, Fuel, Components, . . .} will be assigned to the groups by the
labeling function L. fL(G1) = Location, fL(G2) = Components, etc.

The main question addressed in this research is how to define an automatic
process that discovers a set of labels that can effectively represent a global
attribute schema for a specific domain. The PROCLAIM method is proposed
as an answer to this question. PROCLAIM is a new approach that enables
the automatic, holistic schemamatching, which leads to constructing a global
attribute schema for a specific domain. Let us illustrate the procedure by
following the main steps it involves, with the help of Figure 5.1:

1. a set of heterogeneous sources with different schemas (S) is provided
as input;

2. the data from all sources are stored in columnar format storage;
3. the data type of each attribute is identified and data with the same type

are stored in the same set (SdK
);

4. an attribute profile is computed based on the specificity of each data
type (SdK

). This profile for all kinds of attributes can contain at most
four properties (statistics, description, unit, and name property). The
assigned profile to each attribute will be converted to a numerical vec-
tor;

5. an automatic labelling process is defined to find all similar attributes
and gives a unified name to each of them. This process includes two
principal components: (1) finding the most similar attributes from dif-
ferent schemas, (2) giving an automatic label to each attribute by a de-
fined labeling function (Lf ). A density-based clustering algorithm will
be applied to the numerical profiles to find the most similar attributes.
Each profile vector represents a unique attribute;

6. the list of automatically computed labels will define a global attribute
schema for a specific domain.
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Figure 5.1: The framework of PROCLAIM to discover a global schema.
As explained in detail in the following sections, PROCLAIM can be applied on
real-life noisy data. The method is designed to handle a large number of het-
erogeneous schemas and proposes a unified numerical profiling of informa-
tion of any data type. The approach enables the usage of common machine
learning algorithms such as clustering. Finally, the automatic labeling and
merging of clusters allow the definition of a global schema that represents
the synthesis of the heterogeneous schemas.

5.4 . Preliminary Phase

Some of the building blocks of PROCLAIM can be considered as initial steps
to prepare the original datasets. Two main steps are defined as the initial
steps in the preliminary phase of PROCLAIM (1) targeting data into a columnar
datastore, (2) identifying the data type.

5.4.1 . Column-based data formats
Column-based data formats organize data in a set of tables. Each table con-
tains a set of rows, and each row has a set of columns, each with a name and
a value. Rows in a table are not required to have the same attributes. Data
access operations are usually over individual rows and show the best perfor-
mances when retrieving only a subset of the attributes of a table, when data
sets are sparse and contain lots of empty values [294]. Moreover column-
based data formats process big datasets efficiently since provide large-scale
parallelization and effective partitioning strategies. PROCLAIM for its calcula-
tion needs a tuple for each value of attributes showing the name of the at-
tribute and its value. In this case, storing the data in columnar-based format
is much efficient.

5.4.2 . Data Type Identification
When the search space is large (the number of attributes or schemas is big),
matching the complete input of schemas may require long execution times,
and achieving high-quality results may be difficult. One way to reduce the
search space is to find similar attributes within the same data types. The het-
erogeneous sources provide attributes in different data types. Since the type
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of the attributes may not be provided in the metadata of sources, we need to
identify the types given the values. One main problem in this step is the fact
that the original datasets are not clean. We will consider the type based on
the data type of the majority of the instances (values), considering a standard
threshold of 0.8. Here, we just consider five data types, but this set can be
extended if it is necessary:

• numerical representing all attributes whose value just contains an inte-
ger or a float;

• categorical containing all strings, characters, and mix data type;
• date representing date and time such as datetime, timestamps and etc.;
• rare classifying attributeswhich have less than 10 instances (i.e., primary
colours);

• unique referring to attributes with a unique value/cardinality equal to
one (i.e., a column with a measure constant value).

5.5 . Attribute Profile Representation

Once we have all the attributes belonging to the same data type (Sg), we cangroup them to discover attributes coming from different schemas which con-
tain the same information (e.g.,{name, maker, brand} in our example). PRO-
CLAIM performs clustering and labeling based on the computation of a simi-
laritymatrix of numerical profiles of attributes. Before applying our algorithm,
wemust convert an attribute to a numerical profile based on its data type. Ac-
cording to our representation, any attribute is characterized by a maximum
of four components according to the data type to which it belongs. These
components are description, unit, name, and statistics. In this section, we
provide a description of each component of the profile and its contribution to
the analysis of the attributes classified in any of the six data types introduced
in the previous section. Notice that the rare type attributes are ignored due
to the impossibility of computing a valid statistic.
Description Property Themajority of datasets have a descriptive part for
the schemawhere themeaning of each attribute can be found. In other cases,
the description is not provided, but the used values belong to domain-specific
terms or abbreviations, and this description can be retrieved, for example,
using domain-specific Wikis.
To create the description profile, first of all, we remove the stop-words and
then we apply the stemming method over a bag of tokens. Then, for each
description, the stems and the occurrence of each term (in all the different
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descriptions for any specified attribute) are used to build the description pro-
files. Removing stop-words in a specific domain is necessary, since these
words can appear in almost all descriptions and can cause false similarities
(e.g., for the domain of cars, the words such as car, vehicle, automobile and
etc, are the domain stop-words). We then transform the descriptions to cat-
egorical variables. Next, feature engineering is required to encode the differ-
ent categories into a suitable numerical feature vector. One-hot encoding is
a simple but efficient, widely-used encoding method [90]. An example of con-
verting categorical variables for some attributes to numerical values can be
seen in Table 5.1.

Attribute displac volum engin cc repres kw ccmENGINE_DISPLACEMENT 0 0 0 0 0 0 1ENGINE_POWER 0 0 0 0 0 1 0DISP. 1 0 1 0 1 0 0ENGINE 1 1 1 1 0 0 0
Table 5.1: One-hot encoding for converting descriptions to numerical feature.
Unit Property Dimensions and units are fundamental tools to explain the
characterization of phenomena [343]. A dimension is a measure of a physical
variable by fundamental quantities without numerical value, such as distance,
time, mass, and temperature. However, a unit is a specific way to assign a
measurement (with numerical value) to the dimension, e.g., a dimension is
length, whereas meters or feet are relative units that describes length [343].
Dimensions and units are commonly confused, despite the fact that the solu-
tion to most problems must include units. The distribution of the same entity
in different units can be shifted, but by consideration of the same dimension,
the similarity of shifted distribution can be found. Also, attributes with units
related to samedimension are related to each other through a conversion fac-
tor, such as Kelvin or Celsius which measures the dimension of temperature
and they can convert to each other. Given a dataset, the related units can be
found thanks to the descriptive part of the schema or taking into account also
the instances (near the value or in a separated column). The units and their
mapped dimensions of attributes can be extracted and recorded separately.
In Table 5.2 we show dimensions and units characterizing some attributes of
our running example. The dimension is also encoded using one-hot encoding
approach.

Attribute Unit DimensionENGINE_DISPLACEMENT CCM VOLUMEENGINE_POWER KW POWERPRICE_EUR EUR PRICEENGINE CC VOLUME
Table 5.2: Some attributes with their units and associated dimension.

Name Property The name of an attribute can also be useful for the anal-
ysis. Names often contain concatenated words and abbreviations. Thus, they

120



first need to be normalized before they are used to construct a profile to
compute linguistic similarities. First tokenization is applied but it may not be
enough; e.g for the name ’vehicleType’, the name should be split into word
’vehicle’ and ’Type’. In this regard, we compare all names of other attributes
and see if one of them is part of the name string, this breakdownwill be done.
Statistics Property The statistics profiles concern categorical and numer-
ical data types. PROCLAIM uses descriptive statistical analysis to produce a
profile for each attribute which not only defines the characteristics of an at-
tribute but also enables comparing the profiles to find similarities. In the fol-
lowing, we list themost important statisticalmeasurements regarding numer-
ical and categorical data types.

• numerical data type:
For the numerical data type, there are several measures that can
be studied. The domain under analysis and the characteristics of
analyzeddatawill help us to select the significant ones. thesemea-
sures can be variability or dispersion of distribution of values per
each attribute, symmetry of the distribution, the number of in-
stances (cardinality) and central tendency.

• categorical data type:
For the categorical data type, the considered statistics profile con-
tains the top most frequent values among all instances of one at-
tribute. This set of top most frequent instances can design a pat-
tern for an attribute.

Since other components of attribute profiles are encoded using a one-hot en-
coding approach, we decided to apply the same method to the statistics pro-
file. First log transform will normalize the distribution with left or right skew-
ness, then the distribution is presented into categorical scale using binning
and finally encoded. We obviously lose the numerical nature of the statistics,
but we can merge this vector easily with the other vectors without a normal-
ization issue.
Example 2 In Table 5.2 we present the statistics profile for four numerical at-
tributes. As a result of this analysis, we can see that the ’Engine’ and ’Engine
Displacement’ have the same normalized distribution. Normalized data with log
transformation is shown in 5.3.

For each attribute of the dataset, we compute the global profile, which ismade
of the four properties described in this section. Each profile is built by con-
sidering the type of attribute, and the global profile is finally converted into a
numerical vector.
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Attribute 5% 25% 50% 75% 95% CountDISP. 90.9 113.75 144.5 180.0 302.0 32ENGINE 993.0 1198.00 1497.0 1995.0 2982.0 101ENGINE_DISPLACEMENT 1124.0 1400.00 1600.0 1968.0 2967.0 158ENGINE_POWER 44.0 65.00 80.0 103.0 161.5 114
Figure 5.2: Statistics Profile.

Attribute 5% 25% 50% 75% 95% CountDISP. 5 5 5 5 6 3ENGINE 7 7 7 8 8 5ENGINE_DISPLACEMENT 7 7 7 8 8 5ENGINE_POWER 4 4 4 5 5 5
Figure 5.3: Normalized Statistics Profile.

We finally produced a dataset that is made of a collection of vectors that will
be the input for the next steps of the computation.
For each of the four properties, we propose a weighting factor on the proper-
ties that is adjusted according to the data type of the attribute. For example,
for numerical and categorical variables, the attribute name can be ignored be-
cause this information is uncertain and the distribution of the values is very
important.

5.6 . Attribute Labeling

The attribute labeling is a three step process that (1) performs attribute clus-
tering, (2) assigns a label to each cluster, and (3) merges clusters having the
same label. Step 3 creates each single attribute of the global schema. In this
section, we are going to detail each step of the process.

5.6.1 . Clustering
The calibrated numerical vectors produced as described in Section 5.5 allow
us to apply clustering to find similar groups of attributes (Gi ∈ G). PRO-
CLAIM uses a density-based clustering method. Density-based clusters are
connected, dense areas in the data space separated from each other by low
density areas. Density-based clustering canbe considered as a non-parametric
approach, since this method makes no assumptions about the number of
clusters or their distribution [93]. In higher-dimensional space, the assump-
tion of a certain number of clusters of a given distribution is very strong and
may often be violated. However, other parameters should be identified, e.g.,
a density threshold that is the minimum number of points (MinPts) and the
radius of a neighborhood (ϵ) in the case of DBSCAN [136] and OPTICS [27].
Sparse areas, as opposed to high-density areas, are considered as outliers
(noise). This results in having points in the sparse areas that are not assigned
to any cluster since in general each outlier can be considered as one cluster
containing just one element. As a result, 1) It is not necessary to specify the
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number of clusters; 2) It is not necessary that all the points belong to at least
one cluster.
OPTICS [27] (Ordering PoinTs to Identify the Clustering Structure) and the
aforementionedDBSCAN is a popular density-based clustering algorithm. De-
spite all the similarities in the core concept of both algorithms, they have fun-
damental differences [27]. PROCLAIM uses OPTICS. In PROCLAIM, we want to
reduce the chain of core profile effect [27] in order to have small clusters with
very similar profiles; hence, we set a very small value (e.g 3) for the MinPts in-
put of OPTICS. We will then compute many clusters and have many outliers.
To reduce the number of outliers, we run OPTICS a second time, again with a
small value for the MinPts parameter, only on the profiles that were consid-
ered as outliers. The clusters computed during the second step will be added
to the clusters computed during the first step. With these two iterations, we
increase the number of clusters and reduce the outliers.

5.6.2 . Labeling Function

The labels for each cluster will be created by using the descriptions and names
of all elements in each cluster. The stop words will be removed using the
common linguistic stop words and the domain-specific ones. The idea is to
select the most frequent words, bigram, and trigram terms appearing in the
description andnameof each attribute of the cluster. Then, themost frequent
term will be the label of the cluster as shown in Example 3.

Example 3 ConsiderC1 = {ENGINE, DISP.} as a cluster computed using the
two-steps OPTICS algorithm. The descriptions gathered per each attribute are:
Descr_Engine = ’ The displacement volume of the engine in CC.’
Descr_Disp. = ’ : Represents the engine displacement of the car’
The nameprofile of attributes can also be added to the descriptions: Descr_names
= {engine, disp}.
Furthermore, after removing the stop words, the following bag of words for each
description will be generated:
BOW _Engine = {displacement : 1, volume : 1, engine : 1, cc : 1}
BOW _Disp. = {represents : 1, engine : 1, displacement : 1, car : 1}
BOW _names. = {engine : 1, disp : 1}
Moreover, we create a holistic bag of words by merging all the terms together
associated with their total number of occurrences as follows:
BOW _total = {engine : 3, displacement : 2, volume : 1, cc : 1, represents : 1}
By selecting the most represented term, we may produce some meaningless labels
such as "displacement engine" rather than "engine displacement". To tackle this
problem, we need to create a domain specific corpus and extract from it the bi-
grams and trigrams associated with the respective number of occurrences. This
will be used to adjust and validate the labels.
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Consider a created corpus in the cars domain which includes resources of glos-
saries, dictionaries, wikis and etc., which can easily be gathered online1. Now,
all combinations of the highest frequency words from BOW _total will be consid-
ered to create the bigrams and trigrams which already exist in this domain (the
meaningful N-grams) with respect to term frequency in the corpus. The bigrams
and trigrams selected will create a valid bag of terms. We will also add the most
frequent word appearing in the corpus to this valid bag of terms. From Exam-
ple 3 we have: Bag_of_terms = {engine displacement : 2, displacement volume :
1, engine : 3}. To get the selected label, we take from the bag of terms the term
with the maximum number of occurrences, with the priority first to the trigrams,
then bigrams, and finally words.
The selected label for the cluster C1= {ENGINE, DISP.} is engine displace-
ment even if the number of occurrences of engine is higher.

After labeling each cluster, we can finally merge the clusters with the same
label or labels that are synonyms (Example 4).
Example 4 ConsiderC2={ENGINE_DISPLACEMENT, ENGINE_POWER}
as another cluster computed using the two-step OPTICS algorithm. The bag of
words retrieved from related descriptions for these attributes are:
BOW _Engine_Displacement = {ccm : 1}
BOW _Engine_Power = {kw : 1}
BOW _names = {engine : 2, displacement : 1, power : 1}
As the final result, the output is:
Bag_of_terms = {engine displacement : 2, engine power : 1, engine : 3}
The computed label is again engine displacement, which means that this cluster
can be merged with cluster C1 of the example 3. Then the new cluster contains the
following attributes {ENGINE, DISP., ENGINE_DISPLACEMENT, ENGINE_POWER}.

All the merged and labelled clusters generate a global schema for a specific
domain. The label of different clusters in different data types can be the same,
which enables us to integrate the attributes together even if their data types
were assigned wrongly in Section 5.4.2. PROCLAIM helps to integrate the data
from different sources and also creates a general schema which can help for
integration or new sources or to populate a knowledge base in the specific
domain.

5.7 . Experiment Results

In this section, we provide the experimental results on two datasets: one of
them is our ongoing cars example and the second is from the oil and gas do-
main. The code of the experiment is implemented in Python 3.6.7. Parquet
[414], a columnar datastore is used to store original datasets. Parquet is a

1Data from: https://www.kaggle.com/
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Attributes PROCLAIM labels Annotated labels MatchPRICE_EUR price converted price 1PRICE price converted price 1POWERPS power power 1HP power power 1WEIGHT weight weight 1POSTALCODE weight address 0
Figure 5.4: Labeling for Car_Kaggle.

Data type Precision Recall F-measurenumerical 85.7 85.7 85.7categorical 73.0 58.8 64.2date 100 100 1Overall 82.5 72.7 77.3
Figure 5.5: PROCLAIM Evaluation.

free and open-source optimized column-oriented data storage developed on
the Apache Hadoop ecosystem. To the best of our knowledge, there are no
benchmark labeled datasets for comparing our results with another method.
Therefore, for the car example, wehave collecteddata fromKaggle challenges.
For the Oil and Gas example, we use a large dataset.
Data set Kaggle Challenge Name #Attributes #Descriptions #Units #Source recordsS1 Used Cars Price Prediction 13 11 4 1000S2 cars data 8 7 0 600S3 personal cars classified 16 11 4 1000S4 Craigslist Cars EDA 26 24 0 1000S5 Used cars database 20 12 1 1000Sum Car_Kaggle 70 65 9 4600
Table 5.5: Car_Kaggle Data set Information as the input for PROCLAIM.

Car_Kaggle TheCar_Kaggle datasetwas gathered fromfivedifferent sources
(S1,. . . , S5) about cars fromdifferent Kaggle challenges1. The global Car_Kaggle
dataset, after merging different sources contain 78 original attributes: 70 of
them have different names; 65 out of 70 attributes contain descriptions and
just 9 out of 70 attributes have the provided unit. In Table 5.5, we provide
the details of each schema. As first step, we run data type identification in
order to discover the type of each attribute. Data for this dataset can be split
in four different types and, as we can see the rare data type is not present.
Unique attributes are discarded (6 attributes) and we compute the profile
for the 64 remaining attributes (25 numerical, 35 categorical and 4 date at-
tributes) and automatically assign label to each attribute. To be able to evalu-
ate PROCLAIM, we manually labeled all the attributes. A subset of PROCLAIM
labels and manual labels can be seen in Table 5.4. To evaluate the quality
of PROCLAIM labels, we used three metrics: precision, recall, and F-measure.
Precision is defined as the percentage of correct labels. We comparedmanual
labels with PROCLAIM labels. If the pair (Proclaim label, Manually annotated
label) matches, the label is considered as valid, as it can be seen in 5.4. Recall
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is the ratio of attributes with correct labels to all attributes (with or without la-
bels). F-measure, which is the harmonicmean of the precision and recall. This
result is shown in 5.4. Thesemeasureswere calculated separately for each set
of attributes (of each data type) and finally for the whole set of attributes. As
it can be seen in 5.5, precision is showing a good quality of labels but since
the number of attributes and sources are not big, we expected not very high
recall, but still this recall is promising for the schemamatching problemwhich
in this research is not the main concern. The main goal is to have high-quality
labels.

Oil_NorthSea dataset The North Sea Oil and Gas (Oil_NorthSea) dataset
was gathered fromOGA (TheOil andGas Authority OpenData) website, which
contains 43997 different sources with a total of 5260 attributes. 4713 of them
have different names. The description is available for 3481 attributes, and a
unit is provided for 1668 of the 4713 attributes. We apply the same approach
as described in section 5.7. The number of different identified types of at-
tributes is: 638 numerical, 631 categorical, 46 date, 574 rare, and 2824 unique
attributes. Since the number of attributes is too big to be entirely manually
annotated, we asked domain experts to label random set of attributes (20 la-
bels for numerical and categorical attributes and all labels for date attributes
- the number of date attributes are less than 50). We cannot calculate recall
and f-measure here, since the manual labels are just provided for a subset of
random labels. However, precision is calculated for these subsets for differ-
ent experiments. Experiments are done for different profiles for each group
of same data type attributes and the result is shown in Table 5.7. Cover data
ratio measures the percentage of labeled attributes. The Covered_data ratio
is showing a high percentage of considered attributes to discover the global
schema. As can be seen, the precision of clusters for numerical, categorical,
and date data type is over 90%which is a promising result. The global schema
created from the Oil_NorthSea dataset contains 247 labeled attributes which
covers 86% of the 1315 original attributes belong to the numerical, categorical,
and date data types.

5.8 . Dataset and evaluation metrics for AI

This section introduces the well log dataset used in the experiments testing
GeoTS (TSC framework for estimating geological formation to model carbon
storage reservoirs). We also detail the definitions of evaluation metrics used
to evaluate and compare model performances.

5.8.1 . Dataset
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Data type Profile #Unlabeled Attr. #Labeled Attr. #Labels Precision (%) Covered_data (%)
Numerical

Stat. 84 554 107 58.1 86.8Descr. 122 516 112 93.25 80.9[Stat., Descr.] 53 585 128 86.4 91.6[Stat.,Descr.,Unit] 60 578 110 90.1 90.5
Categorical

Stat. 135 496 102 70.5 78.6Descr. 203 428 100 94.9 67.8[Stat., Descr.] 129 502 126 86.2 79.5[Stat.,Descr.,Unit] 121 510 130 92.1 80.8
Date Descr. 16 30 3 100 65.2[Descr.,Name] 5 41 7 94.3 89.1[Descr.,Unit,Name 1] 5 41 7 94.3 89.1Total [full profile] 186 1129 247 92.2 85.9

1Unit is not available for Date attributes
Table 5.7: Experiment results for different profiles subset

Well logging has two main types: (i) geological well logs, made from mud
logs and rock samples, and (ii) geophysical well logs, which record physical
measurements collected by instruments lowered into the drilled hole. These
geophysical well logs are analyzed to identify lithologies, to differentiate be-
tween porous and nonporous rock, and to get reservoir characteristics from
subsurface formations [23, 244]. This work focuses on geophysical well logs,
which we will henceforth refer to simply as well logs.

Figure 5.6: Example of gamma ray, resistivity, and neutron porosity welllogs [23].
Well logs record the magnitude of a specific formation property, such as re-
sistivity, gamma radiation, density, neutron porosity, and sonic properties,
measured by the tool as it traverses an interval defined by depth. Well logs
present a concise, detailed plot of formation parameters vs depth, as shown
in Figure 5.6. Our study uses Gamma Rays (GR) because they are present
across many wells. The GR device measures naturally occurring radioactiv-
ity from the formation due to the presence of radioactive elements, primarily
potassium, uranium, and thorium [82, 186].
Colorado dataset Data were sourced from the Colorado state government
website [300], where we obtained two files for each well: one with well log
measurements at various depths (including GR, density, and resistivity) and
another iswell report containing geological formationswith theirmarker depths.
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Figure 5.7: Gamma ray logs for different wells within a region.

We have used a subset of three markers in 800 wells, with log depths ranging
from approximately 300 ft to 7200 ft. The markers of interest are Niobrara,
Fort Hays, and Codell. Of the 800 wells, 150 are testing wells with manually
verified marker depths by geophysicists due to the inherent noise in log data.
The noise can be from the measuring instruments or an error in picking the
top marker depth. Figure 5.7 displays the GR logs for select wells, showing
overall variability and highlighting a section near the bottom that contains
the formations to identify. The marker signature of these formations is also
extracted and displayed. The dotted lines in Figure 5.7 indicate the correct
marker depths for the marker originally assigned incorrectly.

5.8.2 . Evaluation Metrics

Marker propagation is to be able to predict themarker depth using theGRwell
log data and the well location. We use accuracy, Mean Absolute Error (MAE),
and recall to compare model performance. All these terms are explained in
this subsection.
Accuracy is computed as the proportion of labels that are correctly predicted
over all of the labels for the classification model.
MAE The mean absolute error (MAE) is the absolute difference between pre-
dicted and actual depth for each marker top. MAE is then averaged over all
the wells.
Recall The recall is calculated after applying a threshold T . If the absolute
difference between the predicted depth d̂ and actual depth d is less than the
threshold T , we consider it a correct prediction and assign it as a true positive;
otherwise, it is a false negative. The recall is then calculated per class and
macro-averaged. It measures how many of the labels for a class are correctly
predicted as:

IF (|d̂ − d| < T ) = TP
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5.9 . Data cleaning

Thewell log data set is naturally noisy due to fluid turbulence, subsurface con-
ditions, and technical errors such as sensor noise or hardware failure. This
section outlines the data cleaning and preprocessing pipeline in the GeoTS
framework. Initially, missing values are addressed by imputation with aver-
ages or nearest neighbors, ensuring uniform time stamps and units.
After the initial cleaning, the GR reading around themarker depth is extracted
as themarker signature with a specific window size. Geologists assignmarker
depths, leading to subjective bias in interpretation. In cases where the read-
ings are wrong, the marker depth assigned needs to be corrected. Therefore,
further cleaning is necessary to identify wells with clear marker signatures.
Clustering with DTW distance is employed to filter wells for training the deep
learning model.
Dynamic Time Warping (DTW) [283] distance is used for measuring similarity
between two temporal sequences, which may vary in speed. The DTW dis-
tance is computed after realigning (warping) two time series of equal lengths.
The marker signatures with a given window size are extracted, and the DTW
distance matrix is calculated. The DTW distance matrix contains the DTW dis-
tances between all pairs of extracted signatures. The matrix size is [Nm, Nm],
where Nm is the number of signatures for particular markers in the dataset.
This matrix is used to perform clustering.

5.9.1 . Clustering marker signatures

The Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) [266] was used for clustering the signatures [251]. TheHierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [266]
is used for clustering the signatures. It clusters based on the density distribu-
tion of data points, identifying high-density regions as part of the cluster and
others as noise, thus creating a hierarchical tree of clusters for different levels
of granularity. There is no requirement to predefine the number of clusters
to be created, and they are robust to noise. The DTW distance matrix is used
for clustering. The outcome is regarded as favorable when the patterns of the
signature in the clusters are similar, and are of substantial size.
For HDBSCAN, the most impactful parameters are maximum and minimum
cluster size and minimum samples. We set a small minimum sample of 5,
a larger minimum cluster size of 15, and the maximum cluster size to one-
fourth of the total sample size to capture various patterns and maintain large
clusters. The results of HDBSCAN on Niobrara marker signatures are shown
in Figure 5.8. The template of each cluster is the barycenter of the samples in
the cluster.
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Figure 5.8: Results of the clustering algorithms on Niobrara signatures.

5.10 . Classification operation

This section outlines the DTW baseline, the new hybrid Deep Learning (DL)
architectures, and the classification section of the framework. It discusses
data preparation, DL model training mechanisms for optimal convergence in
GeoTS, and post-processing to obtain predictedmarker depths. Our objective
is to determine the depth atwhich the formation starts. Marker signatures are
used to identify this depth as discussed in Section 5.8.1.

5.10.1 . Baseline
A marker signature template needs to be selected for the DTW baseline ap-
proach. Then, compute the DTW distance between this signature template
and all the gamma-ray signals extracted from the well using a sliding window
approach. The template of the largest cluster obtained after clustering 5.9 is
selected as the marker signature template. The smallest DTW distance refers
to the depth of closest similarity between the signature template and the ob-
served gamma ray. This depth is returned as the predicted marker depth.
The time required for the Industrial baseline for multiple time sequences has
a complexity ofO(n·m·s·W )where n is the number of wells,m is the number
of markers,s is the window size, and W is the average well length. Thus, we
can propagate only onemarker signature at a time. Figure 5.9 shows the DTW
process where we see the signature template on the left side and the query
sequence in which we need to find the best match on top. The similarity ma-
trix indicates the region of minimum distance. Figure 5.10 shows the result of
propagating all three marker templates on Well A. The dark blue indicates a
low DTW distance, and the yellow indicates a high one. The disadvantage of
DTW is that the method is based on pure statistics. It is heavily dependent on
the signature template, making it rigid. This issue is overcome by using the

130



DL models, which allows us to include all variations of marker signatures to
learn the template pattern.

Figure 5.9: DTW match process for NIOBRARA.

Figure 5.10: DTW result for propagation.
5.10.2 . Designed Hybrid models

It appears that hybrid models such as LSTM-FCN and XCM, which incorpo-
rate parallel networks of CNNs and RNNs, tend to exhibit improved perfor-
mance compared to these models used individually or structured within a se-
ries network architecture. Taking inspiration from them, three new architec-
tures were built using the LSTM, FCN, and parts of the XCMmodel as building
blocks. These models are explained in this section.
LSTM-XCM is the augmentation of LSTM with XCM submodules. We combine
an LSTM parallel network with the existing 1D and 2D parallel networks of
the XCM. The results are concatenated and the second part follows the XCM
architecture.
LSTM-FCN-2dCNN consists of a parallel network of LSTM, FCN, and 2DCNN
layers. The output of the 2DCNN is reshaped to allow for the concatenation.
In this case, after the concatenation of the outputs of the parallel network,
the result is passed through the dropout and linear layer.
LSTM-2dCNN does not contain the FCN part of the LSTM-FCN-2DCNNmodel.
This experiment was performed to understand the importance of the FCN
part.

5.10.3 . Data preparation for DL model
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Figure 5.11: LSTM-XCN model architecture.

Figure 5.12: LSTM-FCN-2DCNN model architecture.

The results of the clustering operation help create a set of wells with valid
marker signatures. We consider the largest cluster to be the one that repre-
sents, at best, the marker signature. Clusters having a similar template to the
largest one are also considered as part of the learning dataset. Froma dataset
of 650 wells, 400 wells were filtered and used for training the DL model. The
well-log marker signatures with their associated depths, latitude, and longi-
tude are extracted. This is the input to the classification model. The classi-
fication model is trained to categorize sequences into four classes: ‘None’,
‘Niobrara’, ‘Codell’, and ‘Fort Hays’. ‘None’ indicates depths without markers.
As seen in the well logs in Section 5.8.1, most logs belong to the ‘None’ class,
creating a class imbalance problem. To address the problem, a subset of the
total samples is selected to create the final ‘None’ category.

5.10.4 . DL model training
Hyperparameter tuning enables DL models to achieve better convergence.
Selecting a correct learning rate (Lr) influences whether themodel’s optimiza-
tion will reach global minima and the time required for training the model.
The Lr range test [367] is used to select Lr. Two training policies have been
introduced to minimize fluctuations during regularization. The Lr is reduced
if the validation loss increases over three epochs, enhancing the stability of
the convergence. The second one stops the training if there is no significant
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improvement in validation loss for eight epochs. These policies reduce train-
ing time and help avoid overfitting or underfitting. This method brings more
stability to the validation curve. The hyperparameter tuning is performed us-
ing the Tsai [301] and fastai [195] libraries. Cross-Entropy loss is applied for
backpropagation using an Adam optimizer [230].

5.10.5 . Marker Prediction
The trainedmodel is applied to the complete well-log data using a sliding win-
dow to generate probability curves to predict marker depths. A moving aver-
age filter is applied to smooth the probability curve. The predicted marker
top depth is the one with the highest probability. Figure 5.13 illustrates the
probability curve for well A and the extracted marker depth.
The time complexity of using the classification models after training is O(n ·
s · W ), where n is the number of wells, s is the sliding window length, and W

is the average well length. This complexity is independent of the number of
markers, as probability curves for all markers are generated simultaneously.
Additionally, the approach does not depend on a single template like in the
Industrial baseline, enhancing its robustness.

Figure 5.13: Propagation results for LSTM-XCM.

5.11 . Experiments and Results

This section presents the results of various classificationmodels in GeoTS and
discusses the experiments that identify key factors influencing these results.
It also addresses the impact of different window sizes. The evaluation met-
rics from Section 5.8.2 were applied formodel comparisons. The experiments
were carried out over ten runs to account for randomness in the data selec-
tion and model weights initialization. The training dataset consists of 3,500
signal samples across four classes. When testing for prediction, the sample
size increases significantly; for a well log of 7,000 ft, there are 7,000 test sam-
ples, leading to about one million samples across 150 wells.
When applying the classification models to predict the marker depth over the
whole well, the recall varies over different models. Figure 5.14 shows the re-
call with a threshold of 10ft for the DL models and DTW baseline. Models like
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LSTM, FCN, and Resnet have a low recall, with FCN performing the worst, fol-
lowed by Resnet. LSTM-2dCNN and LSTM-XCM emerged as the best perform-
ers, exhibiting a high accuracy of around 95% and low variation, indicating
robustness. The DTW baseline averages around 80%, similar to that of the
recall of the inception model.

Figure 5.14: Recall score.
The test has been performed to check for model convergence by calculating
the accuracy for a balanced testing dataset as discussed in Section 5.10.3. We
get an accuracy greater than 90% for all the deep learning models in such a
scenario. We conclude that since we decimate the ‘None’ class, some models
have difficulty classifying the ‘None’.

Figure 5.15: Time consumed in training and propagation.
Figure 5.15 compares training and prediction times, demonstrating the advan-
tages of the proposed GeoTS framework, as it reduces the propagation time
by more than 20 compared to the DTW approach when used to detect three
markers. The process is also faster due to the use of GPU’s for the deep learn-
ing models. The experiments run on NVIDIA RTX 2000 Ada GPU. The time gap
will increase as the number of markers to be detected increases.

5.11.1 . Detailed model performance analysis
To understand the prediction behavior of the models, we pick three mod-
els, one with low recall, one with average, and one with high recall: LSTM-
bidirectional, LSTM-FCN, LSTM-XCM. The results for LSTM-bidirectional, LSTM-
FCN, and LSTM-XCM on well B are presented in Figure 5.16. The probability
curves computed are steep and less dispersed for models with higher recall.
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The difference in accuracy and recall helps us understand that the results for a
DLmodel on the real-world dataset can be quite different than when checked
over a testing subset. This is particularly true when the data are noisy and can
have minor variations over time or space. The LSTM-bidirectional model mis-
predicts the depths of the Niobrara, Codell, and Fort Hays markers, while the
LSTM-FCN only mispredicts Codell. This does not imply entirely incorrect pre-
dictions, as actual depths also show high probability values. However, the
result of the LSTM-XCM model shows high probability only close to actual
depths, leading to correct predictions.

Figure 5.16: Propagation result on Well B.
The MAE is analyzed to compare model performance. LSTM-2dCNN, LSTM-
XCM, and Xception have a low MAE as shown in Figure 5.17.

5.11.2 . Sliding Window size
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Figure 5.17: Mean Absolute Error.

The window size used to extract the signature should effectively represent
the geological event of the marker; thus, it is an important parameter. A large
window size can lead to clipped results at the well-log’s start and end, which
is especially problematic when markers are at these locations. Padding can
mitigate this issue. Conversely, a short window size may not capture the geo-
logical event.

Methods WS_201 WS_301 WS_101 WS_51LSTM_FCN 0.97 0.92 0.84 0.84LSTM_XCM 0.97 0.95 0.73 0.65LSTM_2dCNN 0.97 0.98 0.93 0.66LSTM_FCNPlus 0.96 0.93 0.65 0.66InceptionTime 0.95 0.84 0.91 0.66XCM 0.93 0.79 0.95 0.66LSTM_FCN_2dCNN 0.94 0.96 0.76 0.62XceptionTime 0.90 0.92 0.95 0.64LSTM_bidirectional 0.76 0.83 0.72 0.59LSTM 0.56 0.68 0.68 0.64ResNet 0.53 0.66 0.39 0.76FCN 0.27 0.41 0.79 0.85
Table 5.8: Results for different methods and window sizes (WS).

Table 5.8 illustrates the impact of various window sizes on the recall. The
green cells highlight the optimal size. A window of 201ft has yielded good
recall in most cases, and we used this size for all experiments. Smaller or
larger window sizes tend to decrease final recall.

5.11.3 . Model Interpretability
We implement Grad-CAM [355], which can be applied to all models in the
benchmark. Grad-CAM helps us with model interpretability and understand
the model decision-making process at a deeper level. It is crucial in complex
architecture, using a combination of different models, to gain insight into the
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Figure 5.18: Grad-CAM implementation for the LSTM-2dCNN model.

success and failure of each part. Unreasonable predictions could have a rea-
sonable explanation or vice versa. It allows us to tune models to make them
more robust. It enables us to identify the distribution of feature importance
in relation to the different classes. We can determine if the model has been
able to pick the correct features to distinguish the classes.
We have adapted the Grad-CAM function formultivariate time series and pro-
pose a novel visualization. We implemented three variations, one for each
RNN, 1dCNN, and 2dCNN layer, as they are standard building blocks for time
series classification models. This would allow us to implement Grad-CAM on
most time series models. To explain the functionality and effectiveness of
the Grad-CAM function, we have performed a detailed analysis of the LSTM-
2dCNN model.
Figure 5.18a represents the results of Grad-CAM for the 2dCNN part of the
network. It can be seen that the "None" class has a higher dependency on the
depth, latitude, and longitude compared to the GR signal, as opposed to the
marker classes, where the dependency is higher on the signal. Figure 5.18b
represents the results of Grad-CAM for the LSTM part of the network. The
input to the LSTM is a multivariate time series with a single time step. Thus,
we aggregated the results on the input variables of GR, depth, latitude, and
longitude. The first subplot illustrates the signal categories, and the second
the Grad-CAM results. It can be observed that the GR has a lower dependency
for the ‘None’ class than for the marker classes. The ‘None’ class has a high
dependence on the other variables is higher, while the reliance is lower for
the different markers.
The Grad-CAM method helps us understand each parallel network’s feature
importance in such complicated hybrid models. It can be concluded that
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the parallel sub-model specializes in different input features with respect to
the output classes, allowing the hybrid model to outperform the sub-models
trained individually.
With respect to the specific execution of the experiments, we have conducted
the deployment of GeoTS on the Wyoming oil fields, consisting of 5600 wells.
Clustering according to the well location is performed using OPTICS [27]. For
each geo-cluster, we select the most represented formations to be used for
marker propagationusingGeoTS. Theprocess is conductedusing apre-existing
Kubeflow pipeline. Table 2 presents the recall for the propagation of four for-
mation sequences from the four different geo-clusters previously obtained.
The sequences are Bg-W (Big George and Werner formations), Bgc-Bc-Fc (Big
George coal, Badger coal, and Felix coal formations), Fh-La-Al (Fox Hill, Lance,
and Almond formations), and LS-LM-LL (Tk unconformity, Lance shale, and
Lance lower formations). We used a 200 ft window size for the processing.
s We can clearly see that LSTM-XCM and LSTM-2dCNN perform better than
the DTW algorithm. However, it can also be observed that the recall for the
Fh-La-Al and LS-LM-LL sequences is lower overall and is closer to the recall of
DTW. We have realized that the signatures of these markers do not follow a
distinctive pattern in the GR well log. With no pattern being followed, even
manually, we are unable to position the marker correctly using just the GR
well log. This indicates the need for additional logs such as density, resistivity,
and sonics, but these logs were not available in the use case. Some of the
formations may have also been identified using seismic data. As for the for-
mation sequences of Bg-W and Bgc-Bc-Fc, we have been able to increase the
recall bymore than 50%. The incorrect predictions were cases in which the GR
log at the depth being similar to the marker signature. Figure 5.19 represents
the case in which Big George coal has been inaccurately picked due to a sim-
ilar pattern present at an incorrect depth. With this study, we can conclude
that we need to consider not only the local features of the marker signature
but also the global features of the well log between the markers.

Sequence DTW LSTM-FCN LSTM-XCM LSTM-2dCNNBg-W 0.21 0.71 0.73 0.74Bgc-Bc-Fc 0.31 0.85 0.84 0.85Fh-La-Al 0.25 0.45 0.55 0.48LS-LM-LL 0.33 0.46 0.48 0.47
Table 5.9: Deployment results for Wyoming (Recall).

5.12 . Related Work

Knowledge Base (KB) construction is a recurrent problem in industry and re-
search and includes problemsof data extraction, cleaning, and integration [119].
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Figure 5.19: Wyoming propagation result.

A significant amount of work has been done in recent years on the automatic
construction of knowledge bases. However, the first step of KB construction,
which is defining a global schema with the aim of populating the KB, still re-
quires manual effort [423]. Several previous studies were mainly focused on
extracting data from unstructured data, such as texts. Open Information Ex-
traction systems are not concerned with the integration of extracted entities
and their properties from different sources with unified names. Because of
this limitation, the resulting knowledge bases may represent the same entity
multiple times with different names [423]. Other techniques, such as Biperpe-
dia [161], use search engine query logs in addition to text to discover attributes.
This process involves numerous trained classifiers and corresponding labeled
training data. Most of the automatic KB construction systems were focused
on retrieving facts and entities from unstructured datasets. To our knowl-
edge, integrating the existing structured sources in the knowledge bases has
not been considered in the process of constructing the KB automatically.
A large number of publications focused only on schemamatching. In this con-
text, schema matching identifies the correspondences between similar ele-
ments belonging to different schemas. IntelliLIGHT [159] is a system that looks
in large-scale structured data sets, which aims to locate and retrieve needed
data in a specific domain. It proposes a method that ranks the main data ta-
bles, taking as output the ones having a higher score. PROCLAIM is a very dif-
ferent approach to the problem; instead of ranking the best available schema
among different data sources, it provides a unified standard schema from all
sources and generates a global schema for a domain automatically. UFO [237]
is a data structure expressing various representations of the same concept
as a data object and is capable of recognizing and mapping such objects in
different data sources automatically. The WebTable system [80] is a search
engine that ranks tables scraped from the web. In this approach, AcsDB is
introduced as a database that contains a corpus of statistics on schema ele-
ments that is used to compute the probability of an attribute (the number of
schemas containing the attribute divided by the total number of schemas) and
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the probability of an attribute conditioned on another attribute. WebTable au-
tocompletes a schema (suggests additional related attributes for a given set
of attributes) by using the probability of pair attributes in different schemas
to provide additional synonyms. In contrast, PROCLAIM focuses on all char-
acteristics of all attributes to find similar attributes in the provided schemas.
The main goal of PROCLAIM is to discover the most complete global schema
over the existing schemas in a domain.

5.12.1 . Algorithms
The DTW algorithm computes the optimal correlation between two logs by
minimizing the cumulative distance along a correlation path [283]. It is used
for well correlation as it accommodates the time variations and has better
non-linear behavior than other correlation techniques [185]. In a case study
conducted on 22 wells of the Karatube Oilfield in Kazakhstan, a minimum
spanning tree algorithm was used to find well-pairs, and later, DTW was per-
formed to see the correlation between them [441].
Active research is being conducted to use machine learning to automate well
correlation. One hundredwells fromKansas state oil and gas fields, USA, were
used to train and test a 1D CNN Autoencoder [124]. Nearest wells are com-
puted based on proximity. During training, the autoencoder tries to recognize
a series of matching points from the nearest wells to match geological well
tops. These methods strongly depend on the reference wells, with respect to
which the other wells are correlated.

5.13 . Conclusions

Compared to the huge work on pairwise schemamatching, research on holis-
tic schemamatching for more than two sources is still a challenge. PROCLAIM
is an efficient and effective way for schema matching and provides a con-
sistent domain-specific attribute schema. Experiments show that thanks to
our approach, we can gather automatically more than 80% of the vocabulary
related to a domain and populate the knowledge bases with corresponding
attributes from heterogeneous sources. In future work, our approach can
be extended for handling new attributes from new sources and for enriching
the set of labels by adding similar words from different thesauri and dictio-
naries. Given the results in integrating data sources in the domain, we ap-
plied the results to analyze well log data and demonstrate the deep learn-
ing model’s efficiency, ease, and accuracy in the pattern identification task.
We present GeoTS, a framework that implements the workflow for the com-
plete process: the preprocessing of data, the model implementation, and the
post-processing. The Grad-CAM implemented can be applied to many deep-
learning models. It will help understand the logic behind the decision-making
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of neural networks better for time series. The benchmark evaluation section
clearly shows the Grad-CAM’s ability to recognize the input feature’s impor-
tance.
The main advantage of using GeoTS is that it is a completely autonomous
process. We achieve an increase in recall and faster computational timewhen
compared with the DTW baseline. Most of the existing frameworks used for
marker propagation in wells are dependent on the neighboring wells log. As
the model is trained on hundreds of wells, it is not dependent on a particular
well, thus allowing the results to be resilient to the noise in the well logs. Our
new models, the LSTM-2dCNN and the LSTM-XCM, outperform the state-of-
the-art and baseline models.
The approach has been validated with the Colorado and Wyoming datasets,
and additional tests for new datasets are scheduled by the company. To solve
the issueswe encounteredduring the deployment forWyoming for the future,
we will be trying a sequence-to-sequence transformermodel. The whole well-
log can be given as an input, allowing the model to understand the relative
depth dependencies between the markers.
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6 - Conclusion and Perspectives

This HDRmanuscript has presented an overview ofmy research activities dur-
ing the last 15 years. I presented different results, examining various method-
ologies and concrete application scenarios, also linked to industry use cases.
Chapter 2 arguedhowdatamodeling canbeuseful in theNoSQLarena. Specif-
ically, we have proposed a comprehensive methodology for the design of
NoSQL databases, which relies on an aggregate-oriented view of application
data.
Chapter 3 demonstrates the effectiveness of a novel application of Large Lan-
guageModels (LLMs) for integrating heterogeneous data sources into a graph
database. Through a comprehensive methodology that includes data model-
ing, extraction, and integration, supported by technologies such as Neo4j and
GPT-3.5-Turbo, complex data processing tasks can potentially be streamlined.
Although the data modeling choices have been centered around one specific
dataset, several steps, such as those related to the modeling of entities as
well as the decision of where to store attributes, can be expanded to other
use-cases, especially in the context of an educational environment. The eval-
uation of both Named Entity Recognition and Data Resolution tasks illustrates
the effectiveness and efficiency of LLMs in handling diverse data types. The
project highlights the synergy between human expertise in data curation and
AI’s capabilities: opening avenues for more nuanced and scalable research
databases.
Going further, Chapter 4 shows a typical example of the heterogeneity, de-
tailing how smart cities could generate lots of data and be highly distributed
geographically. In this review, we have explored data acquisition, data stor-
age, data processing, and data governance management issues. We detailed
how data analysis is a key enabler for smart city services, especially in energy
conversion, showing that most of the challenges come from effective data
processing.
Finally, Chapter 5 examined applications of data integration and thedata prepa-
ration step for AI algorithms, also including time series. I also presentedGeoTS,
a framework that implements the workflow for the complete data analysis
process: the preprocessing of data, the model implementation, and the post-
processing.
I showed through my research how much, during the last years, data inte-
gration has been a continuously evolving challenge that has given me the op-
portunity to achieve interesting results detailed in the publications listed in
Appendix B.
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In the following paragraphs, I will conclude this manuscript by discussing new
research questions that are already intriguing me and that will guide my fu-
ture projects.

Data modeling - DataFrames integration During my research, I have
deeply explored the data integration field; however, there is still an abun-
dance of interesting open challenges to be solved. In the near future, we will
formalize a metamodel for DataFrames integration. DataFrames are tabular
data structures that do not strictly belong to a schema or a database. Data is
usually stored in .csv files. The goal of the first research objective is to define
a unified and flexible framework for integrating and processing DataFrames
across platforms like Spark, R, and Pandas. Addressing the lack of structured
logic in currentDataFrame technologies, I would explore the development of a
metamodel for representing relationships within distributed data sources [3],
accommodating schema evolution, and enabling natural language querying.
The project aims to ensure schema integrity through rule-based constraints,
thus aligning the metamodel with user intent [72]. By tackling challenges
in interoperability, consistency enforcement, and user-driven validation, the
metamodel seeks to provide a scalable, intelligent, and usable framework for
structured data representation and analysis [227, 305].

Data modeling - LLM and graphs Given the interesting results already
achieved in the context of the Vrailexia research project, one of my future ob-
jectives is to continue exploring LLM to better identify and integrate entities in
graph data models. With respect to this second objective, it will be essential
to study and analyze the characteristics of LLM [249]. Nowadays, data integra-
tion is expected to be correct and efficient, and at the same time provide the
possibility to execute effective query plans [12]. This context can be seen as a
new challenge for aligning and solving entities: LLM still makes a lot of errors
in aligning entities. In this regard, following the approach already developed
in the Human in the loop methodology [417], I would like to explore howmul-
tiple prompting steps with human feedback can improve the query process.
In the first preliminary phase, it can be interesting to push the feedback of
the experts and construct a fine-tuning data integration and query answering
approach. The solution will also potentially use probabilistic approaches to
similarity and explore the inclusion of syntactic, thematic, and functional re-
lationships into the conceptual schema. Moreover, since model fine-tuning is
difficult due to the lack of available ground truth, it is worthwhile investigating
generating a synthetic dataset using LLMs that are specifically tailored to the
use case [388, 12].
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Preparing data for Artificial Intelligence Given the results in [I1], we
would like to continue exploring geological data and extend the datasets by
integrating more data in the process. With this objective, we want to analyze
not only well log data but also report data provided by the expert during the
drilling process and demonstrate that with this unified dataset, the learning
model accuracy will increase in the pattern identification task. With this ob-
jective, we clean and query the data to perform an initial analysis. We then
prepare the data for machine learning tasks. Following this, we use gener-
ative AI techniques for imputing and predicting unavailable data. After the
prediction, we integrate the results into our dataset. The final objective will
be to use the enhanced dataset for further data analysis. While progress has
beenmade in the field, further efforts are needed to develop data integration
with efficiency, generalization, and a unified structure.

Enhancing and enriching time series analysis From a data process-
ing point of view, another research aspect that we will start exploring in the
geophysics domain will be the application of reinforcement learning from hu-
man feedback (RLHF).
Deep learning models specialized for these tasks are already available; it will
therefore be important to perform benchmarks against these models and
demonstrate the added value provided by the RLHF.
Due to the application framework of this project, the parameters to be pre-
dicted are quantities that are naturally subject to physical constraints. It will
therefore be necessary to proposemethods capable of integrating these con-
straints into the prediction models, in order not only to make these predic-
tions realistic in the light of the intended application but also to potentially
reduce the uncertainties associated with them.
Classical regression and classification models are often used for predictions
ofwell logs, electrofacies, or depth of geological formations. Traditional statis-
tical models such asMarkovmodels[298] associatedwith neural networks are
used to predict electrofacies[181], and random trees are used to reconstruct
missing well logs[67].
More recently, deep learning is also used for well correlation [131]. Thanks
to the success in the field of generative artificial intelligence, transformer-
type architectures have been applied to time series. SAITS[128] captures tem-
poral dependencies by introducing self-attention masked diagonal matrices,
improving time series imputation. PatchTST [296] implements time series
patches for encoding input layers. TIME-LLM [217] proposes to reuse language
models for time series prediction. [311] confirmed that SAITS’s performance
in log reconstruction was better than currently used models.
Recently, we have seen the development of agentic artificial intelligence [359]
that enables the creation of complex autonomous systems. This approach

145



can be used to create a system specialized in petrophysical interpretation,
where the system would adapt to the local conditions of the studies to be
produced. Contextual information is essential in the field of geosciences to
produce correct studies, as deeply discussed in the literature [311].
In this field, I want to explore the creation of complex autonomous systems
specialized in petrophysical interpretation, where the system would adapt to
the local characteristics of the studies.
To perform this data integration step, we can apply Retrieval-AugmentedGen-
eration (RAG) [246] techniques and automate the process by exploring agentic
RAGs [363]: an autonomous mechanism that not only leverages RAG to aug-
ment context but actively identifies and assimilates the most relevant con-
textual cues [22]. This enhanced system would dynamically adjust analytical
models based on evolving geological signals, thereby improving predictive ac-
curacy andmodel adaptability in complex, heterogeneous geological environ-
ments.
As a final step, by creating an autonomous system, we should be able to use
feedback from petrophysicists to improve the models. Human-based rein-
forcement learning (HLR) [101] appears to be appropriate for this task and
constitutes a crucial step [435] to continuously refine not only the choice of
contextual data but also the models themselves to ensure that the system
is adapted to the geological constraints of the region under study. Methods
similar to those proposed by [225] and [250] could be adapted to petrophysi-
cal interpretation. More specifically, RHLF could be explored in correcting the
prediction of the top depth of formations crossing the wells, improving their
alignment with the expert’s geological intuition [51]. The project interested
two companies, and a joint CIFRE PhD thesis project has been submitted to
the ANR.

Smart cities and data integration Data analysis is a key enabler for
smart city services and, vice versa, the smart city domain brings into the tra-
ditional data processing pipeline [438]. Nowadays, there is no meta-model
accessible, which can draw the details about the smart city environment. In
this context, it is essential to explore and develop a solution that integrates
and makes possible standard operations that hide the heterogeneity of the
components. The challenges behind the optimization reside in data, and a lot
of interest is rising in the database research community [146, 394].
With respect to the specific aspect of applying machine learning and artificial
intelligence algorithms, we are witnessing exponential growth and opportu-
nities in the future. The main objective will be to use real data, as opposed
to simulated, since our study tends to show overall greater performance and
better results. Artificial intelligence is here to stay for energy conversion and
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the energy sector as awhole, and these techniques provide amyriad of oppor-
tunities to enhance the performance of traditional processes. In this context,
we aim to explore the adoption and utilization of data integration techniques
to enable algorithms to be applied to real data and produce insights in the
energy field.
Global database for health The failure rate of drug development in on-
cology is extremely high (∼95%). There is a consensus in the oncology com-
munity that personalized therapies and precision oncology are the way to im-
prove the success of new treatments in oncology. The goal of the REMISSION
(Rapid Evaluation ofMolecular & Immune Status for Stratified Immunotherapies in
ONcology) program is to bring that effort to a next level of precision medicine
and personalized oncology by implementing innovative techniques of fresh
tissue explorations to better characterize the patient’s disease biology and
drug target expression. The main objective of my task I am managing is to
design a database that is able to capture all relevant information about pa-
tients. Data will come from different sources: 1) eCRF (“Cahier d’observation
électronique”, a numeric booklet of data about the patient), wherewe can find
the biological information of the patient in a specific format (either through
.csv files, or through a database connection to the eCRF database). 2) data
from Gustave Roussy or Clinical centres, where we will find specific informa-
tion about the experiments, and that will be: raw data for cells (.fcs), exported
data for cells (.csv), raw data for soluble factors (.txt), exported data for solu-
ble factors (.csv). The integration of all these data sources will converge in the
Portrait database, conceptualizing a global schema on top of Spark et Par-
quet storage layer [427, 60, 434, 199]. The global schema will abstract gen-
eral mappings between the columns of the dataframes abstracted from the
raw data in order to materialize for the analysis only the specific data that
will be useful for the analysis and prediction algorithms. The main challenge
will be not only in the abstraction of the matching between the columns of
different sources [255] but also in the efficient extraction and integration of
the instances given the enormous amount of data that we must handle (each
clinical sample for a single patient will consist of more that 600 MB of data in
average [220]).
Data for Physics Finally, I am setting up advanced/long-term collabora-
tions on integrating physics data with CEA, Nairobi University, and multiple
European partners. The aim of this new project is to analyze data coming
from circular colliders that are in activity. My task is the development and de-
ployment of a conceptual model integrating both simulation and experimen-
tal raw data. This model will allow machine learning and Artificial Intelligence
applications to better conceive the next generation FCC (Future Circular Col-
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lider). I have already completed the first work on integrating, modeling, and
aligning beam position measurements [I2]. The results are promising: my re-
search demonstrated that these data can align in an effective manner with
the prediction algorithms. Next steps will leverage key signal attributes such
as betatron tune, amplitude, and noise-to-amplitude ratio to classify BPMs
(Beam PositionMonitors) into correct, suspected faulty, and faulty categories.
The first results of the experiments under study show that the methodology
successfully identifies already labeled problematic BPMs. We are working to
improve the model by combining wavelet transform and Long Short-Term
Memory (LSTM) networks. The wavelet transform provided a time-frequency
decomposition of the signals, capturing transient features, while the LSTM
model learned long-term temporal dependencies, further enhancing signal
denoising capabilities.
In parallel, we are exploring how to evaluate HER data quality by identify-
ing anomalous BPMs and comparing our detection outputs with SOMA’s har-
monic analysis (SOftMAtter dynamicswithDelaunay-basedNeighbours Search).
The first results show thatGramianAngularDifference Field (GADF [428]) demon-
strates the highest sensitivity in detecting BPM issues, suggesting its metrics
may best correlate with known failure modes.
New insights could be defined thanks to better integration and exploration
of these data sources. We are finalizing an ANR (French National Research
Agency) project proposal to finance this research. These projects are also
partly funded by French/Kenyan grants that I obtained very recently.
The final objective of the project will be to design a comprehensive framework
for BPM signal processing, combining advanced machine learning and signal
analysis techniques. The results will contribute to improved signal quality and
fault detection, allowing reliable and efficient particle accelerator operations.
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Research
� Data is everywhere, comes from various sources, and can be represented and stored using hete-

rogeneous structures. Integrating and combining data that are conceptually related but structurally
di�erent has historically posed challenges for driving research, innovation, and developing new so-
lutions.

These challenges are the core of my research : my interests have always focused on the analysis and
integration of heterogeneous databases.

Thanks to the availability of an evolving set of tools and technologies I have had access to since my
master’s studies, I have had the opportunity to explore and implement di�erent data integration stra-
tegies (i) independent transformation of schema and data models, (ii) uniform access to NoS�L data-
bases, (iii) management of data from the Semantic Web in cloud architectures, (iv) e�cient integra-
tion of “big data” independent of the model, (v) using Large Language Model techniques to integrate
graph databases, and in the most recent years, (vi) the application of Arti�cial Intelligence techniques
on such integrated data.

The di�erent use cases I explored con�rmed that data integration is challenging and useful in a variety
of situations, which include both industrial (i.e., two similar companies need to merge their databases
or want to analyze data coming from di�erent external sources) and scienti�c (i.e., combining research
results from di�erent laboratories or machines) domains.

A large part of my earlier work was concerned with the challenge of de�ning the characteristics
of a global model for merging data in a general and full-comprehensive structure. This model also
played a pivotal role in the dynamics of translating and potentially moving data from one schema
to another (round-trip problem). This approach was useful for de�ning a more software-oriented
data-integration set of techniques speci�cally dedicated to NoS�L data stores. I contributed to the
de�nition of the architecture of the integration platform, the operations it exposes, and the query
strategies it implements. I have been involved in de�ning the strategies for integrating the di�erent
database management systems into the platform. To explore the limits and opportunities of the emer-
ging could-computing framework, I provided a solution for indexing RDF datasets using SimpleDB,
a key-value store provided by AWS (Amazon Web Services).

In the task of integrating tabular data and information stored in pdf documents, I de�ned an ap-
proach that automatically retrieves information from them. The analysis step takes advantage of a
pre-trained BERT model and applies two consecutive �ne-tuning steps. My work focussed on the
creation of a general data set that used techniques that identi�ed lexicons and ran pattern recognition
on documents. This was the �rst approach toward natural language analysis in my research after the
early explorations in sentiment analysis. Enriching data on graph data models using the new Large
Language Models (LLM) techniques for extracting entities and concepts from texts has been the next
step of this research topic explored in a European Erasmus+ project. I contributed to the de�nition
of a method that enriches a graph database using LLM, integrating multiple data sources in di�erent
formats and languages. The model captures complex relationships between entities that are not iden-
ti�able when considering each data source independently.

More recently, my research also bene�tted from the fact that heterogeneous data is at the core of the
Arti�cial Intelligence revolution. Data fuels machine learning models and shape the outputs of Arti�-
cial Intelligence software. In this context, I am exploring how much Arti�cial Intelligence algorithms
present complex challenges for data integration to ensure that the results provided are trustworthy,
and I am challenging the Data for Arti�cial Intelligence research topic in the context of an RHU pro-
ject that aims to pro�le patients for personalized treatments in precision oncology. My main objective
is to contribute to the de�nition, design, and implementation of the core database (PORTRAIT) that
will integrate clinical data and experimental data (�GB for each patient) and provide them in the best
format to AI run-time pro�ling procedures.
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� Lastly, I am setting up advanced/long-term collaborations on integrating physics data with CEA,
Nairobi University, and multiple European partners. The aim of the project is to analyze data coming
from circular colliders that are in activity. My task is the development and deployment of a conceptual
model integrating both simulation and experimental raw data. This model will allow machine learning
and Arti�cial Intelligence applications to better conceive the next generation FCC (Future Circular
Collider). I have already completed the �rst work on integrating, modeling, and aligning beam posi-
tion measurements. The results are promising : my research demonstrated that these data can align
in an e�ective manner with the prediction algorithms. New insights could be de�ned thanks to bet-
ter integration and exploration of these data sources, and we are �nalizing an ANR (French National
Research Agency) project proposal to �nance this research. These projects also are partly funded by
French/Kenya grants that I obtained very recently.

The industrial and real case studies that have enriched the theory’s development opportunities are
illustrated in more detail in the project section.
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Post-Doc supervision
March ���� � Charles NdungÚ Ndegwa

• Titolo : Data for AI : a new data model for predicting the best architecture
for the next-generation colliders.

• Supervisor : Francesca Bugiotti

���� � Adnan El-Moussawi
• Title : Optimized storage of Graph data in Cloud Infrastructures.
• Funding : IT�BI
• Supervisors : Nacéra Seghouani, Francesca Bugiotti
• Publications : [I��]

�. https ://www.vossloh.com/ ���



Research Ingeneer Supervision
���� - present � Jyotishka Das

• PhD candidate starting in October ����
• Title : metadata modeling on medical data.
• Project : REMISSION RHU Project �

• Referees : Francesca Bugiotti - Paul-Henry Cournede (CentraleSupélec -
MICS)

PhD Thesis Follow-up Committees �
� �uentin Delamea

• Title : Modeling, proof and optimization of a fault-tolerant orchestrator
(ArmoniK) on distributed and elastic architectures.

• Supervisors : Janna Burman, Stèphane Vialle, Jérôme Gurhem
• Referees : Francesca Bugiotti, Pierre Sutra

���� - present � Hugo Gabrielidis
• Title : High-performance machine learning and data analytics for next-

generation railway design.
• Supervisors : Stèphane Vialle, Filippo Gatti
• Referees : Francesca Bugiotti - Christian Cremona

Member of PhD Committee
November ��th ���� � Candidate : Tomasz Boczek

• Title : Developing IT architecture for electric vehicles charge point opera-
tors : Poland as the case study

• Director : Dr. Tetyana Morosuk (Faculty III, TU Berlin)
• Jury : Francesca Bugiotti (CentraleSupélec - LISN), Stefan Elbel (TU Berlin)

September ��th ���� � Candidate : Hiba Khalid
• Title : Detecting, Repairing, and Enhancing Raw Metadata
• Director : Dr. Esteban Zimanyi (Université libre de Bruxelles)
• Jury : Dimitris Sacharidis (Université Libre de Bruxelles), Mahmoud Sakr

(Université Libre de Bruxelles), Darja Solodovnikova (University of Latvia),
Francesca Bugiotti (CentraleSupélec - LISN)

October ��th ���� � Candidate : Amine Ghrab
• Title : Graph data warehousing
• Director : Dr. Oscar Romero Moral (Universitat Politècnica de Catalunya)

Co-director : Dr. Esteban Zimanyi (Université libre de Bruxelles)
• Jury : StÒn Vansummeren (Université libre de Bruxelles), Hannes Voigt (Em-

preses d’Alemanya), Francesca Bugiotti (CentraleSupélec - LISN)

Master Thesis Supervision
����/���� � Pavlo Poliuha : “Middleware for Online Exploration of Big Data.”

�. The project is a collaboration between a Hospital and a University. The research is focussed on data problems and fully described
in the section “Projects and Research Studies”
�. The PhD student Follow-up committee (CSI : Comité de Suivi Individuel du doctorant) is a Committee made compulsory by

article �� of the ministerial decree of �� May ����, which evaluates the conditions of the PhD student training and the progress of his
research. ���



� Andrés Gomez : “Data analysis for anomaly detection and noise reduction
in Turn by Turn BPMs signals.”

����/���� � Julien Ye : “Disability, helps, and success : analysis and evolution in the Paris-
Saclay University context.”

� Abdellah Oumida : “The New Loop : RAG-enhanced LLM for Graph Data
Integration.”

����/���� � Shwetha Salimat : “A Hybrid GNN approach for predicting node data for �D
meshes”

� Konstantino Mira : “Energy analysis techniques from literature a full and
systematic classi�cation”

� Ernesto Cernusa : “Understand the feelings of music track to Python”
� Lin Siying : “Graph Neural Networks analysis”

����/���� � Hem Bhatt : “Comparative DER Data Analysis for Architecture for Energy
Consumption Optimization and Control”

� Antony Joseph : “A classi�cation of BigData techniques applied in energy
sector for the development of new research approaches”

� Akshay Tayde : “Evaluation of the IT methodology applied for energy sector
and management systems”

����/���� � Shinji Kaneko : “The forecast and impact of day-ahead electricity price in
Germany”

� Pallavi Katihalli-Manjegowda :“E�ective data integration in smart cities for
energy analysis”

����/���� � Moditha Hewasinghage : “Modeling Strategy for Storing Data in Distributed
Heterogeneous NoS�L Databases”

����/���� � Daniele Calabresi : “Integration of Oracle NoS�L into a Platform for the
Management of Non-Relational Data Stores”

� Tommaso D’Amora : “Integration of Amazon DynamoDB into a Platform for
the Management of Non-Relational Data Stores”

� Marco De Leonardis : “Statistical Databases Management : an Approach Ba-
sed on Translation Rules”

� Luca Rossi : “Heterogeneous Data Management on Innovative Database Sys-
tems”,

����/���� � Luca Tracuzzi : “Methodologies for Data Translation between Heteroge-
neous Data Models”

� Simone Folino : “De�nition of Operators into a Model Management System”
� Marianna Ciminiello : “Object-Relational Mappings using MIDST”
� Stefano Mazzoni : “Object to Relational Mapping : a Metamodeling Approa-

ch”, avec Raimondo Tanariva
� Raimondo Tanariva : “Object to Relational Mapping : a Metamodeling Ap-

proach”, avec Stefano Mazzoni
����/���� � Fabrizio Celli : “Model Independent Data and Schema Translation : a Run-

time Approach”
� Andrea Gozzi :“Import and Export of Schema and Data into a Model Mana-

gement Platform”

���



Scientific responsibilities
���� - present � Elected member of the Scienti�c Council of CentraleSupélec

���� - present � MADICS

���� - present � M�CAST

���� - present � Steering committee member of HUB AI CentraleSupélec - LISN
I am part of the Steering committee of the HUB AI of CentraleSupélec and I am a
correspondent between the HUB and the LISN research laboratory.
The AI Hub was launched in ����, with the support of the general management and
the CentraleSupélec Foundation. At the crossroads of teaching, research, and innova-
tion, the purpose of the HUB is to spread AI “made in CS”. The HUB wants to create
an ecosystem of students, doctoral and post-doctoral students, researchers, profes-
sors, and companies through partnerships and actions around entrepreneurship.

���� - present � Co-responsible for the organization of seminars for the LaHDAK team and
the Data Science Department
Collaborative activities for the organization of weekly (LaHDAK team) and monthly
(Data Science Department) seminars.

���� - present � Member of the PhD board “Engineering for Energy and Environment” - of
Università della Tuscia
The main objectives of the doctoral board are to plan the core of the strategic activities
of the research doctorate and to verify the status of the planned activities. Together, we
design the strategic development of the research, try to set a link between the industry
and the university, develop international collaborations, and set informative actions.
In this PhD board, I represent data science research axe.

Program Committees and Reviewer
Conference organzation

���� � Handiversite ���� Conference - April �, ���� - Creativity for Inclusion, Paris-Saclay,
general chair.

����-���� � Data-driven Smart Cities (DASC) ����, ����, and ����, ICDE Workshops.

���� � European Conference on Advances in Databases and Information Systems (ADBIS)
����, workshop-track chair.

� Handiversite ���� Conference - April ��, ���� - Creativity for Inclusion, Paris-Saclay,
member of the program committee.

Member of the program committee
���� � Gestion de Donnèes - Principes, Technologies et Applications DBA (����), scienti�c

program committee.

���



���� - present � ��th International Conference on Discovery Science ���� and ����.

���� � Multi-Armed Bandits for Knowledge Discovery (MAB-KG) ����, ICDM Workshops.

���� � Gestion de Donnèes - Principes, Technologies et Applications DBA (����), member
of the DEMO program committee.

���� � ��th International Conference on Scienti�c and Statistical Database Management.

External reviewer
����-���� � External reviewer for the International Conference on Extending Database Techno-

logy (EDBT) in ����, for the Data & Knowledge Engineering (DKE) Journal in ����,
����-����, for the Proceedings of Very Large Data Bases in ����, and for the ACM
SIGMOD Conference in ����, Journal of Information Systems in ����-����, MENA-
CIS in ����, DS�EIW in ����-����.

Research Projects
����-���� � REMISSION RHU � Project

• Academic Partners : Gustave Roussy, Paris-Saclay University, Inserm, Centre de re-
cherche des Cordeliers, CentraleSupélec, Unicancer, Société française d’immunothé-
rapie du cancer (FITC)

• Industrial Partners : HiFiBiO, PegaOne, ImCheck, et la biotech Veracyte
• Website
• Co-responsible of the WP�.�, WP�.�, and WP�.�.

The failure rate of drug development in oncology is extremely high (�̃�%). There is a
consensus in the oncology community that personalized therapies and precision onco-
logy is the way to improve the success of new treatments in oncology. The goal of the
REMISSION (Rapid Evaluation of Molecular & Immune Status for Strati�ed Immunothe-
rapies in ONcology) program is to bring that e�ort to a next level of precision medicine
and personalized oncology by implementing innovative techniques of fresh tissue ex-
plorations to better characterize the patient’s disease biology and drug target expression.
The main objective of my task is to design a database that is able to capture all relevant
information about the biological information of patients.

�. Recherche Hospitalo-Universitaire en santé (RHU) - Research in Hospital and University collaboration focussed on Health pro-
blems ���



����-���� � VRAILEXIA European Erasmus+ Project
• Academic Partners : Università della Tuscia, Università degli studi di Perugia, Panteion,

University of Paris Nanterre, UCCL, CentraleSupélec, Universidad de Cordoba
• Industrial Partners : Tucep, Giunti, AEVA.
• Website
• Scienti�c responsible for CentraleSupélec - Budget ����� euros

Le projet VRAILEXIA �� is a European Erasmus+ project, prized by Unesco, which aims
to change perception and develop a tool to overcome the main di�culties of dyslexics
by strengthening their motivation and self-esteem. The project’s main objective is to
develop a digital platform based on AI to support dyslexic students. My role was the
integration of data that comes from several tests, in several languages, for the evaluation
of the pro�le of dyslexia and the e�ects of the use of the platform on the psychological
aspects [S�], [J�], [I�], [J�], [N�].

����-���� � GEOTS
• Partners : SLB, CentraleSupélec, LISN
• Funding : CIFRE
• Scienti�c Participant

In geoscience, it is necessary to study the lithography of the Earth’s subsurface, which
consists of di�erent strati�ed layers called geological formations. This study performs
well correlation task to model and characterize reservoirs. This operation links the be-
ginning of speci�c geological formations called tops using measurements from drilled
wells. Although data are abundant, the traditional algorithms used for well correlation
are semi-automated, requiring signi�cant time and high computational cost. We aim to
introduce GeoTS, a Python library to apply cutting-edge time series classi�cation mo-
dels to perform well correlation in a completely automated setting. As input, it takes the
drilling trajectory depth and gamma-ray well logs, which measure the natural radioac-
tivity across the well depth trajectory. The top depths of the formations are predicted
as an output. The gamma-ray signatures are extracted around the top depths assigned
by geologists. Preprocessing is performed to clean and cluster these signatures using
Dynamic Time Wrapping (DTW) distance and HDBSCAN. Implementation of existing
deep learning architectures (FCN, InceptionTime, XceptionTime, XCM, LSTM-FCN)
and new architectures (LSTM-�dCNN, LSTM-XCM) are performed.

���� - present � BMP �� trajectory analyses
• Partners : CEA, University of Nairobi, LISN, CentraleSupélec
• Scienti�c responsible of the collaboration for LISN/CentraleSupélec - Budget ����� euros

This research project has as its main objective to integrate and analyze data coming from
Circular Colliders in collaboration with the CEA (Commissariat à l’énergie atomique et
aux énergies alternatives ��) and the University of Nairobi. After the discovery of the
Higgs boson at the Large Hadron Collider (LHC), the particle physics community is
exploring and proposing the next accelerators to address the remaining open questions.
One of the studied possibilities is FCC (Future Circular Collider), a ���-km-long collider
at CERN. In the project context, we are collecting data in di�erent European countries.
The focus is on the development and deployment of a conceptual model integrating both
simulation and experimental raw data in order to run machine learning and arti�cial
intelligence applications. A post-doc �nanced by the collaboration will join the LISN
Laboratory in January ����. I am already co-supervising a PhD thesis �nanced by CEA.
An ANR project is under submission.

��. Virtual Reality and Arti�cial Intelligence for Dyslexia
��. Beam Position Monitors (BPM)
��. https ://www.cea.fr/ ���



���� - present � IT�Energy
• Partners : TU Berlin, LISN
• Funding : TU Berlin
• Scienti�c Participant

Energy transformation, often referred to as energy conversion, and green hydrogen
technologies and e�ciencies are critical components of the plan to achieve net-zero
CO2 emissions. In this research collaboration we explore data in this area. We aim
to study how the use of arti�cial intelligence (AI) and machine learning (ML) tools
could built opportunities to accelerate and optimize the performance and e�ciencies
of energy conversion tasks [J�].

����-���� � PROCLAIM
• Partners : SLB, CentraleSupélec, LISN
• Funding : CIFRE
• Scienti�c Participant

The objective of this project is to explore and de�ne information extraction approaches
and to build learning models to obtain a knowledge base from documents drilling (cut-
tings), laboratory reports of core data analysis and geological studies in order to au-
tomatically provide the a priori information necessary to interpreting logs using the
available knowledge and the business rules [I�], [I��].

����-���� � B-GRAP
• Partners : CentraleSupélec, LISN
• Funding : CentraleSupélec
• Scienti�c Participant

The de�nition of e�ective strategies for graph partitioning is a major challenge in dis-
tributed environments since an e�ective graph partitioning allows to considerably im-
prove the performance of large graph data analytics computations. In this project we
studied and de�ned a multi-objective and scalable Balanced GRAph Partitioning (B-
GRAP) algorithm to produce balanced graph partitions. B-GRAP is based on Label Pro-
pagation (LP) approach and de�nes di�erent objective functions to deal with either ver-
tex or edge balance constraints while considering edge direction in graphs. The expe-
riments are performed on various graphs while varying the number of partitions [J�],
[I��].

����-���� � SATT �� DataForYou
• Partners : SATT Paris-Saclay, CentraleSupélec, LISN
• Funding : SATT
• Scienti�c Participant

Participation in the SATT DataForYou project aimed at supporting the creation of the
start-up DataForYou, which aims to build tools to support local authorities (for example,
town halls, departmental administrations ) in France. The project’s objective was to inte-
grate data for optimizing services provided to citizens by relying on behavioral analysis
tools. In this project, I was involved in coaching an engineer on the data integration
batch.

��. SATT Paris-Saclay is the Technology Transfer Accelerator O�ce of the Paris-Saclay Cluster.���



����-���� � API�A
• Partners : LRI
• Funding : LRI
• Co-responsible of the project

This project had as objective to de�ne a methodology that provides complete answers
to queries over data accessible via Web APIs. The project focused on Twitter graph data
for the beginning. The project de�ned a query engine that integrates real-time (or on-
line) queries over the Twitter API with a local (or o�ine) data source. It was possible
to build and maintain the data using a NoS�L graph datastore. Moreover, we focused
on di�erent ways of organizing data on the o�ine datastore, in order to improve the
performance of queries and the completeness of the results [N�], [I��], [I��].

����-���� � NOAM and ONDM
• Partners : Università Roma Tre
• Funding : Università Roma Tre
• Scienti�c Participant

NoS�L Abstract Model (NOAM) is a logical approach to the NoS�L database design
problem [N�] and aims at exploiting the commonalities of various NoS�L systems. It
is based on an intermediate, abstract data model where aggregates are units of distribu-
tion (to support scalability) and consistency (to the extent it is needed). Some interme-
diate representations can be implemented in target NoS�L datastores, considering their
speci�c features and providing e�ective support for scalability, consistency, and perfor-
mance [J�], [I��]. ONDM (Object-NoS�L Datastore Mapper), is the framework [N�] that
supports NOAM approach. It provides application developers with a uniform program-
ming interface, as well as the ability to map application data to di�erent data represen-
tations and can be used, in an e�ective way, for performing the experiments during the
design of a NoS�L database [N�].

����-���� � ESTOCADA
• Partners : INRIA, UC Sant Diego
• This work has been partially funded by the Datalyse “Investissement d’Avenir” project, by

the associated INRIA-Sillicon Valley OakSad team, and the KIC ICT Labs Europa activity
• Scienti�c Participant

A novel system capable of exploiting side-by-side a practically unbound variety of
DMSs, all the while guaranteeing the soundness and completeness of the store, and
striving to extract the best performance out of the various DMSs. Our system leve-
rages recent advances in the area of query rewriting under constraints, which we use to
capture the various data models and describe the fragments each DMS stores [D�], [N�],
[I��], [N�].

���� � GENDATA (Università Roma Tre - Politecnico di Milano)
• Partners : Politecnico di Milano, Università di Bergamo, Università di Milano, Politec-

nico di Torino, Università di Bologna, Università La sapienza, Università Roma Tre,
Università di Salerno, Università della Calabria

• Funding : PRIN (Italian National Project)
• Scienti�c Participant

The work regarding data models continues within the GENDATA European project
http://gendata.weeb�y.com/ that aims at building the abstractions, models, and pro-
tocols for supporting a network of genomic data, making them available for genome
servers located in the major biologist laboratories in the world. I started to collaborate
to the project within the working packages involving Università Roma Tre investigating
about the model design, the query language and the model standardization.

���



����-���� � SOS
• Partners : Università Roma Tre
• Funding : Università Roma Tre
• Scienti�c Participant

Save Our Systems (SOS) is a common programming interface [D��] to NoS�L systems.
Its goal is to support application development by hiding the speci�c details of the va-
rious systems. I contributed to the de�nition to the architecture of the platform, the
operations it exposes and the query strategies it implements. I have been involved in
de�ning the strategies for integrating the NoS�L data stores into the system. I also par-
ticipated in the de�nition of the data storage techniques that are used in each datastore
in order to perform operations the interface exposes [J�], [I��].

���� � AMADA
• Partners : INRIA
• Funding : This work has been partially funded by the KIC EIT ICT Labs activity “Clouds

for Connected Cities” ���� and an AWS in Education research grant
• Scienti�c Participant

During my internship I contributed to the AMADA project : a platform [N�], [D�] for
storing Web data (XML documents and RDF graphs) based on the Amazon Web Ser-
vices (AWS) cloud infrastructure. I provided a solution for the problem of indexing RDF
datasets by using SimpleDB, a key-value store provided by AWS. I contributed to the de-
�nition and development of four indexing strategies [I��], [B�].

����-���� � MISM
• Partners : Università Roma Tre
• Funding : Università Roma Tre
• Scienti�c Participant

Model Independent Schema Management (MISM) is a platform for model management
that o�ers a set of operators to manipulate schemas. I designed and implemented the
algorithm that gives one solution to the round-trip engineering problem considering the
main model management operators (merge, di�, and modelgen) implemented according
to model-independent and model-aware approaches based on MIDST supermodel [J��],
[N�].

����-���� � MATRIX - EXL
• Partners : Università Roma Tre, Central Bank of Italy
• Funding : Central Bank of Italy
• Scienti�c Participant

I collaborated with the Bank of Italy, supporting the implementation of EXLEngine,
a tool that manipulates statistical data at high level in terms of entities of statistical
models such as time series. We proposed (i) a language, EXL, has been de�ned for the
declarative speci�cation of statistical programs, (ii) an approach for the translation of
EXL code into executables in various target systems has been developed, and (iii) a
concrete implementation, EXLEngine. The approach leverages schema mappings as an
intermediate speci�cation step, in order to facilitate the translation from EXL towards
several target systems [J�], [I��].

���



����-���� � MIDST-RT
• Partners : Università Roma Tre
• Funding : Università Roma Tre
• Scienti�c Participant

Model-Independent Schema and Data Translation-RunTime (MIDST-RT) is a platform
based on MIDST but that implements a runtime approach. I contributed to the de�-
nition, design, and implementation of the MIDST-RT algorithm, given the schema of
the source database and the model of the target one generates views on the operational
system that expose the underlying data according to the corresponding schema in the
target model. The implemented approach generates views automatically, based on the
Datalog rules for schema translation [J��], [I��], [N�], [N��].

����-���� � MIDST
• Partners : Università Roma Tre
• Funding : Università Roma Tre
• Scienti�c Participant

Model-Independent Schema and Data Translation (MIDST) is a platform for model-
independent schema and data translation based on a meta-level approach over a wide
range of data models (Relational, OR, OO, ER, XML). I contributed to the extension of
MIDST supermodel (a general model handled by the platform that describes the various
data models in terms of a small set of basic constructs) and I also implemented some core
software components like the Datalog-S�L translation engine giving some ideas about
the evolution of the platform [N��].

Industry Collaborations and Contracts
���� - present � Transvalor

Participation to a research-contract for the development of a chaire de recherche [I�],
[I�], [I�], [I��]. Research topic : data integration.

���� - present � Tissium
Consultant for CentraleSupélec for the de�nition of a shared database storing all data
coming from the experiment and the research. De�nition of an internship that will be
supervised during the next summer.

���� - present � Vires - Msc Software
Co-supervision of projects developed with students of CentraleSupélec.

���� - present � SLB
Co-supervision of multiple projects, focusing on data analysis and integration, deve-
loped with students of CentraleSupélec. Co-Supervision of two PhD thesis.

Research dissemination
���� � Olympiades des Sciences de l’Ingénieur

���



����-���� � Mentorat Solinum
Mentoring of Solinum company for data analysis and the application of AI algorithms. Ac-
tion in collaboration with the school’s Entrepreneurship cell. The objective of this colla-
boration was to provide an environment of scienti�c expertise to consolidate this project
born during the COVID crisis. In my action I participated in the improvement of Soliguide,
a tool from the company Solinum, which makes it possible to guide social action thanks to
Arti�cial Intelligence.

����-���� � “A volte ritornano”
Series of scienti�c seminars held by ex-students of the Liceo Paolo Ru�ni in Viterbo. The
aim of the seminars is to make research accessible to all and to communicate to people the
passion for science. For high school students, the initiative aims to provide useful tools in
the choice of their future career, and to inform on current lines of scienti�c research.

���� � Project “Summer school for young female students”
The University of Paris-Saclay aims to introduce students to disciplines traditionally ne-
glected by girls, in a vast recruitment pool that includes priority areas. I participated in two
weeks of initiatives for high school and middle school students through a seminar : “Big
Data : the incredible opportunities for storage and interpretation” and the participation in
several newsgroups.

����-���� � Dalkia : Women’s Energy In Transition ��

Member of the jury - Dalkia challenge aims to promote the place of women in the �eld of
energy, to highlight rich and exemplary careers and to encourage young women to join
these professions, by participating in its promotion among students. I contributed to this
project taking part in the evaluation of the candidates �les and the jury.

Seminars and Publications
Seminars

March �th ���� � Seminar - Université de Tours - Symposium - Blois, “Graph data representa-
tions and graph data models in di�erent use cases”.

May ��th ���� � Seminar - MADICS - Symposium - Blois, “Named Entity Recognition using
Deep Neural Networks and Large Language Models”.

October ��th ���� � Round Table - “SUN - Semaines des Usages du Numérique”, - Paris-Saclay, Title :
“Innovation and Handicap”.

October ��th, ���� � Seminar - National Dyslexic Day - Paris, Title : “Digital and Arti�cial Intelli-
gence Integrated Tools to Support Higher Education Students with Dyslexia ”.

December ��th ���� � Seminar - CEA - In the art - DataIA - Paris-Saclay, Title : “Weakly supervised
Named Entity Recognition using Deep Neural Networks”.

��. Dalkia is a subsidiary of EDF Group and a leading provider of energy services, with operations across France and further a�eld.
Women’s Energy In Transition award rewards and �nancially supports female students and professionals in activity, to encourage
women to join training courses or professions related to the energy transition.���



July �th ���� � Seminar - CentraleSupélec - Paris-Saclay, Title : “The cartography of the Arti-
�cial Intelligence Research in CentraleSupélec”.

July �th ���� � Seminar - TU-Berlin - Berlin - research group DIMA / DFKI, “Interpreting
Reputation through Frequent Named Entities in Twitter”.

December �th ���� � Seminar - TU-Berlin - Berlin - research team DIMA / DFKI, “Modeling Me-
thodology for a uniform access to NoS�L systems”.

December �th ���� � Invited tutorial - TU-Berlin - Berlin - research team DIMA / DFKI, Title :
“Database Design for NoS�L Systems”.

April ��nd ���� � Seminar - Roma Tre - Rome - Database research group, “Flexible Stores and
Data”.

���



Glossary of Scientific and Industrial Collaborations
LISN Laboratory

� LaHDAK (Large-scale Heterogeneous DAta and Knowledge)
• Collaborators : Nacéra Seghouani, Benoit Groz, Silviu Maniu, Gianluca �uercini
• LaHDAK Website

� Team A&O (Learning and Optimization)
• Collaborators : Mathieu Kowalski
• A&O Website

� Team M� (Models, Methods, and Multilingualism)
• Collaborators : Bonneau Hélène
• M�Website

National (France/Italy)
� Ecole Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise (ENSIIE)

• Collaborators : Stefania Dumbrava
• https://web4.ensiie.fr/

� Paris Nanterre University
• Collaborators : �uinio Bernard
• https://university.parisnanterre.fr//

� Università Roma Tre
• Collaborators : Paolo Atzeni, Luca Cabibbo, Riccardo Torlone
• https://ingegneriacivi�einformaticatecno�ogieaeronautiche.uniroma3.it/en/

� Politecnico di Milano
• Collaborators : Stefano Ceri
• https://www.po�imi.it/

� Liceo Scienti�co Paolo Ru�ni
• Collaborators : Alessandro Ercoli
• https://www.�iceopao�oruffiniviterbo.it/

� CNR (Consiglio Nazionale delle Ricerche)
• Collaborators : Umberto Straccia
• www.cnr.it/peop�e/umberto.straccia

� Università della Tuscia
• Collaborators : Giuseppe Calabró
• https://www.unitus.it/

� INRIA (Institut national de recherche en sciences et technologies du numérique)
• Collaborators : Ioana Manolescu
• https://inria.fr/fr
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� CNRS (Centre national de la recherche scienti�que ) and Museum National d’Histoire Na-
turelle

• Collaborators : Christophe Lavelle, Olivier Getcher
• https://biophysique.mnhn.fr, https://gechter.org/b�og/

� SLB
• SLB is a global technology company. As of ����, it is both the world’s largest oil�eld services com-

pany and the world’s leader in digital solutions for subsurface and surface engineering.
• Collaborators : Sylvain Wlodarczyk, Souaib Oizineb
• https://www.s�b.com/

� Genvia
• A joint venture between CEA, SLB, Occitanie, Vinci, and Vicat to enable the H� economy through

the decarbonisation of industry.
• Collaborators : Alessia Longobardi, Yan Hermann
• https://genvia.com/

� Dalkia
• Dalkia is a subsidiary of EDF Group and a leading provider of energy services, with operations

across France and further a�eld.
• Collaborators : Sylvie Jéhanno
• https://www.da�kia.com/careers/women-energy-in-transition/

� Institut Gustave Roussy
• Institut Gustave Roussy is a cancer research hospital ranked as the �rst leading cancer hospital in

Europe and in the top �ve best-specialized hospitals in the world.
• Collaborators : Aurélien Marabelle
• https://www.gustaveroussy.fr

� Generali Nantes
• Generali is an insurance company that o�ers its customers a complete range of insurance solutions

(health, personal protection, assistance, property, and liability), savings, and asset management.
• Collaborators : Michael Reis
• https://www.genera�i.fr

� CEA (Commissariat à l’énergie atomique et aux énergies alternatives)
• The CEA is a major research organization working in low-carbon energy (nuclear and renewable),

digital technology, technology for medicine of the future, defense, and national security.
• Collaborators : Barbara Dalena, Valérie Gautard, Adnad Ghirbi
• https://www.cea.fr

� Transvalor
• Transvalor is a French company that o�ers a unique solution platform able to simulate the overall

manufacturing process, from the raw material to the product in-use properties.
• Collaborators : Jose Alves, Patricia Renaud
• https://www.transva�or.com/
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� Tissium
• Tissium is a company founded in ����whose objective is to disrupt the �eld of surgery and positively

impact the lives of patients through the development of our platform of biomorphic programmable
polymers.

• Collaborators : Maria Pereira, João Maia
• https://tissium.com/

� Solinum
• Solinum is committed to developing and distributing innovative digital tools, ensuring universal

access to information on social assistance and services.
• Collaborators : Victoria Mande�eld
• https://www.so�inum.org/

� Vires - MSC Software - Exagon
• Hexagon is a leading global provider of information technology solutions. The company supports

the development, testing, and validation of driver-assisted and fully autonomous driving techno-
logy.

• Collaborators : David Mear
• https://hexagon.com/

� Central Bank of Italy
• The Bank of Italy is the central bank of the Republic of Italy. It is a public-law institution regulated

by national and European legislation.
• Collaborators : Luigi Bellomarini
• https://www.bancadita�ia.it/

� Consip
• Consip (Concessionaria Servizi Informativi Pubblici) s.p.a. is a public stock company owned by

Italy’s Ministry of the Economy and Finance that operates in behalf of the State.
• Collaborators : Gianna Caralla
• https://www.consip.it/

� ISA
• ISA s.r.l. is an Italian enterprise that provides software for small and medium companies. It is focused

on ERP services and business intelligence
• Collaborators : Giuseppe Materni
• http://www.isa.it/

International
� TU Berlin, Germany

• Collaborators : Tatiana Morosuk, Ralf-Detlef Kutsche
• https://www.tu.ber�in/

� University of Oulu, Finland
• Collaborators : Ekaterina Gilman
• https://www.ou�u.fi/

� Norwegian University of Science and Technology, Norway
• Collaborators : Xiang Su
• https://www.ntnu.edu/
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� UC Sant Diego - USA
• Collaborators : Alin Deutsch
• https://ucsd.edu/

� Nairobi University - Kenya
• Collaborators : Ian Kaniu, Kenneth Amiga Kaduki
• https://www.uonbi.ac.ke/
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Book Chapters (B)
B1 F. B�������, J. C�������R��������, F. G�������, Z. K�����, I. M�������� et S. Z���������,

« SPAR�L �uery Processing in the Cloud, » in Linked Data Management. CRC Press, ����, p. ���-���.

Articles in international journals (J)
J1 E. G�����, F. B�������, A. K����� et al., « Addressing Data Challenges to Drive the Transformation of

Smart Cities, » ACM Transactions on Intelligent Systems and Technology - [Scimagojr ��]- To Appear - ��
pages, ����.

J2 A. R�����, K. E. H���, Y. H������ et F. B�������, « To prompt or not to prompt : Navigating the use
of large language models for integrating and modeling heterogeneous data, » Data & Knowledge
Engineering - [Scimagojr ��], t. ���, no ������, ����.

J3 A. H��������, B. Q����� et F. B�������, « Human-Centric AI to Mitigate AI Biases : The Advent of
Augmented Intelligence, » Journal of Global Information Management - [Scimagojr ��], t. ��, no �, p. �-��,
����.

J4 K. M���, F. B������� et T. M������, « Arti�cial Intelligence and Machine Learning in Energy
Conversion and Management, » Energies - [Scimagojr ��], t. ��, no ��, ����, ���� : ����-����. � ��� :
10.3390/en16237773.

J5 A. E. M�������, N. B. S�������� et F. B�������, « BGRAP : Balanced GRAph Partitioning Algorithm
for Large Graphs, » Journal of Data Intelligence - [Scimagojr ��], t. �, no �, p. ���-���, ����.

J6 P. A�����, F. B�������, L. C������ et R. T������, « Data modeling in the NoS�L world, » Computer
Standards & Interfaces - [Scimagojr ��], t. ��, ����.

J7 P. A�����, L. B����������, F. B������� et M. D. L��������, « Executable Schema Mappings for
Statistical Data Processing., » Distributed Parallel Databases - [Scimagojr ��], t. ��, no �, p. ���-���, ����.

J8 N. B. S��������, F. B�������, M. H�����������, S. I��� et G. Q�������, « A Frequent Named
Entities-Based Approach for Interpreting Reputation in Twitter, » Data Science and Engineering -
[Scimagojr ��], t. �, no �, p. ��-���, ����.

J9 P. A�����, F. B������� et L. R����, « Uniform access to NoS�L systems, » Information Systems -
[Scimagojr ��], t. ��, p. ���-���, ����.

J10 P. A�����, L. B����������, F. B�������, F. C���� et G. G��������, « A runtime approach to
model-generic translation of schema and data., » Information Systems - [Scimagojr ��], t. ��, no �,
p. ���-���, ����.

J11 P. A�����, L. B����������, F. B������� et G. G��������, « MISM : A Platform for
Model-Independent Solutions to Model Management Problems, » Journal of Data Semantics -
[Scimagojr ��], t. ��, p. ���-���, ����.

Full articles in international conferences and workshops (I)
I1 S. S�������, S. W��������� et F. B�������, « GeoX : Explainable neural network for time series

classi�cation, a geoscience case study, » in KDD ���� - Applied Data Science Track, - [Core Rank A*], to
appear, t. �, ����, p. ��.

I2 �. B�����, B. D�����, F. B������� et al., « Emittance Tuning of the FCC-EE high energy booster
ring, » in European Physical Society Conference on High Energy Physics, ����.

I3 S. S�������, S. W��������� et F. B�������, « Responsible AI : Training deep learning model
e�ciently, » in New Trends in Database and Information Systems - ADBIS - [Core Rank C], to appear,
����.

I4 D. S�����, F. B�������, M. K�������, E. �’H��������� et F. L���������, « A Hierarchical Deep
Learning Approach for Minority Instrument Detection, » in International Conference on Digital Audio
E�ects (DAF) - [Core Rank B], t. to Appear, ����.���



I5 K. E. H���, A. R�����, Y. H������, R. M�, V. H��� et F. B�������, « A multi-source graph database to
showcase a recommender system for dyslexic students, » in IEEE International Conference on Big Data,
BigData ���� - [Core Rank B], IEEE, ����, p. ����-����.

I6 S. S�������, F. B������� et F. M�������, « A Hybrid GNN Approach for Predicting Node Data for �D
Meshes, » in New Trends in Database and Information Systems - ADBIS - [Core Rank C] Short Papers,
sér. Communications in Computer and Information Science, t. ����, Springer, ����, p. ���-���.

I7 S. L�, J. A����, F. B������� et F. M�������, « A Comparison Study of Graph Neural Network and
Support Vector Machine, » in Distributed Computing and Applications for Business Engineering and
Science (DCABES) - [Scimagojr - ranking in progress], ����.

I8 R. G. L������, S. W���������, M. A����, F. B������� et N. B. S��������, « Weakly supervised
Named Entity Recognition for Carbon Storage using Deep Neural Networks, » in International
Conference on Discovery Science (DS) - [Core Rank B], ����.

I9 V. S. M�����, J. A����, F. B������� et F. M�������, « Point-Cloud-based Deep Learning Models for
Finite Element Analysis, » in Distributed Computing and Applications for Business Engineering and
Science (DCABES) - [Scimagojr - ranking in progress], ����.

I10 V. S. M�����, F. B������� et F. M�������, « Point-Cloud-based Deep Learning Models for Finite
Element Analysis, » in Distributed Computing and Applications for Business Engineering and Science
(DCABES) - [Scimagojr - ranking in progress], ����.

I11 M. A����, S. W���������, N. B. S�������� et F. B�������, « PROCLAIM : An Unsupervised
Approach to Discover Domain-Speci�c Attribute Matchings from Heterogeneous Sources, » in
International Conference on Advanced Information Systems Engineering (CAiSE) - [Core Rank A], t. ���,
Springer, ����, p. ��-��.

I12 A. E. M�������, N. B. S�������� et F. B�������, « A Graph Partitioning Algorithm for Edge or Vertex
Balance, » in Database and Expert Systems Applications DEXA - [Core Rank C], sér. Lecture Notes in
Computer Science, t. �����, Springer, ����, p. ��-��.

I13 M. H�����������, N. B. S�������� et F. B�������, « Modeling Strategies for Storing Data in
Distributed Heterogeneous NoS�L Databases, » in International Conference on Conceptual Modeling
(ER) - [Core Rank A], sér. Lecture Notes in Computer Science, t. �����, Springer, ����, p. ���-���.

I14 N. B�������, F. B�������, J. G������, M. P������� et G. Q�������, « Eliminating Incorrect
Cross-Language Links in Wikipedia, » in Web Information Systems Engineering (WISE) - [Core Rank B],
����, p. ���-���.

I15 N. B�������, F. B�������, M. H�����������, S. I��� et G. Q�������, « Interpreting Reputation
Through Frequent Named Entities in Twitter, » in Web Information Systems Engineering (WISE) - [Core
Rank B], ����, p. ��-��.

I16 F. B�������, D. B�������, A. D������, I. I����� et I. M��������, « Invisible Glue : Scalable
Self-Tunning Multi-Stores, » in Conference on Innovative Data Systems Research (CIDR - [Core Rank A],
����.

I17 F. B�������, L. C������, P. A����� et R. T������, « Database Design for NoS�L Systems., » in
International Conference on Conceptual Modeling (ER) - [Core Rank A], ����, p. �-�.

I18 P. A�����, L. B���������� et F. B�������, « EXLEngine : executable schema mappings for statistical
data processing, » in International Conference on Extending Database Technology (EDBT) - [Core Rank A],
����, p. ���-���.

I19 P. A�����, F. B������� et L. R����, « Uniform Access to Non-relational Database Systems : The SOS
Platform, » in International Conference on Advanced Information Systems Engineering (CAiSE) - [Core
Rank A], ����, p. ���-���.
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I20 F. B�������, F. G�������, Z. K����� et I. M��������, « RDF Data Management in the Amazon
Cloud, » in Workshop on Data analytics in the Cloud (DanaC), ����.

I21 P. A�����, L. B����������, F. B������� et G. G��������, « A runtime approach to model-independent
schema and data translation, » in International Conference on Extending Database Technology (EDBT) -
[Core Rank A], ����, p. ���-���.

Demonstrations in international conferences (D)
D1 F. B�������, D. B�������, A. D������, I. M�������� et S. Z���������, « Flexible hybrid stores :

Constraint-based rewriting to the rescue, » in International Conference on Data Engineering (ICDE) -
[Core Rank A], ����, p. ����-����.

D2 A. A������A������, F. B�������, J. C�������R�������� et al., « AMADA : Web Data Repositories in
the Amazon Cloud, » in International Conference on Information and Knowledge Management (ACM
CIKM) - [Core Rank A], ����.

D3 P. A�����, F. B������� et L. R����, « SOS (Save Our Systems) : a uniform programming interface. for
non-relational systems, » in International Conference on Extending Database Technology (EDBT) - [Core
Rank A], ����, p. ���-���.

Articles and demos in national database conferences (N)
N1 �. B������, A. H�������� et F. B�������, Human-centric AI to mitigate AI biases : The advent of

augmented intelligence, AIM, éd., Conférence de l’Association Information et Management (AIM), ����.

N2 N. B. S��������, F. B�������, J. G������, M. P������� et G. Q�������, Élimination des liens
inter-langues erronés dans Wikipédia, M. L�����, C. L������� et H. A����, éd., Conférence
francophone sur l’Extraction et la Gestion des Connaissances (EGC), ����.

N3 R. B. AL�O�����, F. B�������, D. B�������, A. D������, I. M�������� et S. Z���������, Estocada :
Stockage Hybride et Ré-écriture sous Contraintes d’Intégrité. Journées des Bases de Données Avancées
(BDA), ����.

N4 F. B�������, D. B�������, A. D������, I. I����� et I. M��������, Toward Scalable Hybrid Stores,
Italian Symposium on Advanced Database Systems (SEBD), ����.

N5 F. B�������, L. C������, P. A����� et R. T������, How I Learned to Stop Worrying and Love NoS�L
Databases, Italian Symposium on Advanced Database Systems (SEBD), ����.

N6 F. B������� et L. C������, A Comparison of Data Models and APIs of NoS�L Datastores. Italian
Symposium on Advanced Database Systems (SEBD), ����.

N7 A. A������A������, F. B�������, J. C�������R�������� et Z. K�����, AMADA : Web Data
Repositories in the Amazon Cloud. Journées des Bases de Données Avancées (BDA), ����.

N8 P. A�����, L. B����������, F. B������� et G. G��������, A runtime approach to model-independent
schema and data translation, Italian Symposium on Advanced Database Systems (SEBD), ����.

N9 P. A�����, L. B����������, F. B������� et G. G��������, A platform for model-independent solutions to
model management problems, Italian Symposium on Advanced Database Systems (SEBD), ����.

N10 P. A�����, L. B����������, F. B������� et G. G��������, From Schema and Model Translation to a
Model Management System, British National Conference on Databases (BNCOD), ����.

Submitted Papers (S)
S1 �. B�����, F. B�������, B. D����� et al., « AI techniques to improve optics measurements based on

the Turn-by-turn Beam Position Monitors, » ����.
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S2 �. B�����, F. B������� et B. D�����, « Echo State Network analysis for Dynamic Aperture
prediction, » ����.

S3 �. B�����, A. G�������, Y. Z�� et al., « Anomaly detection and noise reduction in Turn by Turn
BPMs signals of SuperKEKB main rings, » ����.

S4 V. de C�����������, F. B�������, C. L������ et O. G������, « Correlation between health and the
environment for foods, » ����.

S5 E. G�������, B. L������ et F. B�������, « Graph-Based Analysis of Dyslexic Pro�les in University
Using Unsupervised Clustering., » ����.

S6 G. L. H��������, Y. W���, Y. H��, S. S������� et F. B�������, « Learning Models in the Context of
Predicting Geological Markers Formation for Oil & Gas Drilling Processes, » ����.

S7 S. L�������, O. C�����, A. L���������, F. B�������, Y. H������� et S. W���������, « Failure
Prediction in Electrolyzers with Interpretable Image-Based Deep Learning and Unsupervised Domain
Adaptation, » ����.

���



178



Bibliography

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] Tanzina Afrin and Nita Yodo. A long short-term memory-based cor-
related traffic data prediction framework. Knowledge-Based Systems,
237:107755, 2022.

[3] Waqas Ahmed, Leticia Gómez, Alejandro Vaisman, and Esteban Zi-
manyi. Reconciling tuple and attribute timestamping for temporal data
warehouses. Proc. VLDB Endow., 34, 12 2024.

[4] AirNow. AirNow.gov.
[5] Anirudh Ajith, Chris Pan, Mengzhou Xia, Ameet Deshpande, and Karthik

Narasimhan. InstructEval: Systematic Evaluation of Instruction Selec-
tion Methods. arXiv preprint, 2023.

[6] Mustafa A. Al Ibrahim. Uncertainty in automated well-log correlation
using stochastic dynamic timewarping. Petrophysics - The SPWLA Journal,
63(06):748–761, 12 2022.

[7] Eiman Al Nuaimi, Hind Al Neyadi, Nader Mohamed, and Jameela Al-
Jaroodi. Applications of big data to smart cities. Journal of Internet Ser-
vices and Applications, 6(1):25, Dec 2015.

[8] Ioannis Alagiannis, Renata Borovica-Gajic, Miguel Branco, Stratos
Idreos, and Anastasia Ailamaki. NoDB: efficient query execution on raw
data files. Commun. ACM, 58(12):112–121, 2015.

[9] Vito Albino, Umberto Berardi, and Rosa Maria Dangelico. Smart cities:
Definitions, dimensions, performance, and initiatives. Journal of Urban
Technology, 22(1):3–21, 2015.

[10] Tomé Albuquerque, Ricardo Cruz, and Jaime Cardoso. Ordinal losses
for classification of cervical cancer risk. PeerJ Computer Science, 7:e457,
04 2021.

[11] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. Citybench:
A configurable benchmark to evaluate rsp engines using smart city
datasets. In International Semantic Web Conference (ISWC), pages 374–
389. W3C, 2015.

179



[12] Syed Juned Ali, Iris Reinhartz-Berger, and Dominik Bork. How are llms
used for conceptual modeling? an exploratory study on interaction be-
havior and user perception. InWolfgangMaass, Hyoil Han, Hasan Yasar,
and Nick Multari, editors, International Conference on Conceptual Model-
ing (ER), pages 257–275. Springer Nature Switzerland, 2025.

[13] Ahmed Alnuaim, Ziheng Sun, and Didarul Islam. Ai for improving ozone
forecasting. In Artificial Intelligence in Earth Science, pages 247–269. Else-
vier, 2023.

[14] Gustavo Alonso, Natassa Ailamaki, Sailesh Krishnamurthy, Sam Mad-
den, Swami Sivasubramanian, and Raghu Ramakrishnan. Future of
database system architectures. In International Conference on Manage-
ment of Data (SIGMOD), page 261–262. ACM, 2023.

[15] Ali A Alwan, Azlin Nordin, Mogahed Alzeber, and Abedallah Zaid Abualk-
ishik. A survey of schema matching research using database schemas
and instances. International Journal of Advanced Computer Science and
Applications (IJACSA), 8(10), 2017.

[16] Rami Aly, Andreas Vlachos, and Ryan McDonald. Leveraging type de-
scriptions for zero-shot named entity recognition and classification. In
International Joint Conference on Natural Language Processing (IJCNLP),
pages 1516–1528. ACL, August 2021.

[17] Amazon. Amazon Mechanical Turk.
[18] Amazon Web Services. DynamoDB. http://aws.amazon.com/

dynamodb. accessed February 2016.
[19] NG Nageswari Amma and F Ramesh Dhanaseelan. Privacy preserving

data mining classifier for smart city applications. In International Confer-
ence on Communication and Electronics Systems (ICCES), pages 645–648.
IEEE, 2018.

[20] Amsterdam. Data portal Amsterdam.
[21] Mike Ananny and Strohecker Carol. Textales: Creating interactive fo-

rums with urban publics. In Marcus Foth, editor, Handbook of Research
onUrban Informatics: The Practice and Promise of the Real-Time City, pages
68–86. IGI Global, Boston, 2009.

[22] R Anantha, T Bethi, D Vodianik, and S Chappidi. Context tuning for re-
trieval augmented generation. arXiv preprint arXiv:2312.05708, 2023.

[23] Mark A. Andersen. Defining log interpretation.
180

http://aws.amazon.com/dynamodb
http://aws.amazon.com/dynamodb


[24] Margarita Angelidou. The role of smart city characteristics in the plans
of fifteen cities. Journal of Urban Technology, 24(4):3–28, 2017.

[25] R. Angles and C. Gutierrez. Survey of graph database models. ACM
Computing Surveys, 40(1):1–39, 2008.

[26] Renzo Angles and Claudio Gutierrez. An Introduction to Graph Data Man-
agement. Data-Centric Systems and Applications. Springer, 2018.

[27] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg
Sander. Optics: ordering points to identify the clustering structure. In
International Conference on Management of Data (SIGMOD), page 49–60.
ACM, 1999.

[28] Apache. Apache activemq.
[29] Apache. Apache cassandra.
[30] Apache. Apache flink.
[31] Apache. Apache flume.
[32] Apache. Apache giraph.
[33] Apache. Apache hadoop.
[34] Apache. Apache hbase.
[35] Apache. Apache kafka.
[36] Apache. Apache nifi.
[37] Apache. Apache ozone.
[38] Apache. Apache Sedona, a cluster computing system for processing

large-scale spatial data.
[39] Apache. Apache spark™ - Unified Analytics Engine for Big Data.
[40] Apache. Apache Storm.
[41] Apache. Apache tez.
[42] Apache. Apache Zookeeper.
[43] Isuri Anuradha Nanomi Arachchige, Le Ha, Ruslan Mitkov, and

Johannes-Dieter Steinert. Enhancing named entity recognition for holo-
caust testimonies through pseudo labelling and transformer-based
models. In International Workshop on Historical Document Imaging and
Processing (HIP), page 85–90. ACM, 2023.

181



[44] Patricia Arocena, Boris Glavic, Radu Ciucanu, and Renée Miller. The
ibench integration metadata generator. Proc. VLDB Endow., 9, 11 2015.

[45] Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew
Hojel, Immanuel Trummer, and Christopher Ré. Language models en-
able simple systems for generating structured views of heterogeneous
data lakes. Proc. VLDB Endow., 17(2):92–105, oct 2023.

[46] Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, and Riccardo Torlone.
Data modeling in the nosql world. Comput. Stand. Interfaces, 67, 2020.

[47] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. Uniform access to
NoSQL systems. Inf. Syst., 43:117–133, 2014.

[48] Paolo Atzeni, Christian S. Jensen, GiorgioOrsi, Sudha Ram, Letizia Tanca,
and Riccardo Torlone. The relational model is dead, SQL is dead, and I
don’t feel so good myself. SIGMOD Record, 42(2):64–68, 2013.

[49] Muhammad Babar, Fahim Arif, Mian Ahmad Jan, Zhiyuan Tan, and Fa-
zlullah Khan. Urban data management system: Towards big data ana-
lytics for internet of things based smart urban environment using cus-
tomized hadoop. Future Generation Computer Systems, 96:398–409, 2019.

[50] Antonio Badia and Daniel Lemire. A call to arms: revisiting database
design. SIGMOD Record, 40(3):61–69, 2011.

[51] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen,
Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom
Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom
Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny
Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt,
Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan. Training a
helpful and harmless assistant with reinforcement learning from hu-
man feedback. arXiv preprint arXiv:2204.05862, 2022.

[52] Jason Baker et al. Megastore: Providing scalable, highly available stor-
age for interactive services. In Conference on Innovative Data Systems
Research (CIDR), pages 223–234, 2011.

[53] Angels Balaguer, Vinamra Benara, Renato Luiz de Freitas Cunha,
Roberto de M. Estevão Filho, Todd Hendry, Daniel Holstein, Jennifer
Marsman, Nick Mecklenburg, Sara Malvar, Leonardo Nunes, Rafael
Padilha, Morris Sharp, Bruno Silva, Swati Sharma, Vijay Aski, and Ran-
veer Chandra. RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case
Study on Agriculture. arXiv preprint, 2024.

182



[54] Daniela Ballari, M. Wachowicz, and Miguel Ángel Manso Callejo. Meta-
data behind the interoperability of wireless sensor network. Sensors
(Basel, Switzerland), 9:3635–51, 05 2009.

[55] S. K. Bansal. Towards a semantic extract-transform-load (etl) framework
for big data integration. In 2014 IEEE International Congress on Big Data,
pages 522–529, June 2014.

[56] Marcello Barbella and Genoveffa Tortora. A semi-automatic data inte-
gration process of heterogeneous databases. Pattern Recognition Letters,
166(C):134–142, feb 2023.

[57] Sarah Barns. Smart cities and urban data platforms: Designing inter-
faces for smart governance. City, Culture and Society, 12:5 – 12, 2018. In-
novation and identity in next generation smart cities.

[58] Carlo Batini, Stefano Ceri, and Shamkant B. Navathe. Conceptual
Database Design: An Entity-Relationship Approach. Benjamin/Cummings,
1992.

[59] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,
M. Wachowicz, G. Ouzounis, and Y. Portugali. Smart cities of the future.
The European Physical Journal Special Topics, 214(1):481–518, Nov 2012.

[60] Edmon Begoli, Ian Goethert, and Kathryn Knight. A lakehouse archi-
tecture for the management and analysis of heterogeneous data for
biomedical research and mega-biobanks. In 2021 IEEE International Con-
ference on Big Data (Big Data), pages 4643–4651, 2021.

[61] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm. Schema Matching
and Mapping. Springer Publishing Company, Incorporated, 1st edition,
2011.

[62] Eline A Belt, Thomas Koch, and Elenna R Dugundji. Hourly forecasting of
traffic flow rates using spatial temporal graph neural networks. Procedia
Computer Science, 220:102–109, 2023.

[63] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmar-
garet Shmitchell. On the dangers of stochastic parrots: Can language
models be too big? In Conference on Fairness, Accountability, and Trans-
parency (FAccT), page 610–623. ACM, 2021.

[64] Philip A. Bernstein. Applying model management to classical meta data
problems. In Conference on Innovative Data Systems Research (CIDR),
2003.

183



[65] Philip A. Bernstein and Howard Ho. Model management and schema
mappings: Theory and practice. In Proc. VLDB Endow., pages 1439–1440.
ACM, 2007.

[66] Luca Bertinetto, Romain Mueller, Konstantinos Tertikas, Sina Saman-
gooei, and Nicholas A. Lord. Making Better Mistakes: Leveraging Class
Hierarchies With Deep Networks . In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 12503–12512, 2020.

[67] S. Bhattacharya and S. Mishra. Applications of machine learning for
facies and fracture prediction using bayesian network theory and ran-
dom forest: Case studies from the appalachian basin, usa. Journal of
Petroleum Science and Engineering, 170:1005–1017, 2018.

[68] Devis Bianchini, Valeria De Antonellis, Massimiliano Garda, and Michele
Melchiori. Smart city data modelling using semantic web technologies.
In IEEE International Smart Cities Conference (ISC2), pages 1–7, 2021.

[69] Simon Elias Bibri. The iot for smart sustainable cities of the future: An
analytical framework for sensor-based big data applications for envi-
ronmental sustainability. Sustainable Cities and Society, 38:230–253, 2018.

[70] Simon Elias Bibri and John Krogstie. The core enabling technologies of
big data analytics and context-aware computing for smart sustainable
cities: a review and synthesis. Journal of Big Data, 4(1):38, Nov 2017.

[71] Stefan Bischof, Athanasios Karapantelakis, Cosmin-Septimiu Nechifor,
Amit P. Sheth, Alessandra Mileo, and Payam M. Barnaghi. Semantic
modelling of smart city data. In W3C, 2014.

[72] Asim Biswal, Liana Patel, Siddarth Jha, Amog Kamsetty, Shu Liu,
Joseph E. Gonzalez, Carlos Guestrin, and Matei Zaharia. Text2SQL is
not Enough: Unifying AI and databases with TAG. CORR, 2024.

[73] Dominik Bork, Syed Juned Ali, and Ben Roelens. Conceptual modeling
and artificial intelligence: A systematic mapping study. arXiv preprint,
2023.

[74] Peter Bosch, Sophie Jongeneel, Hans-Martin Neumann, Iglar Branislav,
and Aapo Huovila. Recommendations for a smart city index. Project
deliverable, D3.3, 2016.

[75] Peter Bosch, Sophie Jongeneel, Vera Rovers, Hans-Martin Neumann, Mi-
imu Airaksinen, and Aapo Huovila. Citykeys indicators for smart city
projects and smart cities. Report, 2017.

184



[76] Priyankar Bose, Sriram Srinivasan, William C. Sleeman, Jatinder Palta,
Rishabh Kapoor, and Preetam Ghosh. A survey on recent named en-
tity recognition and relationship extraction techniques on clinical texts.
Applied Sciences, 11(18), 2021.

[77] Harry Brignull and Yvonne Rogers. Enticing people to interact with large
public displays in public spaces. In Human-Computer Interaction (INTER-
ACT), 2003.

[78] Matthias Budde, Andrea Schankin, Julien Hoffmann, Marcel Danz, Till
Riedel, and Michael Beigl. Participatory sensing or participatory non-
sense? mitigating the effect of human error on data quality in citizen
science. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3), sep
2017.

[79] Nélio Cacho, Frederico Lopes, and Thaís Batista. Challenges to the de-
velopment of smart city systems: A system-of-systems view. In SBES
2017, pages 244–249, 09 2017.

[80] Michael J Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and Yang
Zhang. Webtables: exploring the power of tables on the web. Proceed-
ings of the VLDB Endowment, 1(1):538–549, 2008.

[81] Hongming Cai, Boyi Xu, Lihong Jiang, and Athanasios V Vasilakos. Iot-
based big data storage systems in cloud computing: perspectives and
challenges. IEEE Internet of Things Journal, 4(1):75–87, 2016.

[82] Richard L Caldwell, Willett F Baldwin, James D Bargainer, James E Berry,
George N Salaita, and Raymond W Sloan. Gamma-ray spectroscopy in
well logging. Geophysics, 28(4):617–632, 1963.

[83] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan.
Creating embeddings of heterogeneous relational datasets for data in-
tegration tasks. In International Conference on Management of Data (SIG-
MOD), pages 1335–1349. ACM, 2020.

[84] Paolo Cardullo and Rob Kitchin. Smart urbanism and smart citizenship:
The neoliberal logic of ’citizen-focused’ smart cities in europe. Environ-
ment and Planning C: Politics and Space, 37(5):813–830, 2019.

[85] Salvatore Carta, Alessandro Giuliani, Leonardo Piano, Alessandro Se-
bastian Podda, Livio Pompianu, and Sandro Gabriele Tiddia. Iterative
Zero-Shot LLM Prompting for Knowledge Graph Construction. arXiv
preprint, 2023.

185



[86] François Castagnos, Martin Mihelich, and Charles Dognin. A simple log-
based loss function for ordinal text classification. In Proceedings of the
29th International Conference on Computational Linguistics, 2022.

[87] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record,
39(4):12–27, 2010.

[88] C. Cattuto, M. Quaggiotto, A. Panisson, and A. Averbuch. Time-varying
social networks in a graph database: a Neo4j use case. In International
Workshop on Graph Data Management Experiences and Systems (GRADES),
pages 1–6. ACM, 2013.

[89] Everton Cavalcante, Nélio Cacho, Frederico Lopes, Thais Batista, and
Flavio Oquendo. Thinking smart cities as systems-of-systems: A per-
spective study. In International Workshop on Smart Cities, SmartCities.
ACM, 2016.

[90] Patricio Cerda, Gaël Varoquaux, and Balázs Kégl. Similarity encoding
for learning with dirty categorical variables. Machine Learning, 107(8-
10):1477–1494, 2018.

[91] Pablo Chamoso, AlfonsoGonzález-Briones, Sara Rodríguez, JuanM. Cor-
chado, and Ramón Sanchez. Tendencies of technologies and platforms
in smart cities: A state-of-the-art review. Wireless Communications and
Mobile Computing, 2018:17, 2018.

[92] Fay Chang et al. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2), 2008.

[93] C Aggarwal Charu and K REDDY Chandan. Data clustering: algorithms
and applications. Chapman and Hall/CRC Boca Raton, 2013.

[94] Artem Chebotko, Andrey Kashlev, and Shiyong Lu. A Big Data Modeling
Methodology for Apache Cassandra. In IEEE International Conference on
Big Data (BigData), pages 238–245, 2015.

[95] Qi Chen, Wei Wang, Fangyu Wu, Suparna De, Ruili Wang, Bailing Zhang,
and Xin Huang. A survey on an emerging area: Deep learning for smart
city data. IEEE Transactions on Emerging Topics in Computational Intelli-
gence, 3(5):392–410, 2019.

[96] Yang Chen, Arturo Ardila-Gomez, and Gladys Frame. Achieving energy
savings by intelligent transportation systems investments in the context
of smart cities. Transportation Research Part D: Transport and Environ-
ment, 54:381–396, 2017.

186



[97] Zui Chen, Zihui Gu, Lei Cao, Ju Fan, SamuelMadden, andNan Tang. Sym-
phony: Towards natural language query answering over multi-modal
data lakes. In Conference on Innovative Data Systems Research (CIDR),
2023.

[98] Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, and
Ronan Tournier. Implementation of multidimensional databases in
column-oriented NoSQL systems. In 19th East European Conference on
Advances in Databases and Information Systems (ADBIS 2015), pages 79–
91, 2015.

[99] Chicago. City of chicago. data portal.
[100] Kristina Chodorow. MongoDB: The Definitive Guide. O’Reilly Media, 2013.
[101] Paul F. Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and

Dario Amodei. Deep reinforcement learning from human preferences.
In Advances in Neural Information Processing Systems, volume 30, 2017.

[102] United 4 Smart Sustainable Cities. Collection methodology for key per-
formance indicators for smart sustainable cities. United 4, 2017.

[103] European Comission. Communication from the commission to the eu-
ropean parliament, the council, the european economic and social com-
mittee and the committee of the regions. a european strategy for data,
2020.

[104] European Commission. Open data goldbook for data managers and
data holders. practical guidebook for organizations wanting to publish
open data. EUData, 2018.

[105] European Commission and Directorate-General for Environment. Indi-
cators for sustainable cities. Publications Office, 2018.

[106] Sergio Consoli, Misael Mongiovic, Andrea G. Nuzzolese, Silvio Peroni,
Valentina Presutti, Diego Reforgiato Recupero, andDaria Spampinato. A
smart city data model based on semantics best practice and principles.
In Conference on World Wide Web (WWW), pages 1395–1400. ACM, 2015.

[107] Carlos Costa and Maribel Yasmina Santos. The suscity big data ware-
housing approach for smart cities. In ACM, IDEAS 2017, pages 264–273.
ACM, 2017.

[108] World Council. World council on city data.
[109] M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero, and P.A.

Gutiérrez. Metrics to guide a multi-objective evolutionary algorithm for
ordinal classification. Neurocomputing, 135:21–31, 2014.

187



[110] Federico Cugurullo. Frankenstein urbanism: eco, smart and autonomous
cities, artificial intelligence and the end of the city. Routledge, 2021.

[111] Thiago Pereira da Silva, Thais Batista, Frederico Lopes, Aluizio Rocha
Neto, Flávia C. Delicato, Paulo F. Pires, and Atslands R. da Rocha. Fog
computing platforms for smart city applications - a survey. ACM Trans.
Internet Technol., feb 2022.

[112] Mathieu d’Aquin, JohnDavies, and EnricoMotta. Smart cities’ data: Chal-
lenges and opportunities for semantic technologies. IEEE Internet Com-
puting, 19:66–70, 11 2015.

[113] City of New York Data, NYC Open. NYC Open Data.
[114] Ayona Datta. New urban utopias of postcolonial india: Entrepreneurial

urbanization in dholera smart city, gujarat. Dialogues in Human Geogra-
phy, 5(1):3–22, 2015.

[115] Islay Davies, Peter Green, Michael Rosemann, Marta Indulska, and Stan
Gallo. How do practitioners use conceptual modeling in practice? Data
& Knowledge Engineering (DKE), 58(3):358–380, 2006.

[116] Ali Davoudian and Mengchi Liu. Big data systems: A software engineer-
ing perspective. ACM Computing Surveys (CSUR), 53(5), 2020.

[117] Claudio de Lima and Ronaldo dos Santos Mello. A workload-driven log-
ical design approach for NoSQL document databases. In Int. Conference
on Information Integration and Web-based Applications & Services (iiWAS),
pages 73:1–73:10. ACM, 2015.

[118] Arthur de M. Del Esposte, Eduardo F.Z. Santana, Lucas Kanashiro,
Fabio M. Costa, Kelly R. Braghetto, Nelson Lago, and Fabio Kon. Design
and evaluation of a scalable smart city software platform with large-
scale simulations. Future Gener. Comput. Syst., 93(C):427–441, apr 2019.

[119] Christopher De Sa, Alex Ratner, Christopher Ré, Jaeho Shin, Feiran
Wang, Sen Wu, and Ce Zhang. Deepdive: Declarative knowledge base
construction. International Conference on Management of Data (SIGMOD),
45(1):60–67, 2016.

[120] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In Symposium on Operating System Design and
Implementation (OSDI), pages 137–150, 2004.

[121] Aoife Delaney and Rob Kitchin. Progress and prospects for data-driven
coordinated management and emergency response: the case of ire-
land. Territory, Politics, Governance, 11(1):174–189, 2023.

188



[122] Yuri Demchenko, Paola Grosso, Cees De Laat, and Peter Membrey. Ad-
dressing big data issues in scientific data infrastructure. In International
Conference on Collaboration Technologies and Systems (CTS), pages 48–55.
IEEE, 2013.

[123] Zikun Deng, Di Weng, Shuhan Liu, Yuan Tian, Mingliang Xu, and Yingcai
Wu. A survey of urban visual analytics: Advances and future directions.
Computational Visual Media, 9, 2023.

[124] Abu Dhabi, editor. Automated Well Correlation using Machine Learning
and Facial Recognition Techniques, International Petroleum Exhibition
and Conference, 11 2020.

[125] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. Principles of Data Inte-
gration. Morgan Kaufmann, 2012.

[126] Xin Luna Dong and Theodoros Rekatsinas. Data integration and ma-
chine learning: A natural synergy. Proc. VLDB Endow., 11(12):2094–2097,
August 2018.

[127] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara, FabrizioMontesi, RuslanMustafin, and Larisa Safina. Microser-
vices: Yesterday, Today, and Tomorrow, pages 195–216. Springer Interna-
tional Publishing, Cham, 2017.

[128] Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based impu-
tation for time series. Expert Systems with Applications, 219:119619, June
2023.

[129] Carmen Echebarria, Jose M. Barrutia, and Itziar Aguado-Moralejo. The
smart city journey: a systematic review and future research agenda. In-
novation: The European Journal of Social Science Research, 34(2):159–201,
2021.

[130] David Eckhoff and Isabel Wagner. Privacy in the smart city-applications,
technologies, challenges, and solutions. IEEE Communications Surveys &
Tutorials, 20(1):489–516, 2018.

[131] J. Eidsvik, T. Mukerji, and P. Switzer. Estimation of geological attributes
from a well log: An application of hidden markov chains. Mathematical
Geology, 36:379–397, 2004.

[132] Figure Eight. Figure eight. the essential high-quality data annotation
platform.

[133] Karim El Hage, Adel Remadi, Yasmina Hobeika, RuiningMa, Victor Hong,
and Francesca Bugiotti. A multi-source graph database to showcase a

189



recommender system for dyslexic students. In IEEE International Confer-
ence on Big Data (BigData), pages 3134–3138, 2023.

[134] Ahmed Eldawy, Vagelis Hristidis, Saheli Ghosh, Majid Saeedan, Akil Se-
vim, A.B. Siddique, Samriddhi Singla, Ganesh Sivaram, Tin Vu, and Yam-
ing Zhang. Beast: Scalable exploratory analytics on spatio-temporal
data. In ACM International Conference on Information & Knowledge Man-
agement (CIKM), page 3796–3807. ACM, 2021.

[135] Bibri Simon Elias, Allam Zaheer, and Krogstie John. The metaverse as
a virtual form of data-driven smart urbanism: platformization and its
underlying processes, institutional dimensions, and disruptive impacts.
Computational Urban Science, 2, 2022.

[136] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, pages 226–231, 1996.

[137] Adriana Eugene, Naomi Alpert, Wil Lieberman-Cribbin, and Emanuela
Taioli. Using nyc 311 call center data to assess short-and long-termneeds
following hurricane sandy. Disaster Medicine and Public Health Prepared-
ness, 16(4):1447–1451, 2022.

[138] Eric Evans. Domain-Driven Design. Addison-Wesley, 2003.
[139] Chinedu Pascal Ezenkwu, John Guntoro, Andrew Starkey, Vahid Vaziri,

and Maurillio Addario. Automated well-log pattern alignment and
depth-matching techniques: An empirical review and recommenda-
tions. Petrophysics - The SPWLA Journal, 64(01):115–129, 02 2023.

[140] Raul Castro Fernandez, Aaron J. Elmore, Michael J. Franklin, Sanjay Kr-
ishnan, and Chenhao Tan. How large language models will disrupt data
management. Proc. VLDB Endow., 16(11):3302–3309, jul 2023.

[141] Raul Castro Fernandez, Peter R. Pietzuch, Jay Kreps, Neha Narkhede,
Jun Rao, Joel Koshy, Dong Lin, Chris Riccomini, and Guozhang Wang.
Liquid: Unifying nearline and offline big data integration. In Conference
on Innovative Data Systems Research, 2015.

[142] FIWARE. Fiware smart cities.
[143] Daniela Florescu andDonald Kossmann. Storing and querying XML data

using an RDMBS. IEEE Data Eng. Bull., 22(3):27–34, 1999.
[144] European Innovation Partnership for Smart Cities & Communities (EIP-

SCC). Eip-scc urban platform management framework, enabling cities
to maximize value from city data. EIP-SCC, 2016.

190



[145] The United for Smart Sustainable Cities. Redefining smart city plat-
forms:setting the stage for minimal interoperability mechanisms. a
u4ssc deliverable on city platforms, 2022.

[146] Apurva Gandhi, Yuki Asada, Victor Fu, Advitya Gemawat, Lihao Zhang,
Rathijit Sen, Carlo Curino, Jesús Camacho-Rodríguez, and Matteo Inter-
landi. The tensor data platform: Towards an ai-centric database system.
In Conference on Innovative Data Systems Research (CIDR), 2023.

[147] Antonio Garmendia, Dominik Bork, Martin Eisenberg, Thiago do Nasci-
mento Ferreira, Marouane Kessentini, and Manuel Wimmer. Leverag-
ing artificial intelligence for model-based software analysis and design.
In Optimising the Software Development Process with Artificial Intelligence,
pages 93–117. Springer, 2023.

[148] Gartner. Market guide for smart city operationsmanagement platforms
and ecosystems, 2015.

[149] Lisa Gaudette and Nathalie Japkowicz. Evaluation methods for ordinal
classification. In Yong Gao and Nathalie Japkowicz, editors, Advances in
Artificial Intelligence, pages 207–210, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[150] Aditya Gaur, Bryan Scotney, Gerard Parr, and Sally McClean. Smart city
architecture and its applications based on iot. Procedia Computer Sci-
ence, 52:1089 – 1094, 2015. International Conference on Sustainable En-
ergy Information Technology (SEIT).

[151] Geomesa. Geomesa.
[152] AmmarGharaibeh, MohammadA. Salahuddin, Sayed JahedHussini, Ab-

dallah Khreishah, Issa Khalil, Mohsen Guizani, and Ala Al-Fuqaha. Smart
cities: A survey on data management, security, and enabling technolo-
gies. IEEE Communications Surveys & Tutorials, 19(4):2456–2501, 2017.

[153] Rudolf Giffinger, Christian Fertner, Hans Kramar andRobert Kalasek,
Nataša Pichler-Milanović, and Evert Meijers. Smart cities: Ranking of
european medium-sized cities. Smart Cities, 2007.

[154] Behzad Golshan, Alon Halevy, George Mihaila, and Wang-Chiew Tan.
Data integration: After the teenage years. In International Conference on
Management of Data (SIGMOD), page 101–106. ACM, 2017.

[155] Google. Crowdsource by Google.
[156] Salvatore Greco, Alessio Ishizaka, Menelaos Tasiou, and Gianpiero Tor-

risi. On the methodological framework of composite indices: A review
191



of the issues of weighting, aggregation, and robustness. Social Indicators
Research, 141(1):61–94, Jan 2019.

[157] G. Gröger, T.H. Kolbe, C. Nagel, and K.H. Häfele. Ogc city geography
markup language (citygml) encoding standard. OGC Standard OGC 12-
019 Open Geospatial Consortium, 2012, 2012. 35.01.01; LK 01.

[158] Thomas R. Gruber. A translation approach to portable ontology speci-
fications. Knowledge Acquisition, 5(2):199 – 220, 1993.

[159] Michael Gubanov, Manju Priya, and Maksim Podkorytov. Intellilight: A
flashlight for large-scale dark structured data, 2017.

[160] Abhimanyu Gupta, Geert Poels, and Palash Bera. Generating multiple
conceptual models from behavior-driven development scenarios. Data
& Knowledge Engineering (DKE), 145:102141, 2023.

[161] Rahul Gupta, Alon Halevy, Xuezhi Wang, Steven Euijong Whang, and Fei
Wu. Biperpedia: An ontology for search applications. Proceedings of the
VLDB Endowment, 7(7):505–516, 2014.

[162] Ralf Hartmut Güting and Markus Schneider. Moving Object Databases.
Morgan Kaufmann Publishers, 2005.

[163] Hadi Habibzadeh, Cem Kaptan, Tolga Soyata, Burak Kantarci, and Azze-
dine Boukerche. Smart city system design: A comprehensive study of
the application and data planes. ACM Comput. Surv., 52(2), May 2019.

[164] Hadi Habibzadeh, Tolga Soyata, Burak Kantarci, Azzedine Boukerche,
and Cem Kaptan. Sensing, communication and security planes: A new
challenge for a smart city system design. Computer Networks, 144:163–
200, 2018.

[165] Hadoop. Spatialhadoop.
[166] Hadoop. St-hadoop.
[167] Jean-Luc Hainaut. The transformational approach to database engi-

neering. In GTTSE, LNCS 4143, pages 95–143. Springer, 2006.
[168] Alon Halevy, Yejin Choi, Avrilia Floratou, Michael J. Franklin, Natasha

Noy, and Haixun Wang. Will llms reshape, supercharge, or kill data sci-
ence? Proc. VLDB Endow., 16(12):4114–4115, aug 2023.

[169] Alon Halevy and Jane Dwivedi-Yu. Learnings from data integration for
augmented language models. arXiv preprint, 2023.

192



[170] Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration:
The teenage years. In Proc. VLDB Endow., pages 9–16. ACM, 2006.

[171] DameWendyHall and Jérôme Pesenti. Growing the artificial intelligence
industry in the uk. GOV, 2017.

[172] R EHall, B Bowerman, J Braverman, J Taylor, H Todosow, andUVonWim-
mersperg. The vision of a smart city. GOV, 9 2000.

[173] Sophia Hamer, Jennifer Sleeman, and Ivanka Stajner. Forecast-aware
model driven lstm. arXiv preprint arXiv:2303.12963, 2023.

[174] Michael Hamrah. Data Modeling at Scale: MongoDB
+ Mongoid, Callbacks, and Denormalizing Data for Ef-
ficiency. http://blog.michaelhamrah.com/2011/08/
data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-efficiency/,
2011. (Accessed February, 2016).

[175] Jack Hardinges. What is a data trust?, 2018.
[176] Jack Hardinges and Peter Wells. Defining a data trust, 2018.
[177] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam,

J. Paraszczak, and P. Williams. Foundations for smarter cities. IBM Jour-
nal of Research and Development, 54(4):1–16, 2010.

[178] Guy Harrison. Next Generation Databases: NoSQL, NewSQL, and Big Data.
Apress, 2016.

[179] Ibrahim Abaker Targio Hashem, Victor Chang, Nor Badrul Anuar, Kay-
ode Adewole, Ibrar Yaqoob, Abdullah Gani, Ejaz Ahmed, and Haruna
Chiroma. The role of big data in smart city. International Journal of Infor-
mation Management, 36(5):748 – 758, 2016.

[180] Tali Hatuka, Toch Eran, BirnhackMichael, andHadas Zur. The Digital City:
Critical Dimensions in Implementing the Smart City. SSRN, 2020.

[181] J. He, A. D. La Croix, J. Wang,W. Ding, and J. R. Underschultz. Using neural
networks and themarkov chain approach for facies analysis and predic-
tion fromwell logs in the precipice sandstone and evergreen formation,
surat basin, australia. Marine and Petroleum Geology, 101:410–427, 2019.

[182] Wei He, Wanqiang Li, and Peidong Deng. Legal governance in the
smart cities of china: Functions, problems, and solutions. Sustainabil-
ity, 14(15):9738, 2022.

193

http://blog.michaelhamrah.com/2011/08/data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-efficiency/
http://blog.michaelhamrah.com/2011/08/data-modeling-at-scale-mongodb-mongoid-callbacks-and-denormalizing-data-for-efficiency/


[183] Pat Helland. Life beyond distributed transactions: an apostate’s opin-
ion. In Conference on Innovative Data Systems Research (CIDR), pages 132–
141, 2007.

[184] Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mo-
hamed Gabr, Hitokazu Matsushita, Young Jin Kim, Mohamed Afify, and
Hany Awadalla. How Good Are GPT Models at Machine Translation? A
Comprehensive Evaluation. arXiv preprint, 2023.

[185] Roberto Henry Herrera and Mirko van der Baan. Automated seismic-
to-well ties?, 2012.

[186] RC Hertzog and RE Plasek. Neutron-excited gamma-ray spectrometry
for well logging. IEEE Transactions on Nuclear Science, 26(1):1558–1567,
1979.

[187] Moditha Hewasinghage, Nacéra Bennacer Seghouani, and Francesca
Bugiotti. Modeling strategies for storing data in distributed heteroge-
neous NoSQL databases. In International Conference on Conceptual Mod-
eling (ER), volume 11157, pages 488–496. Springer, 2018.

[188] Arne Hintz, Lina Dencik, and Karin Wahl-Jorgensen. Digital citizenship
and surveillance| digital citizenship and surveillance society— introduc-
tion. International Journal of Communication, 11(0), 2017.

[189] Taisei Hirakawa, KeisukeMaeda, Takahiro Ogawa, Satoshi Asamizu, and
Miki Haseyama. Analysis of social trends related to covid-19 pandemic
utilizing social media data. In Global Conference on Consumer Electronics
(GCCE), pages 43–44. IEEE, 2021.

[190] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[191] Robert G. Hollands. Critical interventions into the corporate smart city.
Cambridge Journal of Regions, Economy and Society, 8(1):61–77, 08 2014.

[192] Ali Reza Honarvar and Ashkan Sami. Towards sustainable smart city by
particulate matter prediction using urban big data, excluding expensive
air pollution infrastructures. Big data research, 17:56–65, 2019.

[193] Simo Hosio, Vassilis Kostakos, Hannu Kukka, Marko Jurmu, Jukka Riekki,
and Timo Ojala. From school food to skate parks in a few clicks: Using
public displays to bootstrap civic engagement of the young. In Judy Kay,
Paul Lukowicz, Hideyuki Tokuda, Patrick Olivier, and Antonio Krüger, ed-
itors, Pervasive Computing, pages 425–442. Springer, 2012.

194



[194] Le Hou, Chen-Ping Yu, and Dimitris Samaras. Squared earth mover’s
distance-based loss for training deep neural networks. CoRR, 2016.

[195] Jeremy Howard et al. fastai. https://github.com/fastai/fastai,
2018.

[196] HPCC. Hpcc systems.
[197] HPCC. Taming the Data Lake: The HPCC Systems Open Source Big Data

Platform.
[198] AapoHuovila, Peter Bosch, andMiimuAiraksinen. Comparative analysis

of standardized indicators for smart sustainable cities: What indicators
and standards to use and when? Cities, 89:141 – 153, 2019.

[199] Sifat Ibtisum, S M Atikur Rahman, and s. M. Saokat Hossain. Compar-
ative analysis of mapreduce and apache tez performance in multinode
clusters with data compression. World Journal of Advanced Research and
Reviews, 20:519–526, 12 2023.

[200] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. Location-
dependent query processing: Where we are and where we are heading.
ACM Comput. Surv., 42(3), mar 2010.

[201] European Telecommunication Standards Institute. Etsi ts103463 key
performance indicators for sustainable digital multiservice cities. tech-
nical specification v1.1.1 (2017-07), 2017.

[202] European Telecommunication Standards Institute. Context informa-
tionmanagement (cim); informationmodel (mod0), etsi gs cim 006 v1.1.1
(2019-07), group specification, 2019.

[203] European Telecommunication Standards Institute. Context information
management (cim);ngsi-ld; guidelines for the deployment of smart city
and communities data platforms. etsi gr cim 020 v1.1.1 (2022-12), group
report, 2022.

[204] European Telecommunication Standards Institute. Cross-cutting con-
text information management (cim); ngsi-ld api, etsi gs cim 009 v1.6.1
(2022-08), group specification, 2022.

[205] Open Data Institute. Mapping the wide world of data sharing.
[206] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pel-

letier, Daniel F. Schmidt, Jonathan Weber, Geoffrey I. Webb, Lhassane
Idoumghar, Pierre-Alain Muller, and François Petitjean. Inceptiontime:
Finding alexnet for time series classification. Data Mining and Knowledge
Discovery, 34(6):1936–1962, September 2020.

195

https://github.com/fastai/fastai


[207] ISO. International organization for standardization.
[208] ISO219722020. Iso/iec 21972:2020 information technology - upper level

ontology for smart city indicators.
[209] ISO37120. International standard iso 37120, sustainable cities and com-

munities — indicators for city services and quality of life, 2018.
[210] ISO37122. International standard iso 37122, sustainable cities and com-

munities - indicators for smart cities, 2019.
[211] ISO50871. Iso/iec prf 5087-1 information technology - city data model -

part 1: Foundation level concepts.
[212] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed La-

zowska. SQLShare: Results from a multi-year SQL-as-a-Service exper-
iment. In International Conference on Management of Data (SIGMOD),
pages 281–293, 2016.

[213] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford,
Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna
Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-
Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[214] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch,
Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume
Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szy-
mon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts. arXiv
preprint, 2024.

[215] Huaxiong Jiang, Stan Geertman, and Patrick Witte. The contextualiza-
tion of smart city technologies: An international comparison. Journal of
Urban Management, 12(1):33–43, 2023.

[216] Sihang Jiang, Jiaqing Liang, Yanghua Xiao, Haihong Tang, Haikuan
Huang, and Jun Tan. Towards the completion of a domain-specific
knowledge base with emerging query terms. In IEEE International Con-
ference on Data Engineering, pages 1430–1441. IEEE, 2019.

[217] Ming Jin, ShiyuWang, LintaoMa, Zhixuan Chu, James Y. Zhang, Xiaoming
Shi, Pin-Yu Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong
Wen. Time-llm: Time series forecasting by reprogramming large lan-
guage models, 2024.

196



[218] Alekh Jindal, Shi Qiao, Sathwik Reddy Madhula, Kanupriya Raheja, and
Sandhya Jain. Turning databases into generative ai machines. In Con-
ference on Innovative Data Systems Research (CIDR), 2024.

[219] Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu,
Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. Google’s multilingual neu-
ral machine translation system: Enabling zero-shot translation. Trans-
actions of the Association for Computational Linguistics, 5:339–351, 10 2017.

[220] Collin Joyce, Benjamin Nemoz, Raiza Bastidas, Bryan Briney, and Den-
nis R. Burton. Longitudinal analysis of drift in the circulating human
antibody repertoire over four years. bioRxiv, 2025.

[221] Kyung Hwa Jung, Zachary Pitkowsky, Kira Argenio, James W Quinn,
Jean-Marie Bruzzese, Rachel L Miller, Steven N Chillrud, Matthew
Perzanowski, Jeanette A Stingone, and Stephanie Lovinsky-Desir. The ef-
fects of the historical practice of residential redlining in the united states
on recent temporal trends of air pollution near new york city schools.
Environment international, 169:107551, 2022.

[222] A. Kalinowski, D. Datta, and Y. An. A scalable approach to aligning nat-
ural language and knowledge graph representations: Batched informa-
tion guided optimal transport. In IEEE International Conference on Big
Data (BigData), pages 383–392, 2023.

[223] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen.
Lstm fully convolutional networks for time series classification. IEEE Ac-
cess, 6:1662–1669, 2018.

[224] Ilya Katsov. NoSQL data modeling techniques. Highly Scalable
Blog, https://highlyscalable.wordpress.com/2012/03/01/
nosql-data-modeling-techniques/, 2012. accessed February 2016.

[225] T. Kaufmann, P. Weng, V. Bengs, and E. Hüllermeier. A survey
of reinforcement learning from human feedback. arXiv preprint
arXiv:2312.14925, 2023.

[226] Moe Kayali, Anton Lykov, Ilias Fountalis, Nikolaos Vasiloglou, Dan
Olteanu, and Dan Suciu. CHORUS: Foundation Models for Unified Data
Discovery and Exploration. arXiv preprint, 2023.

[227] Moe Kayali, Fabian Wenz, Nesime Tatbul, and Çağatay Demiralp. Mind
the data gap: Bridging llms to enterprise data integration, 2024.

[228] Latif U. Khan, Ibrar Yaqoob, Nguyen H. Tran, S. M. Ahsan Kazmi,
Tri Nguyen Dang, and Choong Seon Hong. Edge-computing-enabled

197

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/


smart cities: A comprehensive survey. IEEE Internet of Things Journal,
7(10):10200–10232, 2020.

[229] Amandeep Khurana. Introduction to HBase Schema Design. ;login: The
Usenix magazine, 37(5):29–36, 2012.

[230] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2017.

[231] Rob Kitchin. The real-time city? big data and smart urbanism. GeoJour-
nal, 79(1):1–14, Feb 2014.

[232] Rob Kitchin, Tracey P. Lauriault, and Gavin McArdle. Knowing and gov-
erning cities through urban indicators, city benchmarking and real-time
dashboards. Regional Studies, Regional Science, 2(1):6–28, 2015.

[233] Rob Kitchin and Niamh Moore-Cherry. Fragmented governance, the
urban data ecosystem and smart city-regions: the case of metropolitan
boston. Regional Studies, 55(12):1913–1923, 2021.

[234] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O Reilly Media, 2017.

[235] Bram Klievink, Haiko van der Voort, and Wijnand Veeneman. Creat-
ing value through data collaboratives. Information Polity, 23(4):379–397,
2018.

[236] Jason Koh, Sandeep Sandha, Bharathan Balaji, Daniel Crawl, Ilkay Altin-
tas, Rajesh E. Gupta, and Mani B. Srivastava. Data hub architecture for
smart cities. In Conference on Embedded Network Sensor Systems, pages
77:1–77:2, 2017.

[237] Anusha Kola, Harshal More, Sean Soderman, and Michael Gubanov.
Generating unified famous objects (ufos) from the classified object ta-
bles. In IEEE International Conference on Big Data (BigData), pages 4771–
4773. IEEE, 2017.

[238] Andreas Komninos, Jeries Besharat, Denzil Ferreira, John Garofalakis,
and Vassilis Kostakos. Where’s everybody? comparing the use of
heatmaps to uncover cities’ tacit social context in smartphones and per-
vasive displays. Information Technology & Tourism, 17:399–427, 2017.

[239] Vassilis Kostakos, Jakob Rogstadius, Denzil Ferreira, Simo Hosio, and
Jorge Goncalves. Human Sensors, page 69–92. Understanding Complex
Systems. Springer International Publishing, 2017.

[240] Jay Kreps. Questioning the lambda architecture, 2014.
198



[241] M. Kulmala, T. V. Kokkonen, J. Pekkanen, S. Paatero, T. Petäjä, V.-M. Ker-
minen, and A. Ding. Opinion: Gigacity – a source of problems or the new
way to sustainable development. Atmospheric Chemistry and Physics,
21(10):8313–8322, 2021.

[242] Sidewalk Labs. The digital innovation plan. MIDP, 2019.
[243] Chun Sing Lai, Youwei Jia, Zhekang Dong, Dongxiao Wang, Yingshan

Tao, Qi Hong Lai, Richard T. K. Wong, Ahmed F. Zobaa, Ruiheng Wu,
and Loi Lei Lai. A review of technical standards for smart cities. Clean
Technologies, 2(3):290–310, 2020.

[244] Jin Lai, Yang Su, Lu Xiao, Fei Zhao, Tianyu Bai, Yuhang Li, Hongbin
Li, Yuyue Huang, Guiwen Wang, and Ziqiang Qin. Application of geo-
physical well logs in solving geologic issues: Past, present and future
prospect. Geoscience Frontiers, 15(3):101779, 2024.

[245] J LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N Polyzo-
tis, and M.J. Carey. MISO: souping up big data query processing with a
multistore system. In International Conference on Management of Data
(SIGMOD), 2014.

[246] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, and
D. Kiela. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems, 33:9459–9474,
2020.

[247] Huahang Li, Longyu Feng, Shuangyin Li, Fei Hao, Chen Jason Zhang,
Yuanfeng Song, and Lei Chen. On leveraging large language models
for enhancing entity resolution. arXiv preprint, 2024.

[248] Peng Li, Peng Sun, Qiong Tang, Hang Yan, YuanbinWu, Xuanjing Huang,
and Xipeng Qiu. Codeie: Large code generation models are better few-
shot information extractors. In Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 15339–15353, 2023.

[249] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew
Tan. Deep entitymatchingwith pre-trained languagemodels. Proc. VLDB
Endow., 14(1):50–60, sep 2020.

[250] Z. Li, Z. Yang, and M. Wang. Reinforcement learning with human
feedback: Learning dynamic choices via pessimism. arXiv preprint
arXiv:2305.18438, 2023.

[251] T Warren Liao. Clustering of time series data—a survey. Pattern recog-
nition, 38(11):1857–1874, 2005.

199



[252] Chiehyeon Lim, Kwang-Jae Kim, and Paul P. Maglio. Smart cities with big
data: Reference models, challenges, and considerations. Cities, 82:86 –
99, 2018.

[253] Wan Shen Lim, Matthew Butrovich, William Zhang, Andrew Crotty, Lin
Ma, Peijing Xu, Johannes Gehrke, and Andrew Pavlo. Database gyms. In
Conference on Innovative Data Systems Research (CIDR), 2023.

[254] Peng Lin, Ji-gen Xia, Qiu-yuan Hou, Yong-li Ji, and Chen Li. An intelligent
depth correction method for logging curves based on pearson corre-
lation coefficient and dtw. In Jia’en Lin, editor, Proceedings of the In-
ternational Field Exploration and Development Conference, pages 102–114.
Springer Nature Singapore, 2024.

[255] Dianbo Liu, Ricky Sahu, Vlad Ignatov, Dan Gottlieb, and Kenneth Mandl.
High performance computing on flat fhir files created with the new
smart/hl7 bulk data access standard. AMIA Symposium, 2019:592–596,
03 2020.

[256] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin,
andWeizhu Chen. What makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO). ACL, May 2022.

[257] London. Find open data. data portal.
[258] London. London Datastore – Greater London Authority.
[259] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3431–3440, 2015.

[260] Roman Lukyanenko, Arturo Castellanos, Jeffrey Parsons, Mon-
ica Chiarini Tremblay, and Veda C. Storey. Using conceptual modeling
to support machine learning. In International Conference on Advanced
Information Systems Engineering (CAiSE), volume 350, pages 170–181.
Springer, 2019.

[261] Anna Luusua, Johanna Ylipulli, and Emilia Rönkkö. Nonanthropocentric
design and smart cities in the anthropocene. it - Information Technology,
59(6):295–304, 2017.

[262] Meiyi Ma, Sarah M. Preum, Mohsin Y. Ahmed, William Tärneberg, Ab-
deltawab Hendawi, and John A. Stankovic. Data sets, modeling, and
decision making in smart cities: A survey. ACM Trans. Cyber-Phys. Syst.,
4(2), nov 2019.

200



[263] Wolfgang Maass and Veda C. Storey. Pairing conceptual modeling with
machine learning. Data & Knowledge Engineering (DKE), 134:101909, 2021.

[264] Martino Maggio, Francesco Arigliano, Ömer Özdemir, José Manuel Can-
tera, Eunah Kim, Ignacio Elicegui Maestro, Andrea Gaglione, and Angelo
Capossele. Reference architecture for iot enabled smart cities, update.
Europa, 2018.

[265] P Makkaroon, DQ Tong, Y Li, EJ Hyer, P Xian, S Kondragunta, PC Camp-
bell, Y Tang, BD Baker, MD Cohen, et al. Development and evaluation
of a north america ensemble wildfire air quality forecast: Initial applica-
tion to the 2020 western united states “gigafire”. Journal of Geophysical
Research: Atmospheres, 128(22):e2022JD037298, 2023.

[266] Claudia Malzer and Marcus Baum. A hybrid approach to hierarchical
density-based cluster selection. In IEEE International Conference on Mul-
tisensor Fusion and Integration for Intelligent Systems (MFI). IEEE, Septem-
ber 2020.

[267] Hug March and Ramon Ribera-Fumaz. Smart contradictions: The pol-
itics of making barcelona a self-sufficient city. European Urban and Re-
gional Studies, 23(4):816–830, 2016.

[268] J.L. Mari, P. Gaudiani, and J. Delay. Characterization of geological forma-
tions by physical parameters obtained through full waveform acoustic
logging. Physics and Chemistry of the Earth, Parts A/B/C, 36(17):1438–1449,
2011. Clays in Natural & Engineered Barriers for Radioactive Waste Con-
finement.

[269] Nathan Marz and James Warren. Big Data: Principles and Best Practices
of Scalable Realtime Data Systems. Manning Publications Co., USA, 1st
edition, 2015.

[270] Audrey L. Mayer. Strengths and weaknesses of common sustainabil-
ity indices for multidimensional systems. Environment International,
34(2):277 – 291, 2008.

[271] Peter McBrien and Alexandra Poulovassilis. A uniform approach to
inter-model transformations. In CAiSE Conference, LNCS 1626, pages 333–
348, 1999.

[272] Colin McFarlane and Ola Söderström. On alternative smart cities. City,
21(3-4):312–328, 2017.

[273] Hassan Mehmood, Ekaterina Gilman, Marta Cortes, Panos Kostakos,
Andrew Byrne, Katerina Valta, Stavros Tekes, and Jukka Riekki. Imple-
menting big data lake for heterogeneous data sources. In International

201



Conference on Data Engineering Workshops (ICDEW), pages 37–44. IEEE,
2019.

[274] A Middleton and PDLR Solutions. Hpcc systems: Introduction to hpcc
(high-performance computing cluster). White paper, LexisNexis Risk So-
lutions, 2011.

[275] Nandana Mihindukulasooriya, Sanju Tiwari, Carlos F. Enguix, and
Kusum Lata. Text2kgbench: A benchmark for ontology-driven knowl-
edge graph generation from text. In The Semantic Web, pages 247–265,
2023.

[276] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Han-
naneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demon-
strations: Whatmakes in-context learningwork? In Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pages 11048–11064.
ACL, dec 2022.

[277] Michael J. Mior, Kenneth Salem, Ashraf Aboulnaga, and Rui Liu. Nose:
Schema design for nosql applications. In IEEE International Conference
on Data Engineering, pages 181–192, 2016.

[278] C. Mohan. History repeats itself: sensible and NonsenSQL aspects of
the NoSQL hoopla. In EDBT, pages 11–16, 2013.

[279] MongoDB Inc. MongoDB. http://www.mongodb.org. accessed Febru-
ary 2016.

[280] Luca Mora, Roberto Bolici, and Mark Deakin. The first two decades of
smart-city research: A bibliometric analysis. Journal of Urban Technology,
24(1):3–27, 2017.

[281] Vaia Moustaka, Athena Vakali, and Leonidas G. Anthopoulos. A system-
atic review for smart city data analytics. ACM Computing Surveys, 51(5),
2018.

[282] Georgios Mylonas, Athanasios Kalogeras, Georgios Kalogeras, Christos
Anagnostopoulos, Christos Alexakos, and Luis Muñoz. Digital twins
from smart manufacturing to smart cities: A survey. IEEE Access,
9:143222–143249, 2021.

[283] Meinard Müller. Dynamic Time Warping, pages 69–84. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007.

[284] Taewoo Nam and Theresa A. Pardo. Conceptualizing smart city with
dimensions of technology, people, and institutions. In Proceedings of the
12th Annual International Digital Government Research Conference: Digital

202

http://www.mongodb.org


Government Innovation in Challenging Times, dg.o ’11, pages 282–291. ACM,
2011.

[285] Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré.
Can Foundation Models Wrangle Your Data? Proc. VLDB Endow.,
16(4):738–746, dec 2022.

[286] Michela Nardo, Michaela Saisana, Andrea Saltelli, Stefano Tarantola,
Anders Hoffman, and Enrico Giovannini. Handbook on Constructing Com-
posite Indicators and User Guide, volume 2005. OECD, 09 2008.

[287] Fedelucio Narducci, Marco Comerio, Carlo Batini, and Marco Castelli. A
similarity-based framework for service repository integration. Data &
Knowledge Engineering (DKE), 106:18–35, 2016.

[288] United Nations. World urbanisation prospects. the 2014 revision, 2015.
[289] A. Nayak, Anil Poriya, andDikshay Poojary. Type of nosql databases and

its comparison with relational databases. International Journal of Applied
Information Systems, 5(4):16–19, 2013.

[290] Paolo Neirotti, Alberto De Marco, Anna Corinna Cagliano, Giulio
Mangano, and Francesco Scorrano. Current trends in smart city initia-
tives: Some stylised facts. Cities, 38:25–36, 2014.

[291] Neo4j. K-means clustering.
[292] Neo4j. Neo4j.
[293] Neo4j. Neo4j cypher query language.
[294] NEXLA. An introduction to big data formats understanding avro, par-

quet, and orc. In NEXLA White paper, pages 1–12, 2018.
[295] Jan Kristof Nidzwetzki and Ralf Hartmut Güting. Distributed secondo:

A highly available and scalable system for spatial data processing. In
Christophe Claramunt, Markus Schneider, Raymond Chi-Wing Wong,
Li Xiong, Woong-Kee Loh, Cyrus Shahabi, and Ki-Joune Li, editors, Ad-
vances in Spatial and Temporal Databases, pages 491–496, Cham, 2015.
Springer International Publishing.

[296] Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant
Kalagnanam. A time series is worth 64 words: Long-term forecasting
with transformers, 2023.

[297] N. Nishikawa, S. Fujiwara, Y. Hayamizu, and K. Goda. Physical database
design for manufacturing business analytics. In IEEE International Con-
ference on Big Data (BigData), pages 1793–1802, dec 2023.

203



[298] J. R. Norris. Markov Chains, volume 2 of Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, 1998.

[299] Municipality of Copenhagen and Capital Region of Denmark. City data
exchange - lessons learned from a public/private data collaboration.
Municipality, 2018.

[300] Department of Natural Resources. Colorado energy and carbon man-
agement comission. https://ecmc.state.co.us/data.html#/cogis.

[301] Ignacio Oguiza. tsai - a state-of-the-art deep learning library for time
series and sequential data. Github, 2023.

[302] Kieron O’Hara. Data trusts: Ethics, architecture and governance for
trustworthy data stewardship. Web Science Institute White Papers, 2019.

[303] TomoyaOhyama, Kazunori Hanyu, Masayuki Tani, andMomokaNakae.
Investigating crime harm index in the low and downward crime con-
texts: a spatio-temporal analysis of the japanese crime harm index.
Cities, 130:103922, 2022.

[304] Tal Olier. Database design using key-value ta-
bles. http://www.devshed.com/c/a/mysql/
database-design-using-key-value-tables/, 2006. accessed
February 2016.

[305] Aiko Oliveira, Eduardo Nascimento, João Pinheiro, Caio Viktor S. Avila,
Gustavo Coelho, Lucas Feijó, Yenier Izquierdo, Grettel García, Luiz André
P. Paes Leme, Melissa Lemos, and Marco A. Casanova. Small, medium,
and large language models for text-to-sql. In Wolfgang Maass, Hyoil
Han, Hasan Yasar, and Nick Multari, editors, Conceptual Modeling, pages
276–294. Springer Nature Switzerland, 2025.

[306] Harley Vera Olivera, Maristela Holanda, Valeria Guimarâes, Fernanda
Hondo, and Wagner Boaventura. Data modeling for NoSQL document-
oriented databases. In Annual Int. Symposium on Information Manage-
ment and Big Data (SIMBig), volume 1478 of CEUR Workshop Proceedings,
pages 129–135, 2015.

[307] Frederik Olsen, Calogero Schillaci, Mohamed Ibrahim, and Aldo Lipani.
Borough-level covid-19 forecasting in london using deep learning tech-
niques and a novel mse-moran’s i loss function. Results in Physics,
35:105374, 2022.

[308] Oracle. Oracle NoSQL Database. http://www.oracle.com/us/
products/database/nosql/. accessed February 2016.

204

http://www.devshed.com/c/a/mysql/database-design-using-key-value-tables/
http://www.devshed.com/c/a/mysql/database-design-using-key-value-tables/
http://www.oracle.com/us/products/database/nosql/
http://www.oracle.com/us/products/database/nosql/


[309] Francis Ostermeijer, Hans Koster, Leonardo Nunes, and Jos van Om-
meren. Citywide parking policy and traffic: Evidence from amsterdam.
Journal of Urban Economics, 128:103418, 2022.

[310] AhmedOussous, Fatima-Zahra Benjelloun, AyoubAit Lahcen, and Samir
Belfkih. Big data technologies: A survey. Journal of King Saud University-
Computer and Information Sciences, 30(4):431–448, 2018.

[311] S. Ouzineb and S. Wlodarczyk. Leveraging analog wells to fine-tune ai
foundation models for well log prediction. In SPE Western Regional Meet-
ing, page D031S006R006. SPE, April 2025.

[312] Laura Pareja Prieto. Introducing object storage in hadoop ecosystem.
Technical report, Hadoop, 2022.

[313] Diego Pasqualin, Giovanni Souza, Eduardo Luis Buratti, Eduardo Cunha
de Almeida, MarcosDidonet Del Fabro, andDanielWeingaertner. A case
study of the aggregation query model in read-mostly NoSQL document
stores. In 20th Int. Database Engineering & Applications Symposium (IDEAS
’16), IDEAS 2016, pages 224–229. ACM, 2016.

[314] Eric Paulos, Ian Smith, and R Honicky. Participatory urbanism. urbanat-
mospheres. net (accessed May 18, 2010), 2008.

[315] Michael E Payne, Linh B Ngo, Flavio Villanustre, and Amy W Apon. Man-
aging the academic data lifecycle: A case study of hpcc. In IEEE Interna-
tional Conference on Big Data (BigData), pages 22–30. IEEE, 2014.

[316] Ralph Peeters and Christian Bizer. Entity matching using large language
models. arXiv preprint, 2023.

[317] Jorge Pereira, Thais Batista, Everton Cavalcante, Arthur Souza, Frederico
Lopes, and Nelio Cacho. A platform for integrating heterogeneous data
and developing smart city applications. Future Generation Computer Sys-
tems, 128:552–566, 2022.

[318] Ricardo Lopes Pereira, Pedro Cruz Sousa, Ricardo Barata, André
Oliveira, and Geert Monsieur. Citysdk tourism API - building value
around open data. J. Internet Services and Applications, 6(1):24:1–24:13,
2015.

[319] Charith Perera, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec,
and Athanasios V. Vasilakos. Fog computing for sustainable smart cities:
A survey. ACM Comput. Surv., 50(3), June 2017.
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Glossary

2D CNN-LSTM Two-Dimensional Convolutional Neural Network-
Long Short-Term Memory (2D CNN-LSTM).

AWS Amazon Web Services (AWS).
BPM Beam Position Monitors (BPM) are the non-

destructive diagnostics used most frequently at
nearly all linacs, cyclotrons, and synchrotrons.
BPMs deliver the centre of mass of the beam and
act as a monitor for the longitudinal bunch shape.

BSON BSON (Binary JSON), a variant of the popular
JSON format.

CoT Cloud of Things (CoT) refers to integration of
Internet of Things (IoT) with Cloud Computing
(CC)

DL Deep Learning (DL),is a subfield of machine
learning (ML) that utilizes artificial neural net-
works with multiple layers to analyze data and
make intelligent decisions.

DTW Dynamic Time Warping (DTW) is an algorithm
for measuring similarity between two temporal se-
quences.

eCRF The “Cahier d’observation électronique (eCRF),
is a numeric booklet of data about the patiente-
CRF.

EFTA European Free Trade Association (EFTA) is
an intergovernmental organization focused on
promoting free trade and economic integration
among its member countries.

ETSI The European Telecommunications Standards In-
stitute (ETSI) is an independent, not-for-profit,
standardization organization operating in the
field of information and communications.

FCC The Future Circular Collider Study (FCC) is de-
veloping designs for a new research infrastructure
to host the next generation of higher performance
particle colliders.

FCNs Fully Convolutional Networks (FCNs), are an ar-
chitecture used mainly for semantic segmenta-
tion.

219



FCS Flow Cytometry Standard (FCS) is a data file
standard for the reading and writing of data from
flow cytometry experiments.

GADF Gramian Angular Difference Field (GADF)
GARDD GrAph Schema foR Dyslexic Disorders

(GARDD), a conceptual schema for repre-
senting dyslexic disorders.

GeoTS A Time Series Classification framework for es-
timating geological formation to model carbon
storage reservoirs (GeoTS).

GR Gamma Rays (GR) logs measure radioactivity to
determine what types of rocks are present in the
well.

Grad-CAM Gradient-weighted Class Activation Mapping
(Grad-CAM), is a technique used to visualize
which parts of an image a Convolutional Neural
Network (CNN) focuses on when making a clas-
sification decision.

HDBSCAN HDBSCAN is a density-based clustering algo-
rithm that constructs a cluster hierarchy tree and
then uses a specific stability measure to extract
flat clusters from the tree.

HDFS Hadoop Distributed File System (HDFS) is a core
component of the Apache Hadoop framework and
implements a distributed file system designed to
store large data sets across multiple commodity
hardware.

HPCC High-Performance Computing Cluster (HPCC),
also known as Data Analytics Supercomputer
(DAS), is an open source, data-intensive comput-
ing system platform developed by LexisNexis Risk
Solutions.

ICT Information and Communication Technology
(ICT), refers to all technologies used to handle
information and aid communication, encompass-
ing both computer and network hardware, as well
as their software.

IoT Internet of Things (IoT) refers to the network of
physical objects embedded with sensors, software,
and other technologies that allow them to connect
and exchange data with other devices and systems
over the internet.
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ISO International Organization for Standardization
(ISO), is a non-governmental international orga-
nization that develops and publishes voluntary in-
ternational standards.

ITU International Telecommunication Union (ITU) is
a specialized agency of the United Nations that
focuses on information and communication tech-
nologies (ICTs).

KMS Key Management Server (KMS) is an Hadoop
competent that provides cryptographic key man-
agement server based on Hadoop.

KPI Key Performance Indicator (KPI) is a quantifi-
able measure of performance over time for a spe-
cific objective.

LLM Large Language Model (LLM) is a language
model trained with self-supervised machine learn-
ing on a vast amount of text, designed for natural
language processing tasks.

LSTM Long Short-Term Memory (LSTM) is a type of
recurrent neural network (RNN) aimed at miti-
gating the vanishing gradient problem commonly
encountered by traditional RNNs.

LSTM-FCN Long Short Term Memory Fully Convolutional
Network (LSTM-FCN).

LSTM-XMC Long Short-Term Memory (LSTM) is the aug-
mentation of LSTM with XCM submodules. We
combine an LSTM parallel network with the ex-
isting 1D and 2D parallel networks of the XCM.

MAE Mean Absolute Error (MAE) is a metric used to
evaluate the performance of regression models in
machine learning.

MAE Time Series Classification (TSC) is a machine
learning technique used to categorize time-
ordered data into predefined classes.

NER Named Entity Recognition (NER) is a natural
language processing (NLP) method that extracts
information from text.

NGSI-LD NGSI-LD is an information model and API for
publishing, querying and subscribing to context
information.

NLP Natural Language Processing (NLP) is a field
of Artificial Intelligence that focuses on enabling
computers to understand, interpret, and generate
human language.
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NOAM NoSQL Abstract Model (NoAM) is a high-level
data model for NoSQL databases.

PROCLAIM PROCLAIM (PROfile-based Cluster-Labeling for
AttrIbute Matching) a metamodel that performs
an automatic, unsupervised clustering-based ap-
proach to match attributes of a large number of
heterogeneous sources.

U4SSC Smart Sustainable Cities (U4SSC) is a global ini-
tiative that also provides an international plat-
form for information exchange and partnership
building to guide cities and communities in
achieving the United Nations Sustainable Devel-
opment Goals.

XCM eXplainable Convolutional neural network
(XCM) is acompact convolutional neural net-
work which extracts information relative to the
observed variables and time directly from the
input data.
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